1.
Bukhari, S. M. S., Zafar, M. H., Abou Houran, M., Moosavi, S. K. R., Mansoor, M., Muaaz, M., & Sanfilippo, F. (2024). Secure and privacy-preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability. Ad Hoc Networks, 155, 103407.
2.
Wang, Z., Wei, Z., Gao, C., Chen, Y., & Wang, F. (2023). A framework for data anomaly detection based on iterative optimization in IoT systems. Computing, 105(11), 2337-2362.
3.
Salmi, S., & Oughdir, L. (2023). Performance evaluation of deep learning techniques for DoS attacks detection in wireless sensor network. Journal of Big Data, 10(1), 17.
4.
Ahmad, R., Alhasan, W., Wazirali, R., & Almajalid, R. (2024). A Reliable Approach for Lightweight Anomaly Detection in Sensors Using Continuous Wavelet Transform and Vector Clustering. IEEE Sensors Journal.
5.
Liu, Y., Wang, H., Zheng, X., & Tian, L. (2023). An efficient framework for unsupervised anomaly detection over edge-assisted internet of things. ACM Transactions on Sensor Networks.
6.
Jasmine Lizy, P., & Chenthalir Indra, N. (2023). Outlier detection based energy efficient and reliable routing protocol using deep learning algorithm. Cognitive Computation and Systems, 5(2), 138-152.
7.
Iswarya, P., & Manikandan, K. (2024, April). Algorithms for Fault Detection and Diagnosis in Wireless Sensor Networks Using Deep Learning and Machine Learning-An Overview. In 2024 10th International Conference on Communication and Signal Processing (ICCSP) (pp. 1404-1409). IEEE.
8.
Inuwa, M. M., & Das, R. (2024). A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks. Internet of Things, 26, 101162.
9.
Venkatesan, R. (2023). A Deep Learning Approach for Efficient Anomaly Detection in WSNs. International Journal of Computers Communications & Control, 18(1).
10.
Chen, J., Zhang, J., Qian, R., Yuan, J., & Ren, Y. (2023). An Anomaly Detection Method for Wireless Sensor Networks Based on the Improved Isolation Forest. Applied Sciences, 13(2), 702.
11.
He, Z., Chen, Y., Zhang, H., & Zhang, D. (2023). WKN-OC: a new deep learning method for anomaly detection in intelligent vehicles. IEEE Transactions on Intelligent Vehicles, 8(3), 2162-2172.
12.
Ravindra, C., Kounte, M. R., Lakshmaiah, G. S., & Prasad, V. N. (2023). Etelmad: anomaly detection using enhanced transient extreme machine learning system in wireless sensor networks. Wireless Personal Communications, 130(1), 21-41.
13.
Raveendranadh, B., & Tamilselvan, S. (2023). An accurate attack detection framework based on exponential polynomial kernel?centered deep neural networks in the wireless sensor network. Transactions on emerging telecommunications technologies, 34(3), e4726.
14.
Haque, Ahshanul, Naseef-Ur-Rahman Chowdhury, Hamdy Soliman, Mohammad Sahinur Hossen, Tanjim Fatima, and Imtiaz Ahmed. "Wireless sensor networks anomaly detection using machine learning: a survey." In Intelligent Systems Conference, pp. 491-506. Cham: Springer Nature Switzerland, 2023.
15.
Ye, M., Zhang, Q., Xue, X., Wang, Y., Jiang, Q., & Qiu, H. (2024). A novel self-supervised learning-based anomalous node detection method based on an autoencoder for wireless sensor networks. IEEE Systems Journal.
16.
Bushehri, A. S., Amirnia, A., Belkhiri, A., Keivanpour, S., De Magalhaes, F. G., & Nicolescu, G. (2023). Deep Learning-Driven Anomaly Detection for Green IoT Edge Networks. IEEE Transactions on Green Communications and Networking.
17.
Cerdà-Alabern, L., Iuhasz, G., & Gemmi, G. (2023). Anomaly detection for fault detection in wireless community networks using machine learning. Computer Communications, 202, 191-203.
18.
Kumar, A. S., Raja, S., Pritha, N., Raviraj, H., Lincy, R. B., & Rubia, J. J. (2023). An adaptive transformer model for anomaly detection in wireless sensor networks in real-time. Measurement: Sensors, 25, 100625.
19.
García, J. C., Rivera, L. A., & Perez, J. (2024). A Literature Review on Outlier Detection in Wireless Sensor Networks. Journal of Advances in Information Technology, 15(3).
20.
Raza, M. A., Mustafa, A., Ahmad, I., & Gul, M. (2023). Outlier Detection with Machine Learning in Wireless Sensor Networks. Pakistan Journal of Scientific Research, 3(1), 81-91.
21.
Arul Jothi, S., & Venkatesan, R. (2023). A Comparison of Selective Machine Learning Algorithms for Anomaly Detection in Wireless Sensor Networks. Artificial Intelligence for Sustainable Applications, 231-248.
22.
El-Shafeiy, E., Alsabaan, M., Ibrahem, M. I., & Elwahsh, H. (2023). Real-time anomaly detection for water quality sensor monitoring based on multivariate deep learning technique. Sensors, 23(20), 8613.
23.
Shakya, V., Choudhary, J., & Singh, D. P. (2024). IRADA: integrated reinforcement learning and deep learning algorithm for attack detection in wireless sensor networks. Multimedia Tools and Applications, 1-20.
24.
Premkumar, M., Ashokkumar, S. R., Jeevanantham, V., Mohanbabu, G., & AnuPallavi, S. (2023). Scalable and energy efficient cluster based anomaly detection against denial of service attacks in wireless sensor networks. Wireless Personal Communications, 129(4), 2669-2691.
25.
Arul, J. S., & Venkatesan, R. (2023). A deep learning approach for efficient anomaly detection in WSNS. International Journal of Computers, Communications and Control, 18(1).