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Abstract – The Intelligent Penguin Inspiration Routing Protocol 

(IPIRP) is proposed to maximize energy efficiency in Internet of 

Things-based Cloud Wireless Sensor Networks (IC-WSN). The 

scalability of routing algorithms becomes challenging when 

accommodating many sensors while maintaining efficient data 

transmission. Existing protocols struggle with network 

expansion, resulting in performance degradation and reduced 

efficiency. To address this issue, IPIRP introduces innovative 

routing strategies that scale effectively with the growing number 

of sensors. This includes hierarchical routing architectures, 

geographic-based routing algorithms, and load-balancing 

techniques. By dividing the network into smaller sub-networks 

or clusters, reducing routing overhead, and dynamically 

adjusting routing paths based on network conditions, IPIRP 

enhances scalability, reduces latency, and optimizes data 

transmission. This research aims to enable seamless network 

expansion, efficient resource utilization, and improved 

performance in IC-WSN for various applications, including 

greenhouse farming. By focusing on scalable routing solutions, 

IPIRP empowers users to build robust and energy-efficient 

monitoring systems that provide reliable data for informed 

decision-making and enhance the overall efficiency of IoT-based 

networks. 

Index Terms – Cloud, Energy Efficiency, Penguin, Internet of 

Things, Scalability, Wireless Sensor Networks. 

1. INTRODUCTION 

Greenhouse farming is an advanced agricultural technique 

designed to optimize crop production by creating controlled 

environments within enclosed structures such as glass or 

plastic greenhouses. Unlike traditional farming, which relies 

on external weather conditions, greenhouse farming enables 

precise control over essential factors such as temperature, 

humidity, light, and air quality. By maintaining stable 

environmental conditions, this approach allows year-round 

cultivation, ensuring a consistent food supply regardless of 

seasonal changes or geographic limitations[1].This is 

particularly crucial in regions with extreme climates or 

unpredictable weather patterns, where traditional farming may 

face disruptions. Greenhouses protect crops from droughts, 

heavy rains, and sudden temperature drops, significantly 

improving yield reliability. Additionally, by implementing 

automated climate control systems, farmers can monitor and 

adjust environmental parameters to suit different crop 

requirements, reducing plant stress and increasing 

productivity. This method also enhances food security by 

providing stable and predictable harvests, reducing 

dependency on fluctuating weather conditions[2]. With 

increasing concerns about climate change and land 

degradation, greenhouse farming offers a promising solution 

to maximize agricultural efficiency while ensuring 

sustainability. By integrating technology-driven precision 

farming techniques, greenhouse agriculture supports the 

production of high-quality crops while reducing the risks 

associated with environmental uncertainties. This shift 

towards controlled-environment agriculture paves the way for 

sustainable and resilient food systems worldwide[3]. 

Beyond improving productivity, greenhouse farming plays a 

vital role in resource conservation and environmental 

sustainability. Compared to conventional farming, it 

significantly reduces water consumption by integrating 

advanced irrigation techniques such as drip irrigation and 

fogging systems. The greenhouse farming reduces the need 

for chemical pesticides and herbicides since the enclosed 

structure limits pest infestations[4]. This leads to healthier, 
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chemical-free crops, reducing environmental pollution caused 

by excessive pesticide use. Another advantage is optimized 

land use, as greenhouse farming allows for vertical farming 

and hydroponic systems, enabling higher crop yields per 

square meter. This approach is particularly beneficial in urban 

areas where arable land is limited, allowing food production 

closer to consumption centers, reducing transportation costs 

and carbon emissions[5]. The ability to grow off-season crops 

within a controlled environment also increases profitability 

and reduces dependency on imports. Furthermore, greenhouse 

farming supports climate resilience by mitigating the impacts 

of droughts, floods, and extreme weather conditions. As the 

world faces rising population growth and depleting natural 

resources, greenhouse farming presents a viable solution for 

sustainable food production. This modern agricultural 

technique promotes efficiency, ensuring maximum output 

with minimal environmental impact while preserving 

resources for future generations[6]. 

The Internet of Things-based Cloud Wireless Sensor Network 

(IC-WSN) represents a cutting-edge integration of wireless 

sensors and cloud computing, enabling seamless data 

collection, transmission, and processing for various 

applications. In an IC-WSN system, sensors are deployed 

across different environments to monitor key parameters [7]. 

These sensors continuously collect real-time data, 

transmitting it wirelessly to a cloud-based platform for storage 

and analysis. The cloud infrastructure allows for efficient data 

processing and remote accessibility, ensuring timely 

responses to changes in environmental conditions. One of the 

most significant benefits of IC-WSN is scalability, as the 

cloud can handle vast amounts of sensor-generated data 

without requiring expensive local storage. Additionally, 

machine learning and artificial intelligence (AI) algorithms 

enhance IC-WSN by identifying patterns and predicting 

future trends, leading to automated decision-making[8], [9]. 

This technology is widely applied in smart cities, healthcare, 

industrial automation, and precision agriculture, offering 

improved efficiency, optimized resource allocation, and 

intelligent automation. By integrating IC-WSN with existing 

infrastructure, businesses and organizations gain access to 

real-time insights, enabling them to make data-driven 

decisions. This interconnected system fosters intelligent 

monitoring and remote management, significantly enhancing 

productivity and operational efficiency across multiple 

industries[10]. 

IC-WSN has emerged as a transformative solution for 

greenhouse farming, addressing the need for continuous 

monitoring, automation, and data-driven decision-making. In 

a greenhouse, wireless sensors are strategically placed to 

measure critical ecological factors [11]. These sensors relay 

data in real-time to cloud-based platforms, where 

sophisticated algorithms analyze the information and provide 

actionable insights. This system enables farmers to detect 

anomalies, predict trends, and make necessary adjustments 

remotely, ensuring optimal growing conditions at all times. 

IC-WSN allows for automated irrigation and climate control, 

reducing manual intervention and minimizing resource 

wastage[12]. The ability to monitor greenhouse conditions 

remotely ensures greater efficiency, reduced operational costs, 

and improved crop quality. Additionally, predictive analytics 

help farmers anticipate changes in weather patterns, allowing 

for proactive adjustments to temperature, ventilation, and 

water supply. The integration of IC-WSN with artificial 

intelligence (AI) and machine learning (ML) further enhances 

greenhouse farming by optimizing resource utilization and 

preventing crop loss. As agriculture continues to shift towards 

smart and sustainable practices, IC-WSN plays a crucial role 

in enhancing productivity and ensuring food security. By 

leveraging real-time data and automation, IC-WSN empowers 

farmers to improve efficiency, reduce costs, and maximize 

crop yields in controlled-environment agriculture[13]. 

1.1. Problem Statement 

Scaling routing algorithms to accommodate a large number of 

sensors while maintaining efficient data transmission becomes 

a challenging task. Existing routing protocols may struggle to 

handle the increasing network size, resulting in degraded 

performance, longer latency, and reduced overall network 

efficiency. To address this problem, innovative routing 

strategies need to be developed that can scale effectively with 

the growing number of sensors. This could involve designing 

hierarchical routing architectures that divide the network into 

smaller sub-networks or clusters, reducing the routing 

overhead and improving scalability. Alternatively, routing 

algorithms based on geographic or virtual coordinates can be 

explored, enabling efficient routing without relying on 

individual sensor addresses. The load balancing techniques 

can be incorporated into the routing protocols to distribute the 

traffic among multiple paths and prevent congestion evenly.  

1.2. Motivation 

Scaling routing algorithms in IC-WSN for greenhouse 

farming is essential to accommodate the increasing number of 

sensors and ensure efficient data transmission. We can 

achieve several vital motivations for greenhouse farming by 

addressing this challenge. Firstly, developing innovative 

routing strategies that scale effectively enables seamless 

network expansion without sacrificing performance. This 

ensures that greenhouse farmers can easily add more sensors 

to their monitoring systems as needed without compromising 

data transmission quality. Secondly, hierarchical routing 

architectures and geographic-based routing algorithms offer 

efficient alternatives to handle large-scale networks, reducing 

latency and improving overall network efficiency. 

Additionally, incorporating load-balancing techniques 

minimizes congestion and maximizes resource utilization, 

ensuring optimal data transmission across the network. By 
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focusing on scalable routing solutions, we empower 

greenhouse farmers to build robust and scalable IC-WSN 

systems that provide reliable and timely data, facilitating 

informed decision-making and improving the efficiency of 

greenhouse operations. 

1.3. Research Objective 

This study focuses on overcoming the challenges associated 

with expanding routing mechanisms in cloud-based wireless 

sensor networks designed for greenhouse agriculture. The 

goal is to develop highly efficient solutions that can support a 

growing number of sensor nodes while maintaining seamless 

network performance. The specific aims include: 

• Examining Current Routing Constraints: Identifying the 

bottlenecks and inefficiencies in existing network 

protocols, particularly in handling large-scale 

deployments, increased sensor density, and stable data 

transmission. 

• Designing Advanced Routing Mechanisms: Developing 

adaptive communication strategies that can accommodate 

an expanding sensor network, ensuring minimal delays, 

reliable data transfer, and enhanced system 

responsiveness. 

• Investigating Optimization Strategies: Exploring 

hierarchical network structures, intelligent data handling 

methods, and decentralized routing models to enhance 

network adaptability, energy conservation, and overall 

operational efficiency. 

• Validating Proposed Techniques: Conducting extensive 

trials and performance assessments through simulations 

and real-world experiments, evaluating critical metrics 

such as data delivery efficiency, transmission latency, and 

power consumption. 

• Assessing Practical Implementation: Evaluating the real-

world applicability of the proposed routing models in 

diverse greenhouse settings, considering environmental 

variability and system scalability. 

By addressing these objectives, this research aims to establish 

robust, scalable, and energy-conscious routing solutions that 

improve network longevity, resource allocation, and 

agricultural productivity in sensor-assisted greenhouse 

systems. 

1.4. Organization of the Paper 

The paper is organized as follows: Section 1 provides an 

introduction to the study, highlighting the significance of IC-

WSN in greenhouse farming. Section 2 presents a literature 

review, discussing existing routing algorithms, their 

limitations, and the need for scalable and energy-efficient 

solutions. Section 3 introduces the proposed Intelligent 

Penguin Inspiration Routing Protocol (IPIRP), detailing its 

biological inspiration, algorithm, mathematical modeling, and 

optimization strategies. Section 4 describes the simulation 

setup, including network configurations, parameter settings, 

and experimental design using GNS3. Section 5 presents the 

performance evaluation and results, comparing IPIRP with 

existing routing protocols (DORA, PSORS) across significant 

key metrics. Finally, Section 6 concludes the study with 

findings, the impact of IPIRP in maximizing energy 

efficiency, and potential future research directions. 

2. LITERATURE REVIEW 

"Energy Efficient Routing Scheme" [14] leverages the 

combined power of neural networks and fuzzy logic to make 

intelligent routing decisions based on node energy levels, 

network traffic, and distance. By training the neural network 

using historical data, the scheme learns to make informed 

routing choices that minimize energy consumption while 

maintaining acceptable levels of network performance. The 

fuzzy logic component helps handle uncertainty and 

vagueness in decision-making. "Improved African Buffalo 

Optimization-based Routing" [15] optimizes cluster formation 

and routing decisions to minimize energy consumption. In 

this, sensor nodes form clusters based on their energy levels 

and proximity to a cluster head. The ABO algorithm 

dynamically adjusts the cluster formation process, ensuring 

balanced energy consumption among nodes. It also optimizes 

the routing paths by considering transmission distance and 

energy constraints. The technique effectively balances energy 

efficiency and network performance by incorporating 

metaheuristic optimization. It improves the overall lifetime of 

the WSN by prolonging the network operation through 

efficient clustering and routing strategies. 

"Flamingo Search Algorithm-based Cluster Head Selection" 

[16] is inspired by the flocking behavior of flamingos and is 

employed to select cluster heads dynamically. The algorithm 

mimics the movement patterns of flamingos, allowing sensor 

nodes to collectively identify optimal cluster heads based on 

criteria such as energy levels, communication proximity, and 

network connectivity. It achieves efficient cluster formation, 

reducing the energy consumption of long-distance data 

transmission and facilitating localized data aggregation. 

Cluster heads are selected based on their suitability for 

leading and coordinating data collection and communication 

within their respective clusters. "E-Sigma Routing Method" 

[17] utilizes a combination of energy awareness and statistical 

analysis to make routing decisions. E-Sigma considers 

parameters such as node energy levels, link quality, and data 

traffic to calculate a routing metric. This metric helps in 

selecting the most suitable next hop for data forwarding. By 

incorporating E-Sigma into RPL, the enhanced protocol 

improves network efficiency and reliability. It dynamically 

adapts to changing network conditions and balances energy 
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consumption among sensor nodes. E-Sigma's statistical 

analysis component enhances the routing decisions' 

robustness by considering historical data and trends. 

“Intelligent Fish Swarm Routing” [18] was introduced to 

enhance network adaptability. Decision-making relied on 

leader-follower dynamics, where node movements mimicked 

cooperative fish schooling behavior to optimize packet flow. 

This approach minimized energy depletion but exhibited 

unstable performance when nodes experienced sudden 

mobility surges. An inherent lack of predictive modeling 

limited its ability to handle traffic spikes, necessitating an 

improved congestion-aware mechanism for sustained 

performance. 

"The collective behavior of rat colonies inspires modified Rat 

Swarm Optimization" [22] and utilizes a modified version of 

the core Rat Swarm Optimization algorithm. In this, sensor 

nodes emulate the behavior of rats to determine their positions 

in the network cooperatively. The algorithm incorporates 

various techniques such as distance measurement, angle of 

arrival estimation, and trilateration to calculate the location 

coordinates of each sensor node. It leverages the collective 

intelligence of the swarm to optimize the localization process, 

minimizing localization errors and ensuring accurate 

positioning of sensor nodes. "Energy-Aware and QoS-Based 

Routing" [19] employs reinforcement learning techniques to 

optimize routing decisions by considering both energy 

efficiency and Quality of Service (QoS) requirements. By 

training a routing agent through trial and error, this protocol 

selects energy-efficient and QoS-compliant routes for data 

transmission in IoMT networks. This schema dynamically 

adapts to changing network conditions, minimizing energy 

consumption while ensuring reliable and timely delivery of 

medical data. 

"Reinforcement learning-based dynamic routing" [20] 

determines the best routing paths for data collection using a 

mobile sink, such as a drone or mobile device. The algorithm 

learns from environmental interactions, considering factors 

like node energy levels, data traffic, and network topology to 

make informed decisions on the sink's movement. This 

approach adapts to changing network conditions, minimizing 

energy consumption and maximizing data collection 

efficiency. It offers improved energy efficiency, enhanced 

data collection coverage, and reduced communication 

overhead. It is a valuable solution for WSNs and IoT 

applications where efficient data collection and resource 

optimization are crucial. "Improved Gateway-Based Multi-

Hop Routing Protocol" [21] employs a gateway-based 

approach to facilitate multi-hop communication and optimize 

energy consumption. This protocol considers energy levels 

and distances to select routing paths that balance energy usage 

and prevent network partitioning. By considering the 

heterogeneity of WSNs, it aims to improve the overall 

network performance.  

“Multi-Adaptive Routing Protocol”[22] was formulated to 

dynamically adjust path selection based on network 

congestion, node mobility, and residual energy levels. 

Reinforcement-based decision-making allowed the network to 

self-optimize under fluctuating conditions. The strategy 

enhanced data transmission reliability but introduced 

computational complexity due to continuous learning updates. 

Security challenges related to route misdirection attacks 

persisted, requiring additional mechanisms for attack 

mitigation. While energy-efficient path selection was 

prioritized, further refinements were necessary to balance 

network load distribution effectively. “Bio-Inspired Routing 

Performance” [23]analyzed the performance of bio-inspired 

routing models focused on swarm intelligence-based decision-

making for improved data forwarding in wireless networks. 

Techniques incorporating ant colony optimization, artificial 

bee colony, and genetic principles enabled adaptive route 

selection. The study revealed that while these models 

exhibited resilience in dynamic conditions, they struggled 

with latency issues when handling highly dense network 

topologies. Adaptive clustering mechanisms mitigated 

congestion but increased routing overhead, necessitating 

optimization for scalability and computational efficiency. 

“Improved Frog Leap Routing” [24]was proposed to optimize 

data forwarding paths. A leap-based multi-hop routing metric 

enabled faster convergence to optimal paths, reducing 

transmission latency. By incorporating mutation-based 

learning, the protocol refined route selection over time, 

improving resilience in dynamically changing environments. 

Despite these advantages, jitter variability remained a 

challenge, and the model lacked real-time security 

countermeasures, exposing vulnerabilities to routing 

disruptions. “Cuckoo Search Routing”[25] introduced Levy 

flight-based probabilistic exploration for efficient path 

discovery. By balancing exploration and exploitation, the 

model improved route stability while minimizing spectrum 

contention. Adaptability to real-time link failures was limited 

due to computationally intensive update procedures. The lack 

of robust misbehavior detection mechanisms exposed routing 

paths to selective forwarding threats, necessitating an 

integrated security-aware enhancement to ensure reliability in 

adversarial network scenarios. 

"Dynamic Multi-Hop Energy Efficient Routing Protocol" [26] 

aims to optimize energy consumption and extend the network 

lifetime by dynamically selecting efficient multi-hop routes 

for data transmission. It incorporates various techniques to 

achieve energy efficiency. It considers factors such as node 

energy levels, link quality, and data traffic to adapt routing 

decisions dynamically. By leveraging these parameters, the 

protocol intelligently selects routes that minimize energy 

consumption and evenly distribute the energy load among 

sensor nodes. It allows it to adapt to changing network 

conditions, such as node failures or energy depletions, by 
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rerouting data through alternative paths. This enhances the 

robustness and reliability of the network. "Survivable path 

routing" [27] focuses on establishing reliable and resilient 

communication paths between sensor nodes to ensure 

continuous operation in the presence of failures or 

disruptions. This routing scheme aims to maintain 

connectivity and data transmission capabilities even when 

nodes or links experience failures due to various factors such 

as node mobility, environmental conditions, or malicious 

attacks. By dynamically selecting alternate paths and utilizing 

redundancy, survivable path routing enhances the fault 

tolerance and reliability of WSNs in IoT applications.  

"Destination-Oriented Routing Algorithm (DORA)" [28] is 

designed to ensure balanced energy consumption across 

sensor nodes, thereby extending the operational lifespan of 

the network. Unlike conventional routing strategies that 

prioritize shortest paths or minimal hop counts, this approach 

emphasizes energy-aware decision-making. It dynamically 

selects the most efficient relay node by evaluating both the 

available energy of each sensor and its proximity to the final 

destination. To maintain uniform energy utilization, DORA 

integrates an adaptive load distribution strategy, which 

prevents excessive energy drain on specific nodes. By evenly 

spreading data transmission tasks across the network, this 

mechanism reduces node failures caused by energy 

exhaustion, leading to enhanced network stability and 

prolonged functionality. Through its intelligent selection 

process, DORA optimizes data forwarding, ensuring efficient 

resource usage and improved energy sustainability within 

wireless sensor networks. 

"Particle Swarm Optimization Routing Scheme (PSORS)" 

[29]enhances network routing efficiency by utilizing the 

collective intelligence of particles. Drawing inspiration from 

the swarming behavior observed in nature, this method 

dynamically modifies routing pathways to conserve energy 

and improve network performance. Each wireless sensor node 

is modeled as a particle, which navigates the search space by 

adjusting its velocity and position based on both local 

interactions and global awareness. Through repeated position 

updates, particles collaboratively determine optimal data 

transmission routes, reducing energy consumption while 

maximizing communication efficiency.  

The approach integrates both exploratory and exploitative 

mechanisms. During the exploration phase, particles move 

randomly across the search domain to identify potential 

routing solutions. In contrast, the exploitation phase fine-

tunes these paths based on their evaluated efficiency. A 

fitness function assesses each route by considering key 

parameters such as power consumption, signal integrity, and 

network stability. Based on this evaluation, particles adjust 

their movements to adapt to dynamic network variations, 

ensuring optimized and energy-conscious routing decisions. 

Through this self-adaptive mechanism, PSORS continuously 

refines data transmission paths, making it a highly effective 

strategy for sustained performance in wireless sensor 

networks. 

3. INTELLIGENT PENGUIN INSPIRATION ROUTING 

PROTOCOL (IPIRP) 

3.1. Motivation of IPIRP 

The Intelligent Penguin (𝐼𝑛𝑡 − 𝑃𝑒𝑛), also called as emperor 

penguin scientifically known as Aptenodytes forsteri, is a 

remarkable species that stands out among penguins due to its 

height and weight. Both male and female Int-Pens exhibit 

similar physical characteristics in size and feathering. Their 

distinctive coloration includes a black back and head, a white 

belly, pale yellow breasts, and brilliant yellow ear patches. 

These features contribute to their ability to blend into their icy 

surroundings. Emperor penguins are well adapted to the harsh 

Antarctic environment, where they reside and breed on open 

ice throughout the year. 

During the mating season in the austral winter, thousands of 

Int-Pen congregate on land to form massive breeding colonies 

known as rookeries. Female Int-Pen undertakes long foraging 

journeys, swimming up to 50 kilometers in search of prey in 

the ocean. This behavior allows them to sustain themselves 

and provide nourishment for their offspring. The Int-Pen's 

cooperative foraging and hunting strategies exemplify their 

social nature. 

One of the remarkable feats of the Int-Pen is its diving ability. 

They have been observed diving to extraordinary depths of up 

to 1,900 feet (580 meters) and can remain submerged for 

nearly 25 minutes. These prolonged dives enable them to 

access food sources beneath the icy Antarctic waters. 

However, such impressive diving capabilities come at a cost. 

Over time, the wings of Int-Pen have evolved to become rigid 

and flattened, rendering them flightless. This adaptation is 

well-suited for their predominantly aquatic lifestyle, as they 

use their wings as efficient flippers to navigate the water. 

During the extreme Antarctic winter, Int-Pen face frigid 

temperatures and harsh winds. They engage in a unique 

behavior known as huddling to combat these challenges. 

Huddling involves gathering penguins in tightly packed 

groups, where they rely on each other's body heat for warmth 

and survival. This huddling behavior progresses through four 

distinct stages. 

• The first stage involves the creation and evaluation of 

huddle boundaries. Int-Pen work collectively to establish 

the limits of the huddle, ensuring that it remains compact 

and efficient in retaining heat. This evaluation process 

helps optimize the arrangement of individuals within the 

huddle. 
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• In the second stage, the penguins assess temperature 

variations within the huddle. They actively seek out warm 

and cold spots, redistributing themselves to achieve an 

even heat distribution throughout the group. This 

thermoregulation ensures that no penguin is subjected to 

extreme temperatures. 

• The third stage revolves around determining the spacing 

between individuals within the huddle. Int-Pen gauge the 

distance between themselves and their neighboring 

companions, arranging themselves at appropriate intervals. 

By optimizing spacing, they maximize heat conservation 

while minimizing heat loss. 

• The final stage involves identifying and relocating 

influential movers within the huddle. Specific individuals 

within the group generate more body heat than others, and 

their strategic positioning can benefit the entire huddle. 

Through subtle movements and adjustments, the penguins 

ensure that these influential movers are appropriately 

positioned, allowing the heat to be evenly shared among 

all individuals. 

Maintaining equal time sharing within the cosy huddle is 

critical to this behavior. To achieve this, each Int-Pen's 

position (𝑃̂, 𝑄̂) within the huddle can be updated by moving a 

variable distance, depending on its proximity to the locations 

of other penguins. This continual adjustment allows optimal 

heat distribution and ensures the group's survival in harsh 

Antarctic conditions. 

3.2. Algorithm for Optimization and Mathematical Model 

This research delves into the mathematical modelling of the 

huddling behavior exhibited by Int-Pen. The foundation of 

this approach lies in formulating mathematical equations and 

algorithms to describe and analyze the various aspects of the 

huddle. Let's explore the mathematical procedures involved in 

this modelling process. 

• Huddle Border Creation: The huddle border was created 

by chance among the Int-Pen. This can be represented 

mathematically by randomly assigning positions to the 

penguins within a defined region or by using a stochastic 

process to determine the initial huddle boundaries. 

• Heat Map Calculation: A heat map of the surrounding area 

is calculated to optimize the distribution of warmth within 

and around the huddle. This involves analyzing the 

temperature variations and gradients near the penguin 

group. Mathematical techniques such as interpolation or 

spatial analysis can be employed to generate the heat map. 

• Average Distance Determination: The average distance 

between Int-Pen within the huddle is essential for 

optimizing heat retention. This can be computed 

mathematically by measuring the distances between each 

pair of penguins within the huddle and taking the average 

of these distances. Techniques from graph theory or 

distance metrics can be utilized for this calculation. 

• Effective Mover Identification: The identification of the 

effective mover, i.e., the penguin generating the most 

body heat or contributing significantly to the collective 

warmth, involves mathematical analysis. This can be 

achieved by evaluating the heat output of each penguin 

based on factors such as body size, metabolic rate, and 

position within the huddle. Mathematical optimization 

techniques can be employed to identify the effective 

mover, such as maximizing a heat function or solving an 

optimization problem. 

• Huddle Perimeter Recalculation: The huddle's perimeter is 

recalculated using the information obtained from the 

effective mover. This involves adjusting the positions of 

the Int-Pen within the huddle based on the new locations 

of the effective mover. Mathematical algorithms, such as 

geometric transformations or iterative optimization 

methods, can update the huddle boundaries and 

redistribute the penguins accordingly. 

3.2.1. Identify and Create the Huddle Border 

In identifying and creating the huddle border, Int-Pen exhibit 

a characteristic behavior of congregating along the edges of a 

polygon-shaped structure. Within the huddle, each Int-Pen 

randomly selects a set of neighboring individuals to establish 

social connections. The formation of the huddle border 

around the polygon is determined by evaluating the wind flow 

patterns in the surrounding environment. However, it should 

be noted that the wind speed typically exceeds the movement 

capabilities of an individual Int-Pen. The random and 

complex nature of huddle border formation among Int-Pen 

can be described using sophisticated mathematical concepts. 

To quantify the wind speed denoted as 𝛷 , the complex 

potential function 𝛹  gradient is calculated. The complex 

potential function 𝛹 represents the wind flow properties and 

is obtained through the vector operation of taking the gradient 

of 𝛷. The same is mathematically expressed as Eq.(1) 

Ψ = ∇Φ (1) 

In Eq.(2)., the complex potential function 𝐺  is derived by 

combining the wind speed vector 𝛷  with the vector 𝛺 , 

representing the flow characteristics within the huddle. This 

combination is achieved by multiplying the wind speed vector 

𝛷 by a fictitious variable s: 

𝐺 = Φ + sΩ (2) 

Where variable 𝑠  acts as a parameter determining the 

influence of the flow vector 𝛺  on the wind speed. The 
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resulting function 𝐺  is an analytical representation of the 

polygon-shaped huddle region in a two-dimensional setting. It 

captures the complex interplay between the wind flow and the 

Int-Pen' movements within the huddle. 

The visualization of Eq.(2) in a two-dimensional context 

provides insights into the spatial arrangement of Int-Pen 

within the huddle. Within this illustration, each Int-Pen can 

randomly adjust its position based on the combination of the 

wind speed and the flow vector 𝛺 . Through these random 

adjustments, the Int-Pen gradually converge toward the ideal 

location, corresponding to the centre of the 𝑍-shaped polygon 

area exhibiting the highest effective fitness rate. 

The sophisticated mathematical concepts in this modelling 

process allow a quantitative understanding of the huddle 

border formation among Int-Pen. By considering the wind 

flow patterns and the collective behavior of the penguins, 

researchers can gain valuable insights into the dynamics and 

optimization of huddling behaviors in these remarkable 

Antarctic creatures. 

3.2.2. Temperature Distribution Around the Group 

The huddling behavior of Int-Pen contributes to energy 

conservation and increases the ambient temperature within the 

huddle. To mathematically model this scenario, we can create 

a mathematical representation that considers the temperature 

profile based on the radius of the polygon-shaped huddle. 

Assuming that the temperature is 𝐹 =  0 when the radius of 

the polygon (𝐵)  is more significant than one and 𝐹 =  1 

when the radius is less than 1, we can define the temperature 

profile using Eq.(3). 

𝐹 = {
0,    𝑖𝑓 𝐵 > 1 
1,    𝑖𝑓 𝐵 < 1

 (3) 

Where 𝐹 represents the temperature at a given point, and it 

takes on the value 0 if the polygon's radius is greater than 1, 

indicating a lower temperature. Conversely, if the radius is 

less than 1, 𝐹 is set to 1, representing a higher temperature. 

This mathematical model allows us to differentiate between 

distinct temperature states based on the huddle size. 

As defined in Eq.(3), the temperature profile significantly 

drives Int-Pen' exploration and exploitation behavior across 

various sites. It is a guiding factor that influences their 

decision-making process and directs them towards areas with 

the most favorable conditions or resources. Furthermore, the 

computer-generated temperature distribution around the 

group, denoted as 𝐹′, can be expressed using Eq.(4). 

𝐹′ = (𝐹 −
𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑝 − 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

) (4) 

Where 𝐹 represents the temperature defined by Eq.(3) and is 

either 0 or 1 based on the value of 𝐵 , and the variable 𝑝 

represents the current iteration in the search process. At the 

same time, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  denotes the maximum number of 

iterations. The temperature distribution 𝐹′  is calculated by 

considering the ratio of the current iteration to the maximum 

iteration value. This distribution quantitatively represents how 

the temperature changes over time during the search process. 

3.2.3. Distance Calculation  

Once the huddle border has been established, the proximity of 

an Int-Pen to an optimal solution can be quantified by 

considering its fitness value, with values closer to 1 indicating 

a more optimal solution. In response, the other search agents, 

also known as Int-Pen, adjust their positions to align with the 

mathematically determined optimal solution. The distance 

between an Int-Pen and the search agent with the lowest 

fitness score, representing the fittest Int-Pen, can be calculated 

using Eq.(5). 

𝑌⃗ ℎ𝑚 = 𝐷𝑣𝑒 (𝐸(𝐷⃗⃗ ).𝑀(𝑝 ) − 𝑈⃗⃗ . 𝑀⃗⃗ ℎ𝑚(𝑝)) (5) 

Where 𝑝 represents the current iteration, and 𝑌⃗ ℎ𝑚  represents 

the distance in meters between the Int-Pen and the fittest 

search agent. To avoid collisions with neighboring Int-Pen or 

obstacles, the vectors 𝐷⃗⃗  and 𝑈⃗⃗  are employed. 𝑀⃗⃗  represents the 

most optimal solution, or the position vector of the fittest Int-

Pen, while 𝑀⃗⃗ ℎ𝑚 represents the position vector of the Int-Pen 

under consideration. The social factors guiding Int-Pen 

toward the most optimal search agent are defined by function 

𝐸 ( ).The vectors𝐷⃗⃗  and 𝑈⃗⃗  can be calculated using Eq.(6) to 

Eq.(8). 

𝐷⃗⃗ = (𝐶 × (𝐹′ + 𝑀𝑔𝑟𝑖𝑑(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)) × 𝑅𝑎𝑛𝑑 ( )

− 𝐹′) 
(6) 

𝑀𝑔𝑟𝑖𝑑(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) = 𝐷𝑣𝑒(𝐶 − 𝐶 ℎ𝑚) (7) 

𝑈⃗⃗ = 𝑅𝑎𝑛𝑑 ( ) (8) 

The movement parameter 𝐶 ensures a safe distance between 

search agents to prevent collisions. The range of temperatures 

surrounding the huddle is determined by 𝐹′, with parameter 𝐶 

set to 2. By contrasting the differences between Int-Pen and a 

random function, 𝑅𝑎𝑛𝑑( ), within the range of [0, 1], the term 

𝑀𝑔𝑟𝑖𝑑  (Accuracy) determines the accuracy of the polygon 

grid. The function 𝐸( ) is calculated as follows: 

𝐸(𝐷⃗⃗ ) = (√𝑔. ℎ−𝑝/𝑧 − ℎ−𝑝)
2

 (9) 

Eq.(9) defines the function ℎ within the expression. Control 

parameters 𝑔  and 𝑧  are used to balance exploration and 

exploitation. The suggested ranges for 𝑔 and 𝑧 are [2.2, 3.7] 
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and [1.1, 2.4], respectively. It is worth noting that this method 

has shown promising outcomes within these specified 

parameter ranges.  

3.2.4. Transfer the Mover 

Eq.(10) determines the next position of an Int-Pen in the 

search area. 

𝑀⃗⃗ ℎ𝑚(𝑝 + 1) = 𝑀⃗⃗ (𝑝) − 𝐷⃗⃗ . 𝑌ℎ𝑚 (10) 

Where 𝑀⃗⃗ ℎ𝑚(𝑝 + 1) represents the new position of the Int-Pen 

in the next iteration (𝑝 + 1) , 𝑀⃗⃗ (𝑝) denotes the current 

position of the Int-Pen, 𝐷⃗⃗  is a vector, and 𝑌ℎ𝑚represents the 

distance between the Int-Pen and the fittest search agent. By 

subtracting the product of 𝐷⃗⃗  and 𝑌ℎ𝑚from the current position, 

the Int-Pen determines its new location. It is anticipated that 

the Int-Pen will be located at the coordinates 𝑀⃗⃗ ℎ𝑚(𝑝 + 1) in 

future iterations. After the mover's relocation, the Int-Pen' 

huddling behavior is recalculated throughout the iteration 

phase. The proposed IPIRP incorporates several intriguing 

aspects: 

• Memorizing Optimal Solutions: The algorithm keeps track 

of the optimal solutions discovered during the iterative 

process. This allows the Int-Pen to remember and utilize 

previously found promising solutions, leading to 

potentially faster convergence towards the global 

optimum. 

• Polygon Grid Technique: The suggested polygon grid 

technique can create a grid in higher-dimensional search 

spaces. This grid structure aids in organizing and 

exploring the search area more effectively, enabling 

efficient movement and placement of the Int-Pen. 

• Balancing Randomness and Collision Avoidance: The 

vectors 𝐷⃗⃗  and 𝑈⃗⃗  play a crucial role in promoting 

randomness and avoiding collisions among search agents. 

By incorporating these vectors into the movement 

calculations, potential solutions are encouraged to explore 

the search area more randomly while ensuring safe 

distances between the Int-Pen. 

• Pinpointing Potential Nesting Sites: The suggested 

distance approach assists in identifying potential nesting 

sites for Int-Pen. By considering the distances between the 

Int-Pen and the fittest search agent, the algorithm can 

guide the penguins towards locations that exhibit 

favorable fitness values, indicating potential optimal 

solutions. 

• Enhanced Exploration and Exploitation: Unlike standard 

optimization algorithms, which often exhibit trade-offs 

between exploration and exploitation, the modified values 

of vectors 𝐷⃗⃗  and 𝑈⃗⃗  in the IPIRP algorithm allow for 

improved exploration and exploitation potential 

simultaneously. This balanced approach enhances the 

algorithm's ability to explore the search space effectively 

while exploiting promising solutions, leading to 

potentially better convergence rates. 

Algorithm 1 provides the overall working of IPIRP 

Input: 

• Maximum number of iterations (Maxiterations) 

• Population size (𝑁) 

• Search space boundaries 

Output: 

• Optimal solution 

Procedure: 

Step 1: Initialize: 

• Generate an initial population of 𝑁  Int-Pen randomly 

within the search space boundaries. 

• Set the iteration count (𝑝) to 0. 

Step 2: Calculate the fitness of each Int-Pen in the 

population based on their positions. 

Step 3: Repeat the until the maximum number of iterations 

(Maxiterations) is reached: 

• Increment the iteration count (𝑝) by 1. 

• Update the huddle border based on the positions of the Int-

Pen. 

• Calculate the fitness of each Int-Pen in the population. 

Step 4: For each Int-Pen (𝑖) in the population: 

• Select at least two neighbouring Int-Pen as social 

references. 

• Calculate the distance (𝑌ℎ𝑚)between the Int-Pen (𝑖) and 

the fittest search agent. 

• Update the position of the Int-Pen using Eq.(13) 

• where 𝑀𝑖(𝑝 + 1) is the new position of the Int-Pen (𝑖), 

𝐷⃗⃗ 𝑖is a vector, and 𝑌ℎ𝑚 is the distance. 

Step 5: Return the best solution among the Int-Pen based on 

their fitness scores. 

Algorithm 1 IPIRP 

3.3. Complexity in Computation 

This section analyzes the time and space requirements of the 

proposed IPIRP. Below is a breakdown of the algorithm's 

needs in terms of time and space: 
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3.3.1. Time complexity 

The time complexity of the IPIRP depends on various factors, 

including the population size (𝑁) , the complexity of the 

fitness function (𝑓) , and the number of iterations 

(Max_iterations). The overall time complexity can be 

expressed as 𝑂(𝑁 + 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (𝑁 ∗ 𝑓)). This considers 

the time required for initialization, fitness calculation, and the 

iterative steps of updating the huddle border, recalculating 

fitness, and adjusting Int-Pen positions. 

• Initialization: The time complexity of the initialization 

step is directly dependent on the population size (𝑁). 𝑁 

random positions can be generated within the search space 

boundaries in 𝑂(𝑁)  time. This involves generating 

random numbers and mapping them to the search space 

dimensions. 

• Fitness Calculation: The time complexity of calculating 

the fitness for each Int-Pen in the population depends on 

the complexity of the fitness function. Let's assume the 

fitness function has a time complexity of 𝑂(𝑓), where 𝑓 

represents the operations involved in evaluating fitness 

based on the Int-Pen's position. 

• Iterations: The number of iterations (Max_iterations) 

determines the number of times the algorithm repeats the 

iterative steps. Within each iteration, the following 

operations are performed: 

o Huddle Border Update: Calculating the huddle border 

involves considering the Int-Pen' positions and 

determining the huddle's boundaries. This step typically 

requires comparing the positions and evaluating the 

proximity of Int-Pen, which can be done in 𝑂(𝑁) time. 

o Int-Pen Movement: Each Int-Pen adjusts its position based 

on the 𝐷⃗⃗ and 𝑌ℎ𝑚  calculations. This operation has a time 

complexity of 𝑂(1) for each Int-Pen. 

3.3.2. Space Complexity 

The space complexity of the IPIRP primarily depends on the 

storage requirements for the population of Int-Pen, as well as 

any additional variables or data structures used during the 

algorithm's execution. The space complexity is typically 

𝑂(𝑁) , where 𝑁  represents the population size. Additional 

space may be required for the fitness calculation, temporary 

variables, and any data structures specific to the algorithm's 

implementation. 

• Population: The population's space complexity depends on 

the population size (𝑁). Storing the positions of 𝑁 Int-Pen 

requires𝑂(𝑁)  space. Additionally, if other attributes or 

variables associated with each Int-Pen are stored, their 

space requirements must also be considered. 

• Fitness Calculation: The space complexity for calculating 

fitness depends on the storage requirements of the fitness 

function. This typically includes the memory needed for 

intermediate calculations, data structures, and variables 

specific to the fitness evaluation. The specific 

implementation of the fitness function generally 

determines the space complexity for this step. 

• Iterations: The space complexity during iterations 

primarily depends on the temporary variables and data 

structures used within each iteration. This includes 

variables for position updates, fitness evaluations, and 

additional calculations performed during iteration. 

4. SIMULATION SETTINGS 

Table 1 Simulation Settings 

Simulation Setting Value(s) 

Network Area Size 150m x 225m 

Node Count 1500 

Traffic Pattern Poisson 

Topology Random Graph 

Deployment Model Event-Driven 

Simulation Duration 900 seconds (i.e., 15 minutes) 

Transmit Energy 0.1 Joules/bit 

Obstacle Placement Random 

Idle Energy 1.0 mW 

Receive Energy 0.05 Joules/bit 

Battery Capacity 2000 mAh 

Sleep Energy 0.1 mW 

Experimental 

Repetitions 
10 

Simulation 

Environment 
GNS-3 

In network exploration, an incredible tool emerges, reshaping 

the landscape of network simulation: GNS3 (Graphical 

Network Simulator-3). Like an artist's brush, GNS3 

empowers network enthusiasts to craft intricate digital 

landscapes, delving into the depths of virtual networks with 

boundless creativity. Within GNS3's realm, users become 

architects of their virtual domains, weaving complex network 

topologies with meticulous precision and ingenuity. It 
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breathes life into virtual routers, switches, and devices, 

offering a canvas for network configuration and protocol 

experimentation. Immersed in the tapestry of GNS3's virtual 

world, users uncover the secrets of network behavior, 

analyzing traffic patterns and capturing data with a keen eye 

for detail. They gain profound insights into the complexities 

of network operations, unveiling hidden connections and 

enhancing their expertise. GNS3's versatility transcends 

traditional limits, seamlessly integrating with external 

platforms to unlock new dimensions of network simulation. 

Users harness the power of automation, orchestrating 

deployments and configurations with seamless coordination. 

Step into the realm of GNS3, where imagination and technical 

prowess intertwine, allowing network enthusiasts to rewrite 

the narrative of network simulation. They embark on a 

remarkable journey, exploring uncharted territories and 

discovering innovative solutions in the vast realm of virtual 

networks. Table 1 provide the setting used to simulate the 

proposed protocol against the state-of-the-art. 

5. RESULTS AND DISCUSSION 

5.1. Packet Delivery Ratio 

Figure 1 compares the Packet Delivery Ratios (PDR) 

achieved by three routing algorithms: DORA, PSORS, and 

IPIRP. The average PDR values obtained for each algorithm 

are DORA with 41.16%, PSORS with 50.43%, and IPIRP 

with an impressive 87.10%. Table 2 provides the 

corresponding result values of packet delivery ratio metric. 

 

Figure 1 Packet Delivery Ratio Analysis 

The results show that DORA achieved the lowest average 

PDR among the three algorithms, with a value of 41.16%. 

This indicates that DORA had difficulties delivering packets 

to their intended destinations. It suggests that the routing 

decisions made by DORA might not have been optimal, 

leading to a higher packet loss rate. Further analysis is 

required to identify the reasons for DORA's lower PDR. 

PSORS performed better than DORA, with an average PDR 

of 50.43%. This indicates that PSORS delivered a higher 

percentage of packets to their destinations than DORA. 

PSORS leverages the particle swarm optimization technique, 

which optimizes the routing decisions based on the collective 

behavior of particles. The results suggest that PSORS' 

optimization approach improved packet delivery, although 

there is room for further enhancement. 

The highest average PDR of 87.10% was achieved by IPIRP, 

making it the most effective routing algorithm in terms of 

packet delivery. IPIRP is inspired by the intelligent behavior 

of penguins, leveraging their collective decision-making 

strategies. The significant difference in performance between 

IPIRP and the other two algorithms indicates the effectiveness 

of the penguin-inspired approach in routing packets 

efficiently. The high PDR value suggests that IPIRP delivered 

most packets to their intended destinations successfully. 

Table 2 Packet Delivery Ratio Result Values 

Nodes DORA PSORS IPIRP 

150 49.79 56.48 94.30 

300 51.81 58.67 94.83 

450 46.80 53.06 89.66 

600 47.48 53.69 91.78 

750 39.91 50.31 86.10 

900 45.12 52.17 87.82 

1050 34.01 45.68 83.09 

1200 35.53 48.33 84.16 

1350 29.16 42.02 78.77 

1500 31.99 43.82 80.48 

Average 41.16 50.43 87.10 

Figure 1 compares the Packet Delivery Ratios achieved by 

DORA, PSORS, and IPIRP. DORA had the lowest average 

PDR, indicating room for improvement in its routing 

decisions. PSORS performed better than DORA but still had a 

relatively lower PDR. In contrast, IPIRP demonstrated the 

highest average PDR, indicating its effectiveness in delivering 
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packets to their destinations. These results highlight the 

varying performances of different routing algorithms and 

emphasize the success of the penguin-inspired approach in 

achieving a high packet delivery ratio. 

5.2. Throughput 

Figure 2 compares throughput among three routing 

algorithms: DORA, PSORS, and IPIRP. Throughput refers to 

the amount of data or information transmitted successfully 

over a network within a given time frame. Table 2 provides 

the corresponding result values of packet delivery ratio 

metric. Table 3 provides the corresponding result values of 

throughput metric. 

According to Figure 2, the average throughput achieved by 

DORA is 37.52%. DORA is a routing algorithm that focuses 

on optimizing routing decisions based on the destination of 

the data packets. The relatively lower throughput achieved by 

DORA suggests that it may have limitations in efficiently 

delivering data packets to their intended destinations. This 

could be due to suboptimal routing decisions or inefficient 

resource allocation. The PSORS routing scheme demonstrates 

a higher average throughput of 50.48%. PSORS employs a 

particle swarm optimization approach, which mimics the 

behavior of a swarm of particles to find optimal routing paths. 

The improved throughput achieved by PSORS indicates that 

this scheme is more effective in selecting efficient routes for 

data packets, resulting in a higher successful transmission 

rate. This may be attributed to the intelligent nature of the 

particle swarm optimization technique, which enables the 

algorithm to optimize routing decisions based on network 

conditions adaptively. 

 

Figure 2 Throughput Analysis 

IPIRP, the Intelligent Penguin Inspiration Routing Protocol, 

achieves the highest average throughput of 90.71%. IPIRP is 

a routing protocol inspired by the efficient communication 

and collaboration observed among penguins in their natural 

habitats. This protocol leverages principles from penguin 

behavior to create an intelligent routing mechanism. The 

significantly higher throughput achieved by IPIRP suggests it 

excels in selecting optimal routing paths and efficiently 

delivering data packets. The inspiration drawn from penguin 

behavior likely enables IPIRP to adapt to changing network 

conditions and dynamically optimize routing decisions. 

Figure 2 compares the average throughput of three routing 

algorithms: DORA, PSORS, and IPIRP. DORA exhibits the 

lowest throughput at 37.52%, indicating potential 

inefficiencies in its routing decisions. PSORS demonstrates a 

moderate improvement with an average throughput of 

50.48%. However, the highest throughput of 90.71% is 

achieved by IPIRP, which draws inspiration from the efficient 

communication observed among penguins. The results 

highlight the significance of intelligent routing mechanisms in 

achieving higher throughput and efficient data packet delivery 

in network environments. 

Table 3 Throughput Result Values 

Nodes DORA PSORS IPIRP 

150 33.49 46.81 85.44 

300 33.05 46.27 84.78 

450 35.35 48.64 86.24 

600 34.23 48.36 85.50 

750 36.72 50.91 90.76 

900 36.02 50.10 89.38 

1050 41.29 52.78 95.72 

1200 40.69 52.68 93.67 

1350 42.51 54.51 98.43 

1500 41.90 53.81 97.17 

Average 37.52 50.48 90.71 

5.3. Packet Delay 

Figure 3 compares packet delay across three routing 

algorithms: DORA, PSORS, and IPIRP. Figure 3 reveals the 

average packet delay experienced by each algorithm, with 

DORA recording an average delay of 12884.4ms, PSORS 

exhibiting an average delay of 10703.2ms, and IPIRP 
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demonstrating the lowest average delay at 2041.4ms. The 

findings from Figure 3 are provided in Table 4 and it 

underscore the superior performance of IPIRP in terms of 

packet delay reduction. With an average delay of just 

2041.4ms, IPIRP proves highly effective in ensuring swift 

packet delivery within the network. This outcome suggests 

that IPIRP excels in selecting optimal routes and minimizing 

delays compared to DORA and PSORS. 

 

Figure 3 Packet Delay Analysis 

DORA exhibits the highest average delay of 12884.4ms, 

implying that this routing algorithm struggles to efficiently 

navigate packets through the network, leading to considerable 

transmission delays. Such prolonged delays may significantly 

impact real-time applications or services that rely on low-

latency communication. PSORS performs better than DORA 

but still falls short when compared to IPIRP regarding 

average packet delay. With an average delay of 10703.2ms, 

PSORS resides between DORA and IPIRP in terms of 

performance. Although it presents an improvement over 

DORA, PSORS does not match the efficiency of IPIRP in 

mitigating packet delay. 

The packet delay comparison depicted in Figure 3 highlights 

the outstanding performance of IPIRP as a routing algorithm 

when it comes to minimizing delays. With an average delay 

of 2041.4ms, IPIRP demonstrates its capacity to deliver 

packets more efficiently and promptly within the network. 

Conversely, DORA and PSORS exhibit higher delays, with 

DORA registering the highest delay among the three 

algorithms. These outcomes emphasize the criticality of 

selecting an appropriate routing algorithm based on the 

specific requirements and priorities of the network to ensure 

optimal performance. Table 4 details the simulation result of 

the protocols obtained for the metric Packet Delay. 

Table 4 Packet Delay Result Values 

Nodes DORA PSORS IPIRP 

150 12490 9966 1403 

300 12455 9903 110 

450 12549 10341 1448 

600 12512 10284 1423 

750 12982 10552 2310 

900 12767 10492 2053 

1050 13206 11079 2892 

1200 13090 10675 2489 

1350 13540 12392 3201 

1500 13253 11348 3085 

Average 12884.4 10703.2 2041.4 

5.4. Energy Consumption 

Figure 4 compares energy consumption among three routing 

algorithms: DORA, PSORS, and IPIRP. Table 5 represents 

the average energy consumption for each routing protocol. 

Average values of each are represented in Figure 4. 

DORA has the highest average energy consumption at 

82.98%. DORA is a destination-oriented routing algorithm 

that finds the shortest path from the source node to the 

destination. Although it is efficient in finding the optimal 

path, it consumes more energy than the other two algorithms. 

This higher energy consumption could be attributed to the 

complex calculations determining the best path. PSORS has 

an average energy consumption of 65.74%. PSORS is a 

routing scheme based on particle swarm optimization, which 

mimics the behavior of particles in search of the best solution. 

While PSORS performs better than DORA in energy 

consumption, it still requires significant energy. The energy 

consumption reduction compared to DORA can be attributed 

to the optimization techniques used in PSORS to find an 

optimal path. However, it is still not as energy-efficient as 

IPIRP. 

The most energy-efficient routing algorithm is IPIRP, with an 

average energy consumption of 21.81%. IPIRP is an 

Intelligent Penguin Inspiration Routing Protocol that takes 
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inspiration from the collective behavior of penguins to find 

efficient routes. The deficient energy consumption of IPIRP 

suggests that it leverages innovative techniques and 

algorithms that prioritize energy efficiency over other factors. 

This makes it a good choice for energy-constrained 

environments or applications where energy conservation is 

crucial. 

 

Figure 4 Energy Consumption Analysis 

Table 5 Energy Consumption Result Values 

Nodes DORA PSORS IPIRP 

150 75.61 57.94 16.88 

300 74.51 56.39 14.02 

450 81.21 60.98 21.08 

600 77.90 60.36 19.32 

750 84.47 68.90 22.72 

900 82.27 61.51 22.70 

1050 87.80 71.74 24.46 

1200 86.63 69.51 24.34 

1350 90.63 76.16 26.67 

1500 88.75 73.96 25.95 

Average 82.98 65.74 21.81 

Figure 4 highlights the energy consumption comparison 

among DORA, PSORS, and IPIRP. While DORA provides 

optimal routing, it consumes the most energy. Thanks to its 

particle swarm optimization approach, PSORS reduces energy 

consumption compared to DORA. However, the most energy-

efficient algorithm among the three is IPIRP, which leverages 

inspiration from penguins to achieve significant energy 

savings. The data presented in Figure 4 emphasizes the 

importance of considering energy efficiency when choosing a 

routing algorithm, especially in resource-constrained 

scenarios. 

5.5. Network Lifetime 

Figure 5 depicts a comprehensive analysis of network 

lifetimes achieved by three distinct routing algorithms: 

DORA, PSORS, and IPIRP. Figure 5 presents each 

algorithm's average network lifetimes, expressed as 

percentages, allowing for a comparative evaluation. Table 6 

provides the result values of Figure 5. 

DORA exhibits an average network lifetime of 17.19%. 

DORA operates on the principle of selecting paths based on 

the destination of data packets. While it manages to sustain 

network operation for a certain period, its network lifetime 

falls relatively short compared to the other two algorithms 

examined in this analysis. PSORS achieves a significantly 

higher average network lifetime of 37.41%. PSORS utilizes 

particle swarm optimization techniques, leveraging swarm 

intelligence to identify optimal routing paths within the 

network. This algorithm demonstrates superior performance 

in terms of network longevity, indicating its ability to 

optimize routing decisions and extend the overall lifespan of 

the network. 

 

Figure 5 Network Lifetime Analysis 
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The most notable performance is observed in IPIRP, which 

claims an impressive average network lifetime of 87.28%. 

IPIRP employs intelligent routing strategies inspired by the 

behavior of penguins. This protocol showcases remarkable 

enhancements over the other two algorithms, attaining the 

highest network lifetime. Its intelligent and nature-inspired 

approach enables effective and efficient routing decisions, 

leading to a substantially prolonged operational lifespan for 

the network. 

Figure 5 comprehensively compares network lifetimes 

attained by three distinct routing algorithms: DORA, PSORS, 

and IPIRP. The presented data indicate that IPIRP 

outperforms DORA and PSORS, achieving an impressive 

average network lifetime of 87.28%. PSORS also performs 

better than DORA, attaining a network lifetime of 37.41%. 

These results underscore the importance of selecting and 

implementing efficient routing algorithms to optimize 

network longevity and overall performance. 

Table 6 Network Lifetime Result Values 

Nodes DORA PSORS IPIRP 

150 23.96 49.68 94.33 

300 24.81 50.53 96.01 

450 18.71 44.56 89.75 

600 21.13 46.24 93.23 

750 16.73 31.14 87.01 

900 17.63 37.49 88.09 

1050 12.77 29.14 81.55 

1200 13.43 29.72 82.58 

1350 10.51 27.79 80.04 

1500 12.22 27.86 80.20 

Average 17.19 37.41 87.28 

6. CONCLUSION 

The Intelligent Penguin Inspiration Routing Protocol (IPIRP) 

offers a promising solution for maximizing energy efficiency 

in Internet of Things-based Cloud Wireless Sensor Networks 

(IC-WSN). The scalability of routing algorithms is a 

significant challenge when accommodating many sensors 

while ensuring efficient data transmission. Existing protocols 

often struggle with network expansion, resulting in 

performance degradation and reduced efficiency. IPIRP 

addresses these challenges effectively by introducing 

innovative routing strategies. By dividing the network into 

smaller sub-networks or clusters, reducing routing overhead, 

and dynamically adjusting paths based on network conditions, 

IPIRP enhances scalability, reduces latency, and optimizes 

data transmission. This research aims to enable seamless 

network expansion, efficient resource utilization, and 

improved performance in various IC-WSN applications, 

including greenhouse farming. By focusing on scalable 

routing solutions, IPIRP empowers users to build robust and 

energy-efficient monitoring systems that provide reliable data 

for informed decision-making and enhance overall network 

efficiency. The proposed IPIRP protocol demonstrates 

potential in overcoming the limitations of existing routing 

algorithms and improving the energy efficiency of IC-WSN. 

Further evaluation of IPIRP in practical scenarios and 

exploration of its applicability in other IoT-based 

environments would be valuable. Advancements in routing 

protocols can facilitate the growth and optimization of IC-

WSN, enabling enhanced data transmission and efficient 

resource utilization. 
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