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Abstract – Wireless Sensor Networks (WSNs) are increasingly 

used for real-time monitoring across various critical 

applications, including environmental sensing, infrastructure 

monitoring, and healthcare. However, WSNs face significant 

challenges in anomaly detection due to their resource 

constraints, dynamic topology, and the complexity of high-

dimensional sensor data with varying patterns. These challenges 

make traditional methods ineffective, highlighting the need for 

innovative approaches. Traditional anomaly detection methods 

often struggle to handle complex, high-dimensional sensor data 

with varying patterns. To address these challenges, we propose 

Hybrid Dynamic Kernel Neural Learning (HDK-NL), a novel 

framework that integrates deep neural networks with dynamic 

kernel selection for efficient and accurate anomaly detection in 

WSNs. HDK-NL ensuring robust detection of both spatial and 

temporal anomalies. A dynamic kernel hierarchy is introduced, 

which automatically selects kernel types (Gaussian, polynomial, 

linear) based on statistical properties of the extracted features, 

improving the algorithm's capacity to discern intricate patterns. 

The algorithm employs a multi-scale scoring system that 

aggregates anomaly scores from multiple layers, considering 

both local and global contexts. To optimize energy consumption 

in WSNs, context-aware adaptive thresholding is used to 

minimize false positives and reduce unnecessary transmissions. 

The proposed method is evaluated on real-world sensor data, 

demonstrating improved detection accuracy, reduced false 

alarms, and significant energy savings. HDK-NL offers a 

scalable and adaptive solution for anomaly detection in WSNs, 

making it suitable for resource-constrained environments that 

require real-time processing. 

Index Terms – Wireless Sensor Networks, Anomaly Detection, 

Hybrid Dynamic Kernel Learning, Deep Neural Networks, 

Convolutional Neural Networks, Long Short-Term Memory, 

Dynamic Kernel Selection. 

 

1. INTRODUCTION 

Wireless Sensor Networks (WSNs) are extensively used in a 

several of real-time applications, such as environmental 

monitoring, healthcare, industrial systems, and smart cities. 

WSNs consist of distributed sensor nodes that continuously 

collect data, which is then transmitted to a central node or 

processing unit. Given the critical nature of these applications, 

it is crucial to ensure that the sensor network operates reliably 

and efficiently [1]. However, WSNs are often prone to various 

challenges, including sensor malfunctions, network failures, 

environmental disturbances, and malicious attacks. These 

issues may lead to abnormal or anomalous data patterns that 

compromise the system’s performance and data integrity [2]. 

The identification of anomalies in WSNs involves 

recognizing points of data or events that markedly diverge 

from typical behavior [3]. This can include detecting sensor 

faults, environmental changes, network intrusions, or any 

irregularity that affects the accuracy and reliability of the data 

being transmitted. Anomaly detection plays a critical role in 

the maintenance and operation of WSNs, as it allows for early 

identification of issues that may escalate into larger problems, 

thereby reducing downtime and ensuring that system 

reliability is maintained [4]. 

Nonetheless, anomaly identification in wireless sensor 

networks is especially difficult owing to the unique features 

of these systems. First, sensor nodes often have limited 

computational resources, memory, and energy, making it 

difficult to implement complex detection models. Second, 

sensor data is typically high-dimensional, noisy, and 

unstructured, complicating the identification of anomalies [5]. 

Moreover, the network environment is dynamic, with sensor 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2025/08                         Volume 12, Issue 1, January – February (2025) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       107 

     

RESEARCH ARTICLE 

nodes frequently being added or removed, leading to 

fluctuations in the data distribution. Traditional rule-based 

systems often fail to adapt to the evolving nature of WSNs 

and may not be effective at detecting subtle anomalies or 

complex patterns in the data [6]. 

In recent years, machine learning (ML) and deep learning 

(DL) methods have emerged as promising solutions for 

anomaly detection, offering superior accuracy and 

adaptability [7]. These approaches can autonomously discern 

intricate trends in information and adjust to environmental 

changes. Nonetheless, despite their capabilities, current deep 

learning algorithms often encounter difficulties when used in 

WSNs [8]. Many deep learning methods require large 

amounts of labeled data for training, which is often 

unavailable in real-world WSN scenarios. Additionally, the 

high computational cost and memory requirements of deep 

learning models may not be suitable for the resource-

constrained nature of sensor nodes [9][10]. 

A novel approach, Hybrid Dynamic Kernel Neural Learning 

(HDK-NL), which combines deep neural networks with 

dynamic kernel methods for efficient and accurate anomaly 

detection in WSNs. Our approach combines Convolutional 

Neural Networks (CNNs) as well as Long Short-Term 

Memory (LSTM) in the sensor data. By using CNNs, we can 

effectively capture local spatial patterns within the data, while 

LSTMs help model long-term temporal dependencies, 

ensuring that both types of anomalies—spatial and 

temporal—are detected. In addition, the model integrates a 

dynamic kernel hierarchy, which adapts the kernel functions. 

The core idea behind HDK-NL is to dynamically adjust the 

kernel type based on the feature distributions at each layer of 

the network. This dynamic kernel selection allows the model 

to capture a wide variety of patterns in the data, from simple 

linear relationships to more complex, non-linear interactions. 

The hierarchical structure of the model enables multi-scale 

anomaly detection, which are more comprehensive 

understanding of the data. Furthermore, the algorithm 

incorporates context-aware adaptive thresholding and 

environmental context. This ensures that the model remains 

flexible and can handle varying levels of anomaly severity 

across different operating conditions. 

One of the key advantages of HDK-NL is its energy-efficient 

design. WSNs are typically deployed in environments with 

limited energy resources, and frequent data transmission for 

anomaly reporting can quickly drain the battery of sensor 

nodes. By employing context-aware anomaly scoring and 

adaptive thresholding, HDK-NL reduces the number of false 

positives and unnecessary anomaly alerts, minimizing data 

transmission and conserving energy. This makes the model 

particularly well-suited for deployment in large-scale, 

resource-constrained WSNs where energy efficiency is a top 

priority. 

As WSNs become more prevalent in mission-critical 

applications, ensuring the reliability of these networks 

becomes increasingly important. Anomalies can arise due to 

various factors, such as sensor failures, environmental 

disturbances, or even malicious attacks on the network. 

Traditional methods for anomaly detection, while useful in 

some contexts, struggle to keep up with the evolving data 

patterns found in real-world WSNs. These methods may not 

effectively handle high-dimensional data or adapt to the 

changing conditions of the network. Moreover, many 

traditional techniques are not well-suited for deployment in 

resource-constrained environments where sensor nodes have 

limited computational power and energy. The main objectives 

of this work are: 

• Develop an Adaptive Anomaly Detection Model: By 

incorporating dynamic kernel learning and deep neural 

networks, the model will be able to adapt to different 

types of data distributions and detect a wide range of 

anomalies, including both spatial and temporal 

irregularities. 

• Enhance Energy Efficiency: The proposed model will 

minimize unnecessary transmissions and energy 

consumption by using adaptive thresholds and focusing 

only on significant anomalies. 

• Improve Detection Accuracy: The hybrid model will 

leverage both spatial and temporal feature extraction to 

identify anomalies with greater precision, reducing false 

positives and improving the model’s overall 

effectiveness. 

• Enable Real-Time Anomaly Detection: The algorithm 

will be optimized for real-time processing, allowing it to 

detect anomalies as they occur and trigger timely alerts 

for network maintenance or intervention. 

The paper is structured as follows: Section 2 presents the state-

of-the-art in anomaly detection for WSNs, identifying gaps 

and limitations in current research. Section 3 proposes the 

Hybrid Dynamic Kernel Neural Learning (HDK-NL) 

framework, which consists of its architecture, its major 

components such as the dynamic kernel hierarchy and multi-

scale scoring. Section 4 presents the experimental findings 

and includes a comparative analysis to highlight the efficacy of 

the proposed method. Section 5 closes this paper and 

discusses directions for further research into anomaly detection 

on WSNs. 

2. RELATED WORKS 

Wavelet_Kernel_Network with Omni-Scale-Convolution 

(WKN-OC) model is designed for detecting anomaly in 

Intelligent Transportation Systems (ITS) [11]. It adaptively 

selects optimal scales, emphasizes high-frequency signals, 

and extracts valuable features for improved anomaly 
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detection. The model is validated on the SPMD dataset, 

achieving high accuracy in detecting mixed and multi-

anomaly scenarios. The computational complexity of Omni-

Scale Convolution might increase the processing time. 

Enhanced Transient Extreme Learning method detects 

anomalies in WSN data through three stages: data 

compression using Piecewise Aggregate Approximation, 

prediction via Extreme Learning Machine (ELM) [12] 

optimized by Arithmetic Optimization, and 

dynamic_thresholding for anomaly detection. The model Uses 

dynamic thresholding to differentiate normal and abnormal 

data. The approach improves accuracy and efficiency on the 

IBRL dataset.  

Exponential Parametric Kernel-Centered Deep Neural 

Networks (EPK-DNN) integrates linear scaling-based BAT 

optimization and Damerau-Levenshtein-based K-means 

clustering to detect WSN attacks [13]. The complexity of the 

EPK-DNN architecture and the tuning of its hyperparameters 

can be challenging. Using optimization techniques and a deep 

neural network, the approach achieves high detection 

accuracy for real-time BC and MC datasets. Self-Supervised 

Learning method employs a self-supervised autoencoder that 

integrates spatial, temporal, and intermodal WSN data flow 

features. Adaptive fusion and gated recurrent unit networks 

enhance anomaly detection, achieving a high F1 score on 

large-scale networks [14]. The effectiveness of the surveyed 

methods may vary depending on the specific WSN 

application and data characteristics. 

A framework analyzing energy anomalies in IoT nodes 

through data transmission features. Linear regression 

identifies dominant features, while a deep neural network 

improves anomaly detection by focusing on dominant features 

and minimizing reconstruction errors [15]. The complexity of 

the model may increase the computational overhead. 

Unsupervised ML methods detect hardware failures in WSNs 

by analyzing traffic and non-traffic features [16]. The 

approach enhances anomaly detection by considering gateway 

failures and optimizing feature selection for better precision. 

The method may require careful tuning of the deep neural 

network architecture and hyperparameters. 

A Transformer-based model with spatio-temporal attention 

mechanisms for sensor data anomaly detection [17]. The 

performance of the methods may vary depending on the 

specific network characteristics and failure scenarios. It 

captures spatial and temporal patterns, achieving high 

accuracy in real-time anomaly detection scenarios in water 

treatment plants. This survey explores hybrid and distributed 

ML-based outlier detection techniques in WSNs, emphasizing 

spatiotemporal correlations and reporting high detection rates 

for environmental monitoring and resource-efficient 

applications [18]. 

Multivariate Convolutional Networks with LSTM integrates 

convolutional networks with LSTM [19]. The analysis may 

not cover all existing outlier detection techniques for WSNs. 

Bayesian Optimized approach enhances WSN security using a 

Bayesian optimization-based DL model for anomaly 

detection. Challenges such as overfitting and data dependency 

are addressed with reinforcement learning-based techniques 

[20]. The effectiveness of the discussed methods may vary by 

data characteristics. 

Scaling and Energy-Effective Cluster-Based Anomaly 

Detection (SEECAD) utilizes spatial information for 

adversary localization, achieving high detection rates, reduced 

energy consumption, and increased network reliability [21]. 

The model provides a comprehensive overview of machine 

learning techniques for anomaly detection in WSNs. Feed-

Forward Autoencoder Neural Network (FANN) detects 

anomalies in WSNs by reducing false positives and energy 

consumption. The model achieves improved accuracy and 

sustainability, focusing on robustness and real-time dataset 

validation [22]. The model may require careful tuning of 

hyperparameters for optimal performance. 

Improved and Integrated RL with Advanced Deep Learning 

Algorithm (IRADA) approach combines RL with DL for 

attack detection in WSNs. It addresses computational 

complexity and prolonged training issues while enhancing 

detection accuracy and reducing false alarms [23]. The design 

and implementation of the IRADA framework can be 

complex. A deep learning framework dynamically adjusts IoT 

node configurations based on signal quality and transmission 

settings. Dominant feature-based gradient modification 

enhances anomaly detection, ensuring energy-efficient IoT 

operation [24]. The accuracy of adversary detection and 

localization may depend on the quality of spatial information 

and the accuracy of the clustering algorithm. This model uses 

ML for real-time WSN anomaly detection by adapting to 

changing environmental and network conditions. It emphasizes 

real-time anomaly identification while optimizing energy and 

computational resources [25]. The model may require careful 

tuning to achieve optimal performance. The summarization of 

related works is given in Table 1. 

Table 1 Summarization of Traditional Models 

Ref. 

No 

Methods Limitations 

1 

WKN-OC, high-

frequency signal 

processing 

High computational 

cost, dependency on 

signal quality 

2 

Data compression 

(Piecewise Aggregate 

Approximation), ELM. 

Data dependency, 

limited scalability for 

larger networks. 
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3 

EPK-DNN, Linear 

Scaling based BAT 

optimization, K-means 

clustering 

High computational 

complexity, risk of 

overfitting 

4 

Supervised, 

unsupervised, semi-

supervised learning 

techniques 

Limited by data 

quality and feature 

extraction challenges 

5 

Autoencoder, Graph 

Neural Network, Gated 

Recurrent Unit Network 

High complexity, 

limited generalization 

across diverse datasets 

6 
Linear regression, Deep 

Neural Networks 

Accuracy affected by 

IoT node variability, 

high training time 

7 
Unsupervised machine 

learning techniques 

High dependency on 

network topology and 

data consistency 

8 
Transformer with spatio-

temporal attention 

High computational 

cost, requires large 

labeled data 

9 
Various outlier detection 

techniques 

False positive rates 

may increase with 

complex environments 

10 Machine learning (ML) 

Model for detecting 

Limited robustness in 

dynamic network 

anomaly conditions 

11 

Statistical, clustering, 

machine learning 

techniques 

May fail in real-time 

systems due to high 

processing delay 

12 
Multivariate anomaly 

detection 

Limited scalability for 

large IoT deployments 

13 Bayesian Optimization High data dependency 

14 

Spatial information, 

Cluster-based Anomaly 

Detection 

Limited to DoS 

attacks, requires 

frequent recalibration 

15 

Feed-forward 

Autoencoder Neural 

Network (FANN) 

High energy 

consumption during 

training, sensitive to 

noise 

3. PROPOSED MODEL 

The proposed Hybrid Dynamic Kernel Neural Learning 

(HDK-NL) framework addresses the challenges of anomaly 

detection in WSNs by integrating advanced neural learning 

techniques with adaptive kernel-based methods. The 

framework begins with data collection from wireless sensor 

nodes, which is preprocessed to remove noise and normalize 

the inputs. For feature extraction, the method employs a 

hybrid architecture combining CNNs to capture spatial 

patterns and LSTM networks to analyze temporal 

dependencies. This dual approach ensures robust detection of 

anomalies spanning both spatial and temporal domains. 

 

 

Figure 1 Overall Architecture of Proposed HDK-NL Model 
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A novel Dynamic Kernel Hierarchy is introduced to 

adaptively and automatically select kernel types (e.g., 

Gaussian, polynomial, or linear) based on statistical metrics 

derived from the distribution of extracted features, such as 

variance, skewness, and kurtosis. This automated approach 

ensures the optimal kernel is chosen dynamically, enabling 

the model to effectively identify complex, high-dimensional 

patterns in the data. The anomaly detection process is further 

refined through a Multi-Scale Scoring System, which 

aggregates scores from various layers of the network to 

evaluate local and global contexts comprehensively. These 

scores are then combined using a weighted aggregation 

method, where layers with more significant anomaly patterns 

receive higher weights. This approach ensures that the final 

anomaly score reflects a holistic analysis of both local and 

global contexts, thereby improving the detection accuracy and 

reducing false positives. 

To optimize energy consumption in resource-constrained 

WSNs, the framework incorporates Context-Aware Adaptive 

Thresholding, which dynamically adjusts detection thresholds 

to minimize false positives and reduce unnecessary data 

transmissions. The final anomaly detection module integrates 

these components to generate alerts, ensuring accurate and 

timely responses to anomalies while conserving energy. 

The proposed HDK-NL framework as shown in Figure 1 has 

been validated on real-world sensor datasets, demonstrating 

superior accuracy, reduced false alarms, and significant 

energy savings, making it an effective and scalable solution 

for real-time anomaly detection in WSNs. 

3.1. Data Preprocessing and Input Preparation 

In the process of preparing data for anomaly detection in 

WSNs, several preprocessing steps are crucial in data 

cleaning, standardized, and facilitates efficient learning. The 

following steps describe how raw sensor data is handled in 

preparation for feeding it into the HDK-NL model. 

Step 1.1: Data Collection 

The data were collected from 

https://www.kaggle.com/datasets/tawfikelmetwally/air-

quality-dataset. Data Collection, it is emphasized that raw 

sensor data is gathered from different sensor nodes within the 

Wireless Sensor Network. This node is equipped with various 

sensors like temperature, humidity, pressure, vibration, etc. 

The datasets evaluate sensor data from environments more 

generally, including healthcare, environmental, and 

infrastructures. Testing data is diverse enough in this context, 

ensuring the proposed HDK-NL framework is tested against a 

real network and adapting its WSN applications in various 

scenarios. 

Let’s define the collected data as given in Equation (1): 

X = {xi,t} for i = 1,2, … , N and t = 1,2, … , T        (1)                            

Where X  is the matrix of sensor readings, xi,t  is the 

measurement of the i-th sensor at time t, N inetwork Sensors, 

T time intervals recorded by the sensors. 

The data typically includes spatial information (sensor 

location) and temporal information (timestamp of the data). 

For example, temperature readings may be recorded at 

different locations (spatial data) and at different times 

(temporal data). 

Step 1.2: Preprocessing 

Preprocessing involves several operations to ensure data 

cleaning in data collection, normalized, and ready for model 

training. The key preprocessing steps include: 

Normalization: Since the sensor data may have different units 

and ranges. A common normalization method is min-max 

scaling. The min-max normalization formula is shown in 

Equation (2): 

xi,t
′ =

xi,t − min (Xi)

max(Xi) − min (Xi)
                                      (2) 

Where: 

• xi,t is the raw reading of the i-th sensor at t time. 

• Xi represents the set of all readings from the i-th sensor. 

• max(Xi)  and min (Xi)  are the maximum as well as 

minimum values of the sensor readings. 

• xi,t
′  is the normalized value of the sensor reading. 

This normalization step scales all sensor readings to the range 

[0, 1], ensuring that no sensor dominates the learning process 

due to its larger numerical range. 

Noise Removal: Sensor data is often noisy due to 

environmental factors, hardware issues, or transmission 

errors. A common method for noise reduction is moving 

average filtering. The moving average at time t for sensor i is 

calculated as shown in Equation (3): 

x̅i,t =
1

k
∑ xi,j

t
j=t−k+1                                             (3) 

Where: 

• x̅i,t is the filtered reading of the i-th sensor. 

• kis the window size for the moving average (e.g.,k = 5). 

This filter smooths out rapid fluctuations in the data, reducing 

the impact of outliers or noise. 

In addition to normalization, standardization may also be used 

to center the data around zero and scale it based on its 

https://www.kaggle.com/datasets/tawfikelmetwally/air-quality-dataset
https://www.kaggle.com/datasets/tawfikelmetwally/air-quality-dataset
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standard deviation. The standardization formula is given in 

Equation (4): 

zi,t =
xi,t−μi

σi
                                                    (4) 

Where: 

• μi is the mean of the i-th sensor readings. 

• σi is the standard deviation of the i-th sensor readings. 

• zi,t is the standardized value. 

Standardization is particularly useful when the data spans 

several different magnitudes (e.g., temperature in °C and 

humidity in percentage), helping to make them comparable. 

Step 1.3: Segmentation 

Once the data has been normalized and filtered, the next step 

is segmentation, where the continuous time series data is 

divided into smaller, manageable windows. This step is 

crucial because anomaly detection often depends on capturing 

temporal dependencies—how the sensor readings change over 

time. 

The data is typically segmented into overlapping or non-

overlapping windows of fixed length, denoted as www. Each 

window represents a sequence of data points within a specific 

time range. 

The segmentation of the data can be defined in Equation (5): 

S = {St} where St = {xi,t, xi,t+1, … , xi,t+w−1} for t =

1,2, … , T − w + 1                                             (5) 

Where: 

• S is the set of segmented windows. 

• St  is the t -th segmented window, containing w 

consecutive data points from each sensor i. 

• T is the total length of the time series data. 

• w is the window length. 

By applying normalization, filtering, and segmentation, the 

data is effectively prepared for feeding into the anomaly 

detection model. The normalized and standardized data 

ensures that the model is not biased toward any particular 

sensor or feature, and the segmented windows. With these 

preprocessing steps, the data is transformed into a format that 

allows deep learning models, such as HDK-NL, to accurately 

detect anomalies while being computationally efficient and 

adaptable to various network conditions. 

3.2. Multi-Scale Feature Extraction Layer 

The Multi-Scale Feature Extraction Layer in the HDK-NL 

model captures complex dependencies that may exist within 

the data, both across different sensor nodes (spatial patterns) 

and across time (temporal patterns).  

Step 2.1: Spatial Feature Extraction with CNN 

The first part of the multi-scale feature extraction process 

focuses on extracting spatial features from the segmented data 

using CNNs. The idea behind using CNNs is to learn patterns 

and dependencies that exist between different sensor nodes at 

a given time.  

Since sensor data often exhibits spatial correlations (e.g., 

temperature readings from adjacent sensors may be related), 

CNNs are highly effective in detecting these patterns. 

Given the segmented data St, each window contains readings 

from all the sensors at a particular time interval. The data is 

structured as a 2D matrix, where the rows correspond to 

different sensors, and the columns correspond to time steps 

(for a given time window). 

Let St represent the segmented data for the t-th time window, 

and suppose the window contains N sensors and w time steps 

as shown in Equations 6: 

(St ∈ ℝN×w)                   (6) 

The CNN applies convolutional filters to this 2D data matrix 

to extract spatial features. A typical CNN layer operates by 

sliding a kernel (filter) K  over the input data matrix, 

performing a convolution operation. The output of the 

convolution is the feature map, which captures spatial patterns 

as given in Equation 7: 

F = X ∗ K + b                       (7) 

Where: 

• X is the input data matrix for the t-th window (size N ×
w). 

• K is the convolutional filter or kernel (size k × k,where k 

is the size of the filter). 

• ∗ denotes the convolution operation. 

• b is the bias term. 

• F is the output feature map, capturing spatial dependencies 

in data. 

The CNN learns several filters (kernels) to capture different 

types of spatial features. These learned features are critical for 

detecting anomalies that are spatially distributed, such as 

sensor failures or irregular patterns across different sensor 

nodes. 

After passing through multiple convolutional layers, pooling 

layers (e.g., max pooling) are applied to reduce the 

dimensionality. 
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Step 2.2: Temporal Feature Extraction with LSTM 

Once the spatial features have been extracted by the CNN, the 

next step is to capture the temporal patterns in the data using 

LSTM networks. Let Ft  represent the spatial feature map 

obtained from the CNN layer for the ttt-th time window. The 

spatial features are then passed into an LSTM network to 

capture temporal dependencies across multiple time steps. 

The LSTM model operates by maintaining an internal state ht 

that evolves over time. 

The basic operations within an LSTM cell include gates that 

control the flow of information: 

1. Forget Gate (𝑓𝑡) : Determines what proportion of the 

previous state should be forgotten as shown in Equation 

(8): 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝑓)                  (8) 

2. Input Gate (𝒊𝒕): determines which new information will be 

added to the cell state as shown in Equation (9): 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝑖)                  (9) 

3. Candidate Cell State (�̃�𝑡): proposes new information to be 

added to the cell state as shown in Equation (10). 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝐶)                  (10) 

4. Update Cell State ( 𝑪𝒕 ): Updates the cell state by 

combining the forget gate and the candidate cell state as 

given in Equation (11). 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡                                (11) 

5. Output Gate (𝑂𝑡): Determines the output of the LSTM cell 

as calculated in Equation (12). 

𝑂𝑡 = 𝜎(𝑊𝑂 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝑂)                          (12) 

6. Hidden State (ℎ𝑡) : the final output of the LSTM cell, 

which is passed to the next time step as given in Equation 

(13). 

ℎ𝑡 = 𝑂𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)                               (13) 

Where: 

• 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜  are the weights for the forget, input, 

candidate, and output gates, respectively. 

• 𝑏𝑓, 𝑏𝑖, 𝑏𝐶 , 𝑏𝑜 are the biases for the gates. 

• 𝜎  is the sigmoid activation function, and tanh is the 

hyperbolic tangent activation function. 

• ℎ𝑡−1 is hidden state. 

• 𝐶𝑡−1 is cell state. 

The LSTM network processes the spatial features extracted by 

the CNN across time steps, capturing the temporal 

dependencies in the data. This is crucial for detecting 

anomalies that evolve over time, such as trends or gradual 

changes in sensor behavior that may indicate failures or 

disturbances. 

The CNN layer effectively captures spatial dependencies 

across sensor nodes at a given time, allowing the model to 

detect anomalies that may manifest across different spatial 

regions. The LSTM layer then captures temporal 

dependencies, modeling how sensor data evolves over time 

and helping to detect anomalies that develop gradually. 

3.3. Dynamic Kernel Selection Layer 

The Dynamic Kernel Selection Layer in the HDK-NL model 

is designed to enhance the flexibility and adaptability of the 

learning process by selecting and adjusting the kernel 

functions used in the model. The dynamic adjustment of 

kernels ensures that the model adapts to changes in data. 

The Dynamic Kernel Selection Layer consists of two key 

steps: Initial Kernel Assignment and Dynamic Kernel 

Adjustment. These steps ensure that the kernel functions used 

in the model are optimally suited for the data at each stage of 

the learning process. 

Step 3.1: Initial Kernel Assignment 

The first step in the dynamic kernel selection process is to 

assign an initial kernel function based on the preliminary 

characteristics of the data. Since different types of data may 

require different types of kernel functions, the goal is to 

choose a kernel that best matches the data distribution in the 

early stages of the model. 

In this step, kernel functions are selected based on preliminary 

data distribution characteristics, such as the variance, 

skewness, and complexity of the feature space. 

Kernel Types: 

1. Gaussian Kernel: The Gaussian kernel, also known as the 

Radial Basis Function (RBF) kernel, is commonly used 

when the data exhibits non-linear relationships. It is 

defined in Equation (14): 

𝐾𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛  (𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥− 𝑥′‖

2

2𝜎2 )                     (14)                                  

Where: 

• 𝑥 and 𝑥’ are two date points. 

• ‖𝑥 − 𝑥′‖2  is distance between 𝑥  and 𝑥’  of the squared 

Euclidean. 

• 𝜎 is the bandwidth parameter, controlling the width of the 

Gaussian function. 

The Gaussian kernel is highly effective when data points are 

not linearly separable and exhibit local non-linearities. 
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2. Polynomial Kernel: The polynomial kernel is a 

generalization of the linear kernel and is useful when the 

data has polynomial relationships. It is defined in Equation 

(15): 

𝐾𝑃𝑂𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝑥, 𝑥′) = (𝑥 ∙ 𝑥′ + 𝑐)𝑑                     (15) 

Where: 

• 𝑥 and 𝑥’ are data points. 

• 𝑐 is a constant (typically set to 0 or 1). 

• 𝑑 is polynomial degree. 

The polynomial kernel is suitable when the data contains 

higher-order polynomial relationships. 

• Linear Kernel: This kernel is basic kernel and is useful 

when the data is already linearly separable. It is defined in 

Equation (16): 

𝐾𝐿𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑥′) = 𝑥 ∙ 𝑥′                                   (16) 

Where: 

• 𝑥 and 𝑥′ and data points. 

To select the appropriate kernel, the data distribution 

characteristics are analyzed. A basic approach involves 

computing some simple statistical metrics like variance and 

skewness. If the data shows high variance and non-linearities, 

the Gaussian kernel is often chosen. If the data is more 

structured or exhibits polynomial behavior, a polynomial 

kernel is selected.  

Step 3.2: Dynamic Kernel Adjustment 

Once the initial kernel is selected based on the data's 

preliminary distribution, the next step is Dynamic Kernel 

Adjustment. This step involves adapting the kernel functions 

throughout the learning process to better suit the evolving 

data and feature distributions. The primary goal of dynamic 

kernel adjustment is to ensure that the model remains flexible 

and can respond to shifts in data characteristics as it 

encounters new information over time. 

To adjust the kernel functions dynamically, the model 

monitors the distribution of features at each layer of the 

network. This allows the model to identify when the selected 

kernel is no longer optimal for the data and needs to be 

adapted or switched. The adjustment is typically driven by the 

gradual changes in feature distributions or by anomalous 

patterns that the model detects during training. 

1. Shifts in Data Distribution: As the data evolves over time 

(e.g., sensor data changing due to external factors), the 

feature distributions may shift. To detect these shifts, we 

can compute statistical measures such as mean shift or 

covariance shift. If these measures indicate that the data 

distribution has changed, the kernel type can be adjusted 

accordingly. 

2. Anomaly Detection: If the model detects anomalies in the 

data (e.g., sudden spikes, unusual patterns), this may 

indicate that the current kernel is not well-suited for the 

new data. In such cases, the kernel function can be 

switched or dynamically adapted to better capture the 

emerging patterns. 

A simple approach to dynamically adjust the kernel is to use a 

decision-making criterion based on the kernel performance 

and feature distribution shifts. Let’s define a dynamic 

adjustment function ΔK that adjusts the kernel based on 

performance and data distribution as shown in Equation (17): 

𝛥𝐾 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐾) × 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆ℎ𝑖𝑓𝑡(𝐷)          (17)                                                 

Where: 

• Performance(K) is a measure of how well the current 

kernel is capturing the data’s structure (e.g., based on 

cross-validation or error minimization). 

• FeatureShift(D) is a function that quantifies the shift in 

feature distribution. 

Based on the value of ∆𝐾 , the kernel function is adjusted 

accordingly as shown in Equation (18): 

𝐾𝑛𝑒𝑤 = 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∆𝐾                              (18) 

Where: 

• 𝐾𝑛𝑒𝑤  is the adjusted kernel. 

• 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the initial kernel chosen in Step 3.1. 

The Dynamic Kernel Selection Layer plays a crucial role 

where Initial kernel assignment based on the preliminary data 

distribution ensures that the model starts with a suitable 

kernel, while dynamic kernel adjustment enables the model to 

adapt to evolving data characteristics, enhancing its 

robustness and flexibility. By selecting and adjusting the 

kernel functions throughout the learning process, the model 

can efficiently detect complex anomalies in WSNs. 

3.4. Hierarchical Anomaly Scoring and Aggregation 

The Hierarchical Anomaly Scoring and Aggregation phase in 

the Hybrid Dynamic Kernel Neural Learning (HDK-NL) 

model is essential for calculating the likelihood of anomalies 

and aggregating the results from multiple layers to form a 

comprehensive anomaly score. This step allows the model to 

detect complex, multi-scale anomalies by combining scores 

from various levels of abstraction (spatial and temporal). 

Step 4.1: Hierarchical Scoring System 

In this step, the model computes an anomaly score at each 

layer using the selected kernel-based embeddings (spatial 
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features from the CNN and temporal features from the 

LSTM). The idea is to assign an anomaly score based on how 

likely each data point is to be an outlier in the given feature 

space, considering local patterns and dependencies. 

Let’s denote the feature embeddings for a given time window 

𝑡 as 𝐹𝑡, which consists of both spatial features 𝐹𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 (from 

the CNN) and temporal features 𝐹𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 (from the LSTM). 

The anomaly score 𝑆𝑡 for a given data point is then calculated 

using a distance-based measure, such as the Mahalanobis 

distance. 

Mahalanobis Distance: The Mahalanobis distance is an 

appropriate metric for anomaly detection, as it accounts for 

the correlations of the data set and scales the data based on its 

variance as shown in Equation (19): 

𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝐹𝑡 , 𝜇) = √(𝐹𝑡 − 𝜇)𝑇∑−1(𝐹𝑡 − 𝜇)    (19) 

Where: 

• 𝐹𝑡 - feature vector of the 𝑡-th time window. 

• 𝜇 - feature distribution. 

• ∑ - covariance matrix. 

The anomaly score derived by normalizing the Mahalanobis 

distance, which measures how far the point of standard 

deviations as given in Equation (20). 

𝑆𝑡 =
𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝐹𝑡,𝜇)

𝜎
                                  (20) 

Where: 

• 𝜎 - standard deviation. 

The anomaly score 𝑆𝑡 provides an indication of the likelihood 

of a given data point being an anomaly at each layer of the 

model. 

Step 4.2: Weighted Anomaly Score Aggregation 

Once the anomaly scores are calculated at each layer, they 

need to be combined into a weighted composite score. This 

aggregation step takes into account both local (specific to 

each layer) and global (considering the entire network and 

multi-scale relationships) contexts for anomaly detection. The 

goal is to ensure that the model can detect both subtle and 

significant anomalies by weighting the importance of each 

layer based on the context. 

Let 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 and 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 represent the spatial and temporal 

anomaly scores, respectively, for the 𝑡-th time window. To 

compute the composite anomaly score 𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

, we 

aggregate the scores from both the spatial and temporal layers 

using weights 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙  and 𝑤𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙  that reflect their relative 

importance as calculated in Equation (21): 

𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

= 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∙ 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

+ 𝑤𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∙ 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

   (21) 

Where: 

• 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 is the anomaly score from the spatial features 

(CNN layer). 

• 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 is the anomaly score from the temporal features 

(LSTM layer). 

• 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙  and 𝑤𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙  are the weights assigned to spatial 

and temporal layers, respectively. These weights can be 

dynamically adjusted based on the relative importance of 

spatial and temporal patterns in the data. 

By combining the spatial and temporal anomaly scores in this 

manner, the model can capture multi-scale dependencies, 

ensuring that both local anomalies (e.g., specific to a region of 

the sensor network) and global anomalies (e.g., across the 

entire network) are detected effectively. 

3.5. Context-Aware Adaptive Thresholding 

Context-Aware Adaptive Thresholding is an essential part of 

the HDK-NL model, as it dynamically adjusts the thresholds 

for anomaly detection to reflect changes in the environment. 

In a Wireless Sensor Network (WSN), environmental 

conditions can vary, so it is important for the model to adjust 

its decision criteria to minimize false positives and false 

negatives over time. 

Step 5.1: Contextual Threshold Determination 

In this step, the model calculates a contextual threshold for 

anomaly detection based on the overall distribution of 

anomaly scores and recent data patterns. The threshold should 

be high enough to identify significant anomalies but low 

enough to avoid missing subtle deviations in the data. 

The threshold 𝑇𝑡  for the anomaly score is determined by 

calculating the mean and standard deviation of the recent 

anomaly scores as calculated in Equation (22) and (23): 

𝜇𝑡 =
1

𝑁
∑ 𝑆𝑖

𝑁
𝑖=1                                                  (22) 

𝜎𝑡 = √
1

𝑁
∑ (𝑆𝑖 − 𝜇𝑡)2𝑁

𝑖=1                                    (23) 

Where: 

• 𝑆𝑖 - anomaly score. 

• 𝑁 - number of data points. 

The contextual threshold 𝑇𝑡 is then calculated as a function of 

the mean and standard deviation as shown in Equation (24): 

𝑇𝑡 = 𝜇𝑡 + 𝛼 ∙ 𝜎𝑡                                          (24) 

Where: 
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• α is a user-defined parameter that determines how 

sensitive the threshold is to deviations in the data. A 

higher value of α\alphaα results in a more sensitive 

threshold, while a lower value makes it more conservative. 

This threshold determines whether an anomaly score is 

considered significant enough to flag a data point as an 

anomaly. 

Step 5.2: Dynamic Threshold Updating 

As new data points are processed, the model should 

continuously update the threshold to reflect the latest data 

patterns. This ensures that the model can adapt to 

environmental changes and minimize the occurrence of false 

positives and false negatives over time. 

To update the threshold dynamically, the model uses a sliding 

window approach that recalculates the threshold at regular 

intervals based on the most recent data as shown in Equation 

(25): 

𝑇𝑡
𝑛𝑒𝑤 = 𝜇𝑡

𝑛𝑒𝑤 +  𝛼 ∙ 𝜎𝑡
𝑛𝑒𝑤                       (25) 

Where: 

• 𝜇𝑡
𝑛𝑒𝑤  and 𝜎𝑡

𝑛𝑒𝑤  are the updated mean and standard 

deviation based on the latest data window. 

• 𝑇𝑡
𝑛𝑒𝑤 is the updated threshold. 

By continuously updating the threshold, the model can 

respond to environmental changes and adapt to new patterns 

in the data, thus improving the accuracy of anomaly detection 

in dynamic WSN environments. 

The Context-Aware Adaptive Thresholding mechanism 

enables the model to dynamically adjust its decision boundary 

for anomaly detection. By determining the threshold based on 

recent data patterns and continuously updating it as new data 

arrives, the model minimizes false positives and false 

negatives, making it robust for use in real-world environments 

like WSNs. This flexibility ensures that the HDK-NL model 

remains effective in detecting subtle and evolving anomalies 

in complex, dynamic systems. 

3.6. Real-Time Anomaly Detection and Reporting 

The Real-Time Anomaly Detection and Reporting phase 

focuses on efficiently detecting and reporting anomalies in 

real-time, a crucial aspect in Wireless Sensor Networks 

(WSNs) due to their resource-constrained nature. This phase 

ensures that only significant anomalies are flagged and 

transmitted, optimizing both detection accuracy and energy 

consumption within the network. 

Step 6.1: Anomaly Decision 

In this step, the model classifies each data point based on its 

aggregated anomaly score and compares it with the adaptive 

threshold to determine whether the data point is normal or 

anomalous. The decision-making process is straightforward 

but essential for ensuring timely anomaly detection. 

Let’s denote the aggregated anomaly score for the t-th data 

point as St
composite

, and the adaptive threshold at time t as Tt, 

which was calculated in the previous step using context-aware 

adaptive thresholding. The anomaly decision for the data 

point is made by comparing the aggregated score to the 

threshold. 

The decision rule can be expressed in Equation (26): 

Anomaly Decisiont = {
Anomalous, if St

composite
≥ Tt

Normal, if St
composite

< Tt

  (26) 

Where: 

• St
composite

 is the combined anomaly score from the spatial 

and temporal layers. 

• Tt is the adaptive threshold determined in step 5. 

• The Anomaly Decision for each data point is either 

“Anomalous” or “Normal”. 

The classification result is crucial because it informs the 

system whether to trigger further actions or simply continue 

monitoring. 

Step 6.2: Energy-Conscious Reporting 

One of the main challenges in WSNs is the limited energy 

available for transmitting data. To address this, the Energy-

Conscious Reporting step ensures that only significant or 

persistent anomalies trigger alerts, reducing unnecessary 

energy consumption from transmitting alerts that do not 

contribute valuable information. 

In this step, the model aims to minimize unnecessary data 

transmissions by transmitting only the significant anomalies. 

This can be achieved by applying a persistence condition—

meaning that an anomaly must occur over multiple time 

windows or exceed a certain threshold for a sustained period 

before being reported. 

Let’s denote the anomaly status at time t as At,where shown 

in Equation (27): 

At = {
1, if anomaly is detected at time t
0, if no anomaly is detected at time t

     (27) 

For energy-conscious reporting, the model can apply a 

persistence threshold to ensure that anomalies need to be 

detected for several consecutive time windows before 

triggering an alert. Let P  be the persistence threshold as 

calculated in Equation (28), which defines how many 

consecutive time windows must report an anomaly for the 

alert to be sent. 
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P = ∑ At
tN
t=t1

                                                  (28) 

where: 

• At is the anomaly status for time window t. 

• t1 to tN represent a series of consecutive time windows. 

• If the sum P exceeds the persistence threshold (e.g.,P >
threshold), the modal generates an alert. 

The Energy-Conscious Reporting Decision can then be 

defined in Equation (29): 

Report Anomaly = {
Yes, if P > threshold
No, if P ≤ threshold

     (29) 

This decision ensures that: 

• Alerts are triggered only when anomalies persist over 

time, making them more significant. 

• The number of transmissions is minimized, saving energy 

in resource-constrained environments. 

1. Input: Sensor data D, time window size 𝑤, initial kernels 

2. Output: Anomaly classification for each data point 

3. Step 1: Preprocess Data 

4. Normalize sensor data D to get D𝑛𝑜𝑟𝑚 

5. Segment data into windows of size 𝑤 

6. Step 2: Extract Features 

7. For each window 𝑡 do 

8. Extract spatial features using CNN 

9. Extract temporal features using LSTM 

10. end for 

11. Step 3: Dynamic Kernel Adjustment 

12. for each feature layer do 

13. Adjust kernel type based on the feature distributions 

14. end for 

15. Step 4: Calculate Anomaly Scores 

16. for each window 𝑡 do 

17. Calculate spatial anomaly score 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 

18. Calculate temporal anomaly score 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 

19. Combine the scores into a composite score 𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

 

20. end for 

21. Step 5: Set Threshold and Detect Anomalies 

22. Calculate threshold 𝑇𝑡 based on score mean and variance 

23. for each window 𝑡 do 

24. If 𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

≥ 𝑇𝑡 then 

25. Mark as anomaly 

26. else 

27. Mark as normal 

28. end if 

29. end for 

Algorithm 1 Simple HDK-NL Anomaly Detection Algorithm 

The Algorithm 1 processes sensor data by first normalizing 

and segmenting it into time windows. It then extracts spatial 

and temporal features using CNN and LSTM, respectively. 

Dynamic kernel adjustment is performed for each feature 

layer to refine the feature representation. Anomaly scores are 

calculated for each window, and anomalies are detected based 

on a threshold derived from the composite score of spatial and 

temporal components. 

4. RESULTS AND DISCUSSIONS 

The proposed Hybrid Dynamic Kernel Neural Learning 

(HDK-NL) framework was evaluated using real-world 

Wireless Sensor Network (WSN) datasets, focusing on 

anomaly detection accuracy, false positive rate, energy 

consumption, and scalability. Table 2 provides simulation 

parameters with its descriptions. 

Table 2 Simulation Parameters 

Parameter Value Description 

Dataset Real-world 

WSN sensor 

data 

Data collected from 

environmental and 

healthcare monitoring 

Sensor Data 

Type 

Multivariate 

time series 

Data includes temperature, 

humidity, pressure, etc. 

Kernel 

Types 

Gaussian, 

Polynomial, 

Linear 

Types of kernels used in 

dynamic kernel selection 

CNN 

Architecture 

3 layers (32, 64, 

128 filters) 

Convolutional layers for 

spatial feature extraction 

LSTM 

Architecture 

2 layers (256 

units each) 

Long Short-Term Memory 

layers for capturing 

temporal patterns 

Thresholding 

Method 

Context-aware 

adaptive 

Dynamic thresholding to 

minimize false positives 

Learning 

Rate 

0.001 Initial learning rate for 

optimization 
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The trainings were performed on a machine equipped with an 

Intel Core i7 CPU, 16 GB of RAM, with NVIDIA GTX 1080 

Ti GPU running Python 3.8 with TensorFlow, Keras, and 

other libraries on Ubuntu 20.04 LTS using Jupyter Notebook. 

This setup facilitated the implementation of the simulation for 

HDK-NL.  

The table 3 presents a comprehensive comparison of six 

methods—ELM [12], WKN-OC [11], SEECAD [21], EPK-

DNN [13], IRADA [23], and the Proposed HDK-NL 

Framework—across four key performance metrics: Accuracy 

(%), False Positive Rate (%), Energy Consumption (mJ), and 

Detection Time (ms). 

Table 3 Comparative Results 

Method Accuracy (%) 
False Positive Rate 

(%) 
Energy Consumption (mJ) Detection Time (ms) 

ELM [12] 85.3 12.8 15.4 150 

WKN-OC [11] 87.6 10.5 14.2 140 

SEECAD [21] 89.2 9.1 13.8 135 

EPK-DNN [13] 92.8 7.6 12.7 120 

IRADA [23] 93.6 6.5 11.6 110 

Proposed HDK-NL 

Framework 
96.3 5.2 10.5 105 

4.1. Accuracy 

The HDK-NL framework achieves higher anomaly detection 

accuracy due to its hybrid architecture combining CNNs for 

spatial feature extraction and LSTMs for temporal 

dependencies. 

 

Figure 2 Overall Comparison of Accuracy 

The Proposed HDK-NL Framework achieves the highest 

accuracy at 96.3%, demonstrating superior performance over 

all other methods as shown in Figure 2. IRADA follows with 

93.6%, and EPK-DNN ranks third with 92.8%.  

In contrast, SEECAD, WKN-OC, and ELM exhibit lower 

accuracies of 89.2%, 87.6%, and 85.3%, respectively, 

indicating room for improvement. 

4.2. False Positive Rate (FPR) 

Context-aware adaptive thresholding minimizes false 

positives, outperforming static threshold methods. 

 

Figure 3 Comparison of False Positive Rate 
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The Proposed HDK-NL Framework excels with the lowest 

false positive rate of 5.2%, reducing errors significantly as 

shown in Figure 3. IRADA and EPK-DNN also perform well, 

with false positive rates of 6.5% and 7.6%, respectively. The 

other methods, such as SEECAD (9.1%), WKN-OC (10.5%), 

and ELM (12.8%), exhibit higher false positive rates, making 

them less reliable. 

4.3. Energy Efficiency 

By reducing unnecessary transmissions and using efficient 

kernel-based processing, the framework significantly 

conserves energy. 

 

Figure 4 Comparison of Energy Consumption 

Energy efficiency is another area where the Proposed HDK-

NL Framework leads, consuming the least energy at 10.5 mJ 

as shown in Figure 4. IRADA follows closely with 11.6 mJ, 

and EPK-DNN consumes 12.7 mJ. SEECAD and WKN-OC 

show moderate energy usage of 13.8 mJ and 14.2 mJ, 

respectively, while ELM is the least energy-efficient at 15.4 

mJ. 

4.4. Scalability 

The dynamic kernel hierarchy enables the framework to 

handle diverse data patterns, ensuring scalability across 

various WSN scenarios. 

In terms of speed, the Proposed HDK-NL Framework 

demonstrates the fastest detection time of 105 ms, making it 

ideal for time-sensitive applications as shown in Figure 5. 

IRADA achieves the second-best detection time of 110 ms, 

followed by EPK-DNN with 120 ms. SEECAD, WKN-OC, 

and ELM lag behind, with detection times of 135 ms, 140 ms, 

and 150 ms, respectively. 

 

Figure 5 Comparison of Detection Time 
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and the sensitive 96.3% true positives. The HDK-NL 

framework significantly outperforms existing methods in all 

evaluation metrics. The integration of CNNs and LSTMs 

ensures comprehensive feature extraction, while the dynamic 

kernel hierarchy adapts effectively to diverse data patterns, 

improving detection accuracy. The context-aware adaptive 

thresholding mechanism reduces false positives, making the 

method more reliable for real-time applications. Additionally, 

the energy-efficient design of the framework aligns with the 

constraints of WSNs, ensuring prolonged network lifetimes. 

Compared to standard machine learning and deep learning 

models, the HDK-NL framework achieves a 6-11% 

improvement in accuracy and reduces false positives by 30-

50%. It also consumes up to 32% less energy and processes 

anomalies 12-30% faster, making it a robust and scalable 

solution for anomaly detection in resource-constrained WSN 

environments. 

The HDK-NL framework achieves better results due to 

dynamic kernel selection. The context-aware adaptive 

thresholding minimizes false positives and energy 

consumption, while multi-scale anomaly scoring enhances 

detection reliability. These factors collectively contribute to 

the superior accuracy, reduced false positive rate, energy 

efficiency, and faster detection time. 

5. CONCLUSION 

The proposed Hybrid Dynamic Kernel Neural Learning 

(HDK-NL) framework provides an advanced and efficient 

solution for anomaly detection in Wireless Sensor Networks 

(WSNs), addressing key challenges such as high-dimensional 

data, energy constraints, and real-time processing needs. The 

inclusion of a Dynamic Kernel Hierarchy further enhances 

adaptability to diverse data distributions, enabling robust 

detection of complex anomalies. Additionally, the Multi-Scale 

Scoring System and Context-Aware Adaptive 

Thresholding mechanisms contribute to improved accuracy 

with 96.3%, reduced false positives as 5.2%, and significant 

energy savings. Experimental evaluations on WSN datasets 

demonstrate the framework's superior performance compared 

to traditional and state-of-the-art methods, with notable 

improvements in detection accuracy, energy efficiency, and 

scalability. The HDK-NL framework not only meets the 

demands of real-time anomaly detection but also aligns with 

the constraints of resource-limited WSNs, making it a 

practical and scalable solution for various applications, 

including environmental monitoring, infrastructure 

management, and healthcare. This research underscores the 

potential of hybrid neural learning approaches in advancing 

the reliability and efficiency of WSNs, paving the way for 

more intelligent and resilient network systems. In future work, 

the HDK-NL framework can be further enhanced by 

incorporating advanced techniques such as transfer learning 

and ensemble methods to improve its generalization on 

diverse datasets. 
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