1.
D. Chu, Y. Long, H. Yan, and H. Chen, “Research on Load Transfer of Greenhouse Based on Blockchain,” in 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2022, pp. 957–961. doi: 10.1109/ICMTMA54903.2022.00194.
2.
A. Sonoda, Y. Takayama, A. Sugawara, and H. Nishi, “Greenhouse Heat Map Generation with Deep Neural Network Using Limited Number of Temperature Sensors,” in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, pp. 1–6. doi: 10.1109/IECON49645.2022.9968606.
3.
A. Solaimanian and R. Roshandel, “Effect of PV roof coverage on the lighting availability, heating, and cooling demands for a Venlo greenhouse in Tehran,” in 2023 8th International Conference on Technology and Energy Management (ICTEM), 2023, pp. 1–5. doi: 10.1109/ICTEM56862.2023.10083896.
4.
M. M. Abbassy and W. M. Ead, “Intelligent Greenhouse Management System,” in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020, pp. 1317–1321. doi: 10.1109/ICACCS48705.2020.9074345.
5.
P. Qu et al., “Deep learning based detection of plant nutrient deficiency symptom and design of multi-layer greenhouse system,” in 2022 IEEE International Conference on Mechatronics and Automation (ICMA), 2022, pp. 641–645. doi: 10.1109/ICMA54519.2022.9856335.
6.
A. Castañeda-Miranda and V. M. Castaño, “Smart frost control in greenhouses by neural networks models,” Comput Electron Agric, vol. 137, pp. 102–114, 2017, doi: 10.1016/j.compag.2017.03.024.
7.
M. Alotaibi, “Improved Blowfish Algorithm-Based Secure Routing Technique in IoT-Based WSN,” IEEE Access, vol. 9, pp. 159187–159197, 2021, doi: 10.1109/ACCESS.2021.3130005.
8.
A. S. Nandan, S. Singh, A. Malik, and R. Kumar, “A Green Data Collection & Transmission Method for IoT-Based WSN in Disaster Management,” IEEE Sens J, vol. 21, no. 22, pp. 25912–25921, 2021, doi: 10.1109/JSEN.2021.3117995.
9.
V. Agarwal, S. Tapaswi, and P. Chanak, “Intelligent Fault-Tolerance Data Routing Scheme for IoT-Enabled WSNs,” IEEE Internet Things J, vol. 9, no. 17, pp. 16332–16342, 2022, doi: 10.1109/JIOT.2022.3151501.
10.
Q. Li, R. Sun, H. Wu, and Q. Zhang, “Parallel distributed computing based wireless sensor network anomaly data detection in IoT framework,” Cogn Syst Res, vol. 52, pp. 342–350, Dec. 2018, doi: 10.1016/j.cogsys.2018.07.007.
11.
D. Thomas, R. Shankaran, M. A. Orgun, and S. C. Mukhopadhyay, “SEC2: A Secure and Energy Efficient Barrier Coverage Scheduling for WSN-Based IoT Applications,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 2, pp. 622–634, 2021, doi: 10.1109/TGCN.2021.3067606.
12.
V. Rajasekar, P. Jayapaul, S. Krishnamoorthi, M. Saracevic, M. Elhoseny, and M. Al-Akaidi, “Enhanced WSN Routing Protocol for Internet of Things to Process Multimedia Big Data,” Wirel Pers Commun, vol. 126, no. 3, pp. 2081–2100, 2022, doi: 10.1007/s11277-021-08760-1.
13.
A. Joshi, D. P. Kanungo, and R. K. Panigrahi, “WSN-Based Smart Landslide Monitoring Device,” IEEE Trans Instrum Meas, vol. 72, pp. 1–12, 2023, doi: 10.1109/TIM.2023.3269746.
14.
P. Tewari and S. Tripathi, “An energy efficient routing scheme in internet of things enabled WSN: neuro-fuzzy approach,” J Supercomput, vol. 79, no. 10, pp. 11134–11158, 2023, doi: 10.1007/s11227-023-05091-9.
15.
S. K. Barnwal, A. Prakash, and D. K. Yadav, “Improved African Buffalo Optimization-Based Energy Efficient Clustering Wireless Sensor Networks using Metaheuristic Routing Technique,” Wirel Pers Commun, vol. 130, no. 3, pp. 1575–1596, 2023, doi: 10.1007/s11277-023-10345-z.
16.
R. Abraham and M. Vadivel, “An Energy Efficient Wireless Sensor Network with Flamingo Search Algorithm Based Cluster Head Selection,” Wirel Pers Commun, vol. 130, no. 3, pp. 1503–1525, 2023, doi: 10.1007/s11277-023-10342-2.
17.
A. S. J. Charles, K. Palanisamy, M. Venugopal, and S. Shanmugam, “RPL enhancement with E-Sigma routing method,” J Ambient Intell Humaniz Comput, vol. 14, no. 6, pp. 7813–7826, 2023, doi: 10.1007/s12652-023-04593-x.
18.
R. Jaganathan and R. Vadivel, “Intelligent Fish Swarm Inspired Protocol (IFSIP) for Dynamic Ideal Routing in Cognitive Radio Ad-Hoc Networks,” International Journal of Computing and Digital Systems, vol. 10, no. 1, pp. 1063–1074, 2021, doi: 10.12785/ijcds/100196.
19.
A. Nazari, M. Kordabadi, R. Mohammadi, and C. Lal, “EQRSRL: an energy-aware and QoS-based routing schema using reinforcement learning in IoMT,” Wireless Networks, 2023, doi: 10.1007/s11276-023-03367-9.
20.
M. Krishnan and Y. Lim, “Reinforcement learning-based dynamic routing using mobile sink for data collection in WSNs and IoT applications,” Journal of Network and Computer Applications, vol. 194, p. 103223, 2021, doi: 10.1016/j.jnca.2021.103223.
21.
A. Benelhouri, H. Idrissi-Saba, and J. Antari, “An Improved Gateway-Based Energy-Aware Multi-Hop Routing Protocol for Enhancing Lifetime and Throughput in Heterogeneous WSNs,” Simul Model Pract Theory, vol. 116, p. 102471, 2022, doi: https://doi.org/10.1016/j.simpat.2021.102471.
22.
J. Ramkumar and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wirel Pers Commun, vol. 120, no. 2, pp. 887–909, Apr. 2021, doi: 10.1007/s11277-021-08495-z.
23.
R. Jaganathan and V. Ramasamy, “Performance modeling of bio-inspired routing protocols in Cognitive Radio Ad Hoc Network to reduce end-to-end delay,” International Journal of Intelligent Engineering and Systems, vol. 12, no. 1, pp. 221–231, 2019, doi: 10.22266/IJIES2019.0228.22.
24.
J. Ramkumar and R. Vadivel, “Improved frog leap inspired protocol (IFLIP) – for routing in cognitive radio ad hoc networks (CRAHN),” World Journal of Engineering, vol. 15, no. 2, pp. 306–311, 2018, doi: 10.1108/WJE-08-2017-0260.
25.
J. Ramkumar and R. Vadivel, “CSIP—cuckoo search inspired protocol for routing in cognitive radio ad hoc networks,” in Advances in Intelligent Systems and Computing, Springer Verlag, 2017, pp. 145–153. doi: 10.1007/978-981-10-3874-7_14.
26.
V. Nivedhitha, A. G. Saminathan, and P. Thirumurugan, “DMEERP: A dynamic multi-hop energy efficient routing protocol for WSN,” Microprocess Microsyst, vol. 79, p. 103291, 2020, doi: 10.1016/j.micpro.2020.103291.
27.
M. Elappila, S. Chinara, and D. R. Parhi, “Survivable Path Routing in WSN for IoT applications,” Pervasive Mob Comput, vol. 43, pp. 49–63, Jan. 2018, doi: 10.1016/j.pmcj.2017.11.004.
28.
K. Wang, C. M. Yu, and L. C. Wang, “DORA: A Destination-Oriented Routing Algorithm for Energy-Balanced Wireless Sensor Networks,” IEEE Internet Things J, vol. 8, no. 3, pp. 2080–2081, 2021, doi: 10.1109/JIOT.2020.3025039.
29.
G. Tong, S. Zhang, W. Wang, and G. Yang, “A particle swarm optimization routing scheme for wireless sensor networks,” CCF Transactions on Pervasive Computing and Interaction, 2022, doi: 10.1007/s42486-022-00118-1.