
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 106

RESEARCH ARTICLE

Hybrid Dynamic Kernel Neural Learning for

Efficient Anomaly Detection in Wireless Sensor

Networks

T. Selvakumar

Department of Computer and Information Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India.

selva5709@gmail.com

M. Jeyakarthic

Department of Computer and Information Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India.

✉ jeya_karthic@yahoo.com

Received: 28 November 2024 / Revised: 14 January 2025 / Accepted: 28 January 2025 / Published: 28 February 2025

Abstract – Wireless Sensor Networks (WSNs) are increasingly

used for real-time monitoring across various critical

applications, including environmental sensing, infrastructure

monitoring, and healthcare. However, WSNs face significant

challenges in anomaly detection due to their resource

constraints, dynamic topology, and the complexity of high-

dimensional sensor data with varying patterns. These challenges

make traditional methods ineffective, highlighting the need for

innovative approaches. Traditional anomaly detection methods

often struggle to handle complex, high-dimensional sensor data

with varying patterns. To address these challenges, we propose

Hybrid Dynamic Kernel Neural Learning (HDK-NL), a novel

framework that integrates deep neural networks with dynamic

kernel selection for efficient and accurate anomaly detection in

WSNs. HDK-NL ensuring robust detection of both spatial and

temporal anomalies. A dynamic kernel hierarchy is introduced,

which automatically selects kernel types (Gaussian, polynomial,

linear) based on statistical properties of the extracted features,

improving the algorithm's capacity to discern intricate patterns.

The algorithm employs a multi-scale scoring system that

aggregates anomaly scores from multiple layers, considering

both local and global contexts. To optimize energy consumption

in WSNs, context-aware adaptive thresholding is used to

minimize false positives and reduce unnecessary transmissions.

The proposed method is evaluated on real-world sensor data,

demonstrating improved detection accuracy, reduced false

alarms, and significant energy savings. HDK-NL offers a

scalable and adaptive solution for anomaly detection in WSNs,

making it suitable for resource-constrained environments that

require real-time processing.

Index Terms – Wireless Sensor Networks, Anomaly Detection,

Hybrid Dynamic Kernel Learning, Deep Neural Networks,

Convolutional Neural Networks, Long Short-Term Memory,

Dynamic Kernel Selection.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are extensively used in a

several of real-time applications, such as environmental

monitoring, healthcare, industrial systems, and smart cities.

WSNs consist of distributed sensor nodes that continuously

collect data, which is then transmitted to a central node or

processing unit. Given the critical nature of these applications,

it is crucial to ensure that the sensor network operates reliably

and efficiently [1]. However, WSNs are often prone to various

challenges, including sensor malfunctions, network failures,

environmental disturbances, and malicious attacks. These

issues may lead to abnormal or anomalous data patterns that

compromise the system’s performance and data integrity [2].

The identification of anomalies in WSNs involves

recognizing points of data or events that markedly diverge

from typical behavior [3]. This can include detecting sensor

faults, environmental changes, network intrusions, or any

irregularity that affects the accuracy and reliability of the data

being transmitted. Anomaly detection plays a critical role in

the maintenance and operation of WSNs, as it allows for early

identification of issues that may escalate into larger problems,

thereby reducing downtime and ensuring that system

reliability is maintained [4].

Nonetheless, anomaly identification in wireless sensor

networks is especially difficult owing to the unique features

of these systems. First, sensor nodes often have limited

computational resources, memory, and energy, making it

difficult to implement complex detection models. Second,

sensor data is typically high-dimensional, noisy, and

unstructured, complicating the identification of anomalies [5].

Moreover, the network environment is dynamic, with sensor

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 107

RESEARCH ARTICLE

nodes frequently being added or removed, leading to

fluctuations in the data distribution. Traditional rule-based

systems often fail to adapt to the evolving nature of WSNs

and may not be effective at detecting subtle anomalies or

complex patterns in the data [6].

In recent years, machine learning (ML) and deep learning

(DL) methods have emerged as promising solutions for

anomaly detection, offering superior accuracy and

adaptability [7]. These approaches can autonomously discern

intricate trends in information and adjust to environmental

changes. Nonetheless, despite their capabilities, current deep

learning algorithms often encounter difficulties when used in

WSNs [8]. Many deep learning methods require large

amounts of labeled data for training, which is often

unavailable in real-world WSN scenarios. Additionally, the

high computational cost and memory requirements of deep

learning models may not be suitable for the resource-

constrained nature of sensor nodes [9][10].

A novel approach, Hybrid Dynamic Kernel Neural Learning

(HDK-NL), which combines deep neural networks with

dynamic kernel methods for efficient and accurate anomaly

detection in WSNs. Our approach combines Convolutional

Neural Networks (CNNs) as well as Long Short-Term

Memory (LSTM) in the sensor data. By using CNNs, we can

effectively capture local spatial patterns within the data, while

LSTMs help model long-term temporal dependencies,

ensuring that both types of anomalies—spatial and

temporal—are detected. In addition, the model integrates a

dynamic kernel hierarchy, which adapts the kernel functions.

The core idea behind HDK-NL is to dynamically adjust the

kernel type based on the feature distributions at each layer of

the network. This dynamic kernel selection allows the model

to capture a wide variety of patterns in the data, from simple

linear relationships to more complex, non-linear interactions.

The hierarchical structure of the model enables multi-scale

anomaly detection, which are more comprehensive

understanding of the data. Furthermore, the algorithm

incorporates context-aware adaptive thresholding and

environmental context. This ensures that the model remains

flexible and can handle varying levels of anomaly severity

across different operating conditions.

One of the key advantages of HDK-NL is its energy-efficient

design. WSNs are typically deployed in environments with

limited energy resources, and frequent data transmission for

anomaly reporting can quickly drain the battery of sensor

nodes. By employing context-aware anomaly scoring and

adaptive thresholding, HDK-NL reduces the number of false

positives and unnecessary anomaly alerts, minimizing data

transmission and conserving energy. This makes the model

particularly well-suited for deployment in large-scale,

resource-constrained WSNs where energy efficiency is a top

priority.

As WSNs become more prevalent in mission-critical

applications, ensuring the reliability of these networks

becomes increasingly important. Anomalies can arise due to

various factors, such as sensor failures, environmental

disturbances, or even malicious attacks on the network.

Traditional methods for anomaly detection, while useful in

some contexts, struggle to keep up with the evolving data

patterns found in real-world WSNs. These methods may not

effectively handle high-dimensional data or adapt to the

changing conditions of the network. Moreover, many

traditional techniques are not well-suited for deployment in

resource-constrained environments where sensor nodes have

limited computational power and energy. The main objectives

of this work are:

• Develop an Adaptive Anomaly Detection Model: By

incorporating dynamic kernel learning and deep neural

networks, the model will be able to adapt to different

types of data distributions and detect a wide range of

anomalies, including both spatial and temporal

irregularities.

• Enhance Energy Efficiency: The proposed model will

minimize unnecessary transmissions and energy

consumption by using adaptive thresholds and focusing

only on significant anomalies.

• Improve Detection Accuracy: The hybrid model will

leverage both spatial and temporal feature extraction to

identify anomalies with greater precision, reducing false

positives and improving the model’s overall

effectiveness.

• Enable Real-Time Anomaly Detection: The algorithm

will be optimized for real-time processing, allowing it to

detect anomalies as they occur and trigger timely alerts

for network maintenance or intervention.

The paper is structured as follows: Section 2 presents the state-

of-the-art in anomaly detection for WSNs, identifying gaps

and limitations in current research. Section 3 proposes the

Hybrid Dynamic Kernel Neural Learning (HDK-NL)

framework, which consists of its architecture, its major

components such as the dynamic kernel hierarchy and multi-

scale scoring. Section 4 presents the experimental findings

and includes a comparative analysis to highlight the efficacy of

the proposed method. Section 5 closes this paper and

discusses directions for further research into anomaly detection

on WSNs.

2. RELATED WORKS

Wavelet_Kernel_Network with Omni-Scale-Convolution

(WKN-OC) model is designed for detecting anomaly in

Intelligent Transportation Systems (ITS) [11]. It adaptively

selects optimal scales, emphasizes high-frequency signals,

and extracts valuable features for improved anomaly

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 108

RESEARCH ARTICLE

detection. The model is validated on the SPMD dataset,

achieving high accuracy in detecting mixed and multi-

anomaly scenarios. The computational complexity of Omni-

Scale Convolution might increase the processing time.

Enhanced Transient Extreme Learning method detects

anomalies in WSN data through three stages: data

compression using Piecewise Aggregate Approximation,

prediction via Extreme Learning Machine (ELM) [12]

optimized by Arithmetic Optimization, and

dynamic_thresholding for anomaly detection. The model Uses

dynamic thresholding to differentiate normal and abnormal

data. The approach improves accuracy and efficiency on the

IBRL dataset.

Exponential Parametric Kernel-Centered Deep Neural

Networks (EPK-DNN) integrates linear scaling-based BAT

optimization and Damerau-Levenshtein-based K-means

clustering to detect WSN attacks [13]. The complexity of the

EPK-DNN architecture and the tuning of its hyperparameters

can be challenging. Using optimization techniques and a deep

neural network, the approach achieves high detection

accuracy for real-time BC and MC datasets. Self-Supervised

Learning method employs a self-supervised autoencoder that

integrates spatial, temporal, and intermodal WSN data flow

features. Adaptive fusion and gated recurrent unit networks

enhance anomaly detection, achieving a high F1 score on

large-scale networks [14]. The effectiveness of the surveyed

methods may vary depending on the specific WSN

application and data characteristics.

A framework analyzing energy anomalies in IoT nodes

through data transmission features. Linear regression

identifies dominant features, while a deep neural network

improves anomaly detection by focusing on dominant features

and minimizing reconstruction errors [15]. The complexity of

the model may increase the computational overhead.

Unsupervised ML methods detect hardware failures in WSNs

by analyzing traffic and non-traffic features [16]. The

approach enhances anomaly detection by considering gateway

failures and optimizing feature selection for better precision.

The method may require careful tuning of the deep neural

network architecture and hyperparameters.

A Transformer-based model with spatio-temporal attention

mechanisms for sensor data anomaly detection [17]. The

performance of the methods may vary depending on the

specific network characteristics and failure scenarios. It

captures spatial and temporal patterns, achieving high

accuracy in real-time anomaly detection scenarios in water

treatment plants. This survey explores hybrid and distributed

ML-based outlier detection techniques in WSNs, emphasizing

spatiotemporal correlations and reporting high detection rates

for environmental monitoring and resource-efficient

applications [18].

Multivariate Convolutional Networks with LSTM integrates

convolutional networks with LSTM [19]. The analysis may

not cover all existing outlier detection techniques for WSNs.

Bayesian Optimized approach enhances WSN security using a

Bayesian optimization-based DL model for anomaly

detection. Challenges such as overfitting and data dependency

are addressed with reinforcement learning-based techniques

[20]. The effectiveness of the discussed methods may vary by

data characteristics.

Scaling and Energy-Effective Cluster-Based Anomaly

Detection (SEECAD) utilizes spatial information for

adversary localization, achieving high detection rates, reduced

energy consumption, and increased network reliability [21].

The model provides a comprehensive overview of machine

learning techniques for anomaly detection in WSNs. Feed-

Forward Autoencoder Neural Network (FANN) detects

anomalies in WSNs by reducing false positives and energy

consumption. The model achieves improved accuracy and

sustainability, focusing on robustness and real-time dataset

validation [22]. The model may require careful tuning of

hyperparameters for optimal performance.

Improved and Integrated RL with Advanced Deep Learning

Algorithm (IRADA) approach combines RL with DL for

attack detection in WSNs. It addresses computational

complexity and prolonged training issues while enhancing

detection accuracy and reducing false alarms [23]. The design

and implementation of the IRADA framework can be

complex. A deep learning framework dynamically adjusts IoT

node configurations based on signal quality and transmission

settings. Dominant feature-based gradient modification

enhances anomaly detection, ensuring energy-efficient IoT

operation [24]. The accuracy of adversary detection and

localization may depend on the quality of spatial information

and the accuracy of the clustering algorithm. This model uses

ML for real-time WSN anomaly detection by adapting to

changing environmental and network conditions. It emphasizes

real-time anomaly identification while optimizing energy and

computational resources [25]. The model may require careful

tuning to achieve optimal performance. The summarization of

related works is given in Table 1.

Table 1 Summarization of Traditional Models

Ref.

No

Methods Limitations

1

WKN-OC, high-

frequency signal

processing

High computational

cost, dependency on

signal quality

2

Data compression

(Piecewise Aggregate

Approximation), ELM.

Data dependency,

limited scalability for

larger networks.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 109

RESEARCH ARTICLE

3

EPK-DNN, Linear

Scaling based BAT

optimization, K-means

clustering

High computational

complexity, risk of

overfitting

4

Supervised,

unsupervised, semi-

supervised learning

techniques

Limited by data

quality and feature

extraction challenges

5

Autoencoder, Graph

Neural Network, Gated

Recurrent Unit Network

High complexity,

limited generalization

across diverse datasets

6
Linear regression, Deep

Neural Networks

Accuracy affected by

IoT node variability,

high training time

7
Unsupervised machine

learning techniques

High dependency on

network topology and

data consistency

8
Transformer with spatio-

temporal attention

High computational

cost, requires large

labeled data

9
Various outlier detection

techniques

False positive rates

may increase with

complex environments

10 Machine learning (ML)

Model for detecting

Limited robustness in

dynamic network

anomaly conditions

11

Statistical, clustering,

machine learning

techniques

May fail in real-time

systems due to high

processing delay

12
Multivariate anomaly

detection

Limited scalability for

large IoT deployments

13 Bayesian Optimization High data dependency

14

Spatial information,

Cluster-based Anomaly

Detection

Limited to DoS

attacks, requires

frequent recalibration

15

Feed-forward

Autoencoder Neural

Network (FANN)

High energy

consumption during

training, sensitive to

noise

3. PROPOSED MODEL

The proposed Hybrid Dynamic Kernel Neural Learning

(HDK-NL) framework addresses the challenges of anomaly

detection in WSNs by integrating advanced neural learning

techniques with adaptive kernel-based methods. The

framework begins with data collection from wireless sensor

nodes, which is preprocessed to remove noise and normalize

the inputs. For feature extraction, the method employs a

hybrid architecture combining CNNs to capture spatial

patterns and LSTM networks to analyze temporal

dependencies. This dual approach ensures robust detection of

anomalies spanning both spatial and temporal domains.

Figure 1 Overall Architecture of Proposed HDK-NL Model

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 110

RESEARCH ARTICLE

A novel Dynamic Kernel Hierarchy is introduced to

adaptively and automatically select kernel types (e.g.,

Gaussian, polynomial, or linear) based on statistical metrics

derived from the distribution of extracted features, such as

variance, skewness, and kurtosis. This automated approach

ensures the optimal kernel is chosen dynamically, enabling

the model to effectively identify complex, high-dimensional

patterns in the data. The anomaly detection process is further

refined through a Multi-Scale Scoring System, which

aggregates scores from various layers of the network to

evaluate local and global contexts comprehensively. These

scores are then combined using a weighted aggregation

method, where layers with more significant anomaly patterns

receive higher weights. This approach ensures that the final

anomaly score reflects a holistic analysis of both local and

global contexts, thereby improving the detection accuracy and

reducing false positives.

To optimize energy consumption in resource-constrained

WSNs, the framework incorporates Context-Aware Adaptive

Thresholding, which dynamically adjusts detection thresholds

to minimize false positives and reduce unnecessary data

transmissions. The final anomaly detection module integrates

these components to generate alerts, ensuring accurate and

timely responses to anomalies while conserving energy.

The proposed HDK-NL framework as shown in Figure 1 has

been validated on real-world sensor datasets, demonstrating

superior accuracy, reduced false alarms, and significant

energy savings, making it an effective and scalable solution

for real-time anomaly detection in WSNs.

3.1. Data Preprocessing and Input Preparation

In the process of preparing data for anomaly detection in

WSNs, several preprocessing steps are crucial in data

cleaning, standardized, and facilitates efficient learning. The

following steps describe how raw sensor data is handled in

preparation for feeding it into the HDK-NL model.

Step 1.1: Data Collection

The data were collected from

https://www.kaggle.com/datasets/tawfikelmetwally/air-

quality-dataset. Data Collection, it is emphasized that raw

sensor data is gathered from different sensor nodes within the

Wireless Sensor Network. This node is equipped with various

sensors like temperature, humidity, pressure, vibration, etc.

The datasets evaluate sensor data from environments more

generally, including healthcare, environmental, and

infrastructures. Testing data is diverse enough in this context,

ensuring the proposed HDK-NL framework is tested against a

real network and adapting its WSN applications in various

scenarios.

Let’s define the collected data as given in Equation (1):

X = {xi,t} for i = 1,2, … , N and t = 1,2, … , T (1)

Where X is the matrix of sensor readings, xi,t is the

measurement of the i-th sensor at time t, N inetwork Sensors,

T time intervals recorded by the sensors.

The data typically includes spatial information (sensor

location) and temporal information (timestamp of the data).

For example, temperature readings may be recorded at

different locations (spatial data) and at different times

(temporal data).

Step 1.2: Preprocessing

Preprocessing involves several operations to ensure data

cleaning in data collection, normalized, and ready for model

training. The key preprocessing steps include:

Normalization: Since the sensor data may have different units

and ranges. A common normalization method is min-max

scaling. The min-max normalization formula is shown in

Equation (2):

xi,t
′ =

xi,t − min (Xi)

max(Xi) − min (Xi)
 (2)

Where:

• xi,t is the raw reading of the i-th sensor at t time.

• Xi represents the set of all readings from the i-th sensor.

• max(Xi) and min (Xi) are the maximum as well as

minimum values of the sensor readings.

• xi,t
′ is the normalized value of the sensor reading.

This normalization step scales all sensor readings to the range

[0, 1], ensuring that no sensor dominates the learning process

due to its larger numerical range.

Noise Removal: Sensor data is often noisy due to

environmental factors, hardware issues, or transmission

errors. A common method for noise reduction is moving

average filtering. The moving average at time t for sensor i is

calculated as shown in Equation (3):

x̅i,t =
1

k
∑ xi,j

t
j=t−k+1 (3)

Where:

• x̅i,t is the filtered reading of the i-th sensor.

• kis the window size for the moving average (e.g.,k = 5).

This filter smooths out rapid fluctuations in the data, reducing

the impact of outliers or noise.

In addition to normalization, standardization may also be used

to center the data around zero and scale it based on its

https://www.kaggle.com/datasets/tawfikelmetwally/air-quality-dataset
https://www.kaggle.com/datasets/tawfikelmetwally/air-quality-dataset

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 111

RESEARCH ARTICLE

standard deviation. The standardization formula is given in

Equation (4):

zi,t =
xi,t−μi

σi
 (4)

Where:

• μi is the mean of the i-th sensor readings.

• σi is the standard deviation of the i-th sensor readings.

• zi,t is the standardized value.

Standardization is particularly useful when the data spans

several different magnitudes (e.g., temperature in °C and

humidity in percentage), helping to make them comparable.

Step 1.3: Segmentation

Once the data has been normalized and filtered, the next step

is segmentation, where the continuous time series data is

divided into smaller, manageable windows. This step is

crucial because anomaly detection often depends on capturing

temporal dependencies—how the sensor readings change over

time.

The data is typically segmented into overlapping or non-

overlapping windows of fixed length, denoted as www. Each

window represents a sequence of data points within a specific

time range.

The segmentation of the data can be defined in Equation (5):

S = {St} where St = {xi,t, xi,t+1, … , xi,t+w−1} for t =

1,2, … , T − w + 1 (5)

Where:

• S is the set of segmented windows.

• St is the t -th segmented window, containing w

consecutive data points from each sensor i.

• T is the total length of the time series data.

• w is the window length.

By applying normalization, filtering, and segmentation, the

data is effectively prepared for feeding into the anomaly

detection model. The normalized and standardized data

ensures that the model is not biased toward any particular

sensor or feature, and the segmented windows. With these

preprocessing steps, the data is transformed into a format that

allows deep learning models, such as HDK-NL, to accurately

detect anomalies while being computationally efficient and

adaptable to various network conditions.

3.2. Multi-Scale Feature Extraction Layer

The Multi-Scale Feature Extraction Layer in the HDK-NL

model captures complex dependencies that may exist within

the data, both across different sensor nodes (spatial patterns)

and across time (temporal patterns).

Step 2.1: Spatial Feature Extraction with CNN

The first part of the multi-scale feature extraction process

focuses on extracting spatial features from the segmented data

using CNNs. The idea behind using CNNs is to learn patterns

and dependencies that exist between different sensor nodes at

a given time.

Since sensor data often exhibits spatial correlations (e.g.,

temperature readings from adjacent sensors may be related),

CNNs are highly effective in detecting these patterns.

Given the segmented data St, each window contains readings

from all the sensors at a particular time interval. The data is

structured as a 2D matrix, where the rows correspond to

different sensors, and the columns correspond to time steps

(for a given time window).

Let St represent the segmented data for the t-th time window,

and suppose the window contains N sensors and w time steps

as shown in Equations 6:

(St ∈ ℝN×w) (6)

The CNN applies convolutional filters to this 2D data matrix

to extract spatial features. A typical CNN layer operates by

sliding a kernel (filter) K over the input data matrix,

performing a convolution operation. The output of the

convolution is the feature map, which captures spatial patterns

as given in Equation 7:

F = X ∗ K + b (7)

Where:

• X is the input data matrix for the t-th window (size N ×
w).

• K is the convolutional filter or kernel (size k × k,where k

is the size of the filter).

• ∗ denotes the convolution operation.

• b is the bias term.

• F is the output feature map, capturing spatial dependencies

in data.

The CNN learns several filters (kernels) to capture different

types of spatial features. These learned features are critical for

detecting anomalies that are spatially distributed, such as

sensor failures or irregular patterns across different sensor

nodes.

After passing through multiple convolutional layers, pooling

layers (e.g., max pooling) are applied to reduce the

dimensionality.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 112

RESEARCH ARTICLE

Step 2.2: Temporal Feature Extraction with LSTM

Once the spatial features have been extracted by the CNN, the

next step is to capture the temporal patterns in the data using

LSTM networks. Let Ft represent the spatial feature map

obtained from the CNN layer for the ttt-th time window. The

spatial features are then passed into an LSTM network to

capture temporal dependencies across multiple time steps.

The LSTM model operates by maintaining an internal state ht

that evolves over time.

The basic operations within an LSTM cell include gates that

control the flow of information:

1. Forget Gate (𝑓𝑡) : Determines what proportion of the

previous state should be forgotten as shown in Equation

(8):

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝑓) (8)

2. Input Gate (𝒊𝒕): determines which new information will be

added to the cell state as shown in Equation (9):

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝑖) (9)

3. Candidate Cell State (�̃�𝑡): proposes new information to be

added to the cell state as shown in Equation (10).

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝐶) (10)

4. Update Cell State (𝑪𝒕): Updates the cell state by

combining the forget gate and the candidate cell state as

given in Equation (11).

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡 (11)

5. Output Gate (𝑂𝑡): Determines the output of the LSTM cell

as calculated in Equation (12).

𝑂𝑡 = 𝜎(𝑊𝑂 ∙ [ℎ𝑡−1, 𝐹𝑡] + 𝑏𝑂) (12)

6. Hidden State (ℎ𝑡) : the final output of the LSTM cell,

which is passed to the next time step as given in Equation

(13).

ℎ𝑡 = 𝑂𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (13)

Where:

• 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜 are the weights for the forget, input,

candidate, and output gates, respectively.

• 𝑏𝑓, 𝑏𝑖, 𝑏𝐶 , 𝑏𝑜 are the biases for the gates.

• 𝜎 is the sigmoid activation function, and tanh is the

hyperbolic tangent activation function.

• ℎ𝑡−1 is hidden state.

• 𝐶𝑡−1 is cell state.

The LSTM network processes the spatial features extracted by

the CNN across time steps, capturing the temporal

dependencies in the data. This is crucial for detecting

anomalies that evolve over time, such as trends or gradual

changes in sensor behavior that may indicate failures or

disturbances.

The CNN layer effectively captures spatial dependencies

across sensor nodes at a given time, allowing the model to

detect anomalies that may manifest across different spatial

regions. The LSTM layer then captures temporal

dependencies, modeling how sensor data evolves over time

and helping to detect anomalies that develop gradually.

3.3. Dynamic Kernel Selection Layer

The Dynamic Kernel Selection Layer in the HDK-NL model

is designed to enhance the flexibility and adaptability of the

learning process by selecting and adjusting the kernel

functions used in the model. The dynamic adjustment of

kernels ensures that the model adapts to changes in data.

The Dynamic Kernel Selection Layer consists of two key

steps: Initial Kernel Assignment and Dynamic Kernel

Adjustment. These steps ensure that the kernel functions used

in the model are optimally suited for the data at each stage of

the learning process.

Step 3.1: Initial Kernel Assignment

The first step in the dynamic kernel selection process is to

assign an initial kernel function based on the preliminary

characteristics of the data. Since different types of data may

require different types of kernel functions, the goal is to

choose a kernel that best matches the data distribution in the

early stages of the model.

In this step, kernel functions are selected based on preliminary

data distribution characteristics, such as the variance,

skewness, and complexity of the feature space.

Kernel Types:

1. Gaussian Kernel: The Gaussian kernel, also known as the

Radial Basis Function (RBF) kernel, is commonly used

when the data exhibits non-linear relationships. It is

defined in Equation (14):

𝐾𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥− 𝑥′‖

2

2𝜎2) (14)

Where:

• 𝑥 and 𝑥’ are two date points.

• ‖𝑥 − 𝑥′‖2 is distance between 𝑥 and 𝑥’ of the squared

Euclidean.

• 𝜎 is the bandwidth parameter, controlling the width of the

Gaussian function.

The Gaussian kernel is highly effective when data points are

not linearly separable and exhibit local non-linearities.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 113

RESEARCH ARTICLE

2. Polynomial Kernel: The polynomial kernel is a

generalization of the linear kernel and is useful when the

data has polynomial relationships. It is defined in Equation

(15):

𝐾𝑃𝑂𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝑥, 𝑥′) = (𝑥 ∙ 𝑥′ + 𝑐)𝑑 (15)

Where:

• 𝑥 and 𝑥’ are data points.

• 𝑐 is a constant (typically set to 0 or 1).

• 𝑑 is polynomial degree.

The polynomial kernel is suitable when the data contains

higher-order polynomial relationships.

• Linear Kernel: This kernel is basic kernel and is useful

when the data is already linearly separable. It is defined in

Equation (16):

𝐾𝐿𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑥′) = 𝑥 ∙ 𝑥′ (16)

Where:

• 𝑥 and 𝑥′ and data points.

To select the appropriate kernel, the data distribution

characteristics are analyzed. A basic approach involves

computing some simple statistical metrics like variance and

skewness. If the data shows high variance and non-linearities,

the Gaussian kernel is often chosen. If the data is more

structured or exhibits polynomial behavior, a polynomial

kernel is selected.

Step 3.2: Dynamic Kernel Adjustment

Once the initial kernel is selected based on the data's

preliminary distribution, the next step is Dynamic Kernel

Adjustment. This step involves adapting the kernel functions

throughout the learning process to better suit the evolving

data and feature distributions. The primary goal of dynamic

kernel adjustment is to ensure that the model remains flexible

and can respond to shifts in data characteristics as it

encounters new information over time.

To adjust the kernel functions dynamically, the model

monitors the distribution of features at each layer of the

network. This allows the model to identify when the selected

kernel is no longer optimal for the data and needs to be

adapted or switched. The adjustment is typically driven by the

gradual changes in feature distributions or by anomalous

patterns that the model detects during training.

1. Shifts in Data Distribution: As the data evolves over time

(e.g., sensor data changing due to external factors), the

feature distributions may shift. To detect these shifts, we

can compute statistical measures such as mean shift or

covariance shift. If these measures indicate that the data

distribution has changed, the kernel type can be adjusted

accordingly.

2. Anomaly Detection: If the model detects anomalies in the

data (e.g., sudden spikes, unusual patterns), this may

indicate that the current kernel is not well-suited for the

new data. In such cases, the kernel function can be

switched or dynamically adapted to better capture the

emerging patterns.

A simple approach to dynamically adjust the kernel is to use a

decision-making criterion based on the kernel performance

and feature distribution shifts. Let’s define a dynamic

adjustment function ΔK that adjusts the kernel based on

performance and data distribution as shown in Equation (17):

𝛥𝐾 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝐾) × 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆ℎ𝑖𝑓𝑡(𝐷) (17)

Where:

• Performance(K) is a measure of how well the current

kernel is capturing the data’s structure (e.g., based on

cross-validation or error minimization).

• FeatureShift(D) is a function that quantifies the shift in

feature distribution.

Based on the value of ∆𝐾 , the kernel function is adjusted

accordingly as shown in Equation (18):

𝐾𝑛𝑒𝑤 = 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∆𝐾 (18)

Where:

• 𝐾𝑛𝑒𝑤 is the adjusted kernel.

• 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial kernel chosen in Step 3.1.

The Dynamic Kernel Selection Layer plays a crucial role

where Initial kernel assignment based on the preliminary data

distribution ensures that the model starts with a suitable

kernel, while dynamic kernel adjustment enables the model to

adapt to evolving data characteristics, enhancing its

robustness and flexibility. By selecting and adjusting the

kernel functions throughout the learning process, the model

can efficiently detect complex anomalies in WSNs.

3.4. Hierarchical Anomaly Scoring and Aggregation

The Hierarchical Anomaly Scoring and Aggregation phase in

the Hybrid Dynamic Kernel Neural Learning (HDK-NL)

model is essential for calculating the likelihood of anomalies

and aggregating the results from multiple layers to form a

comprehensive anomaly score. This step allows the model to

detect complex, multi-scale anomalies by combining scores

from various levels of abstraction (spatial and temporal).

Step 4.1: Hierarchical Scoring System

In this step, the model computes an anomaly score at each

layer using the selected kernel-based embeddings (spatial

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 114

RESEARCH ARTICLE

features from the CNN and temporal features from the

LSTM). The idea is to assign an anomaly score based on how

likely each data point is to be an outlier in the given feature

space, considering local patterns and dependencies.

Let’s denote the feature embeddings for a given time window

𝑡 as 𝐹𝑡, which consists of both spatial features 𝐹𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 (from

the CNN) and temporal features 𝐹𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 (from the LSTM).

The anomaly score 𝑆𝑡 for a given data point is then calculated

using a distance-based measure, such as the Mahalanobis

distance.

Mahalanobis Distance: The Mahalanobis distance is an

appropriate metric for anomaly detection, as it accounts for

the correlations of the data set and scales the data based on its

variance as shown in Equation (19):

𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝐹𝑡 , 𝜇) = √(𝐹𝑡 − 𝜇)𝑇∑−1(𝐹𝑡 − 𝜇) (19)

Where:

• 𝐹𝑡 - feature vector of the 𝑡-th time window.

• 𝜇 - feature distribution.

• ∑ - covariance matrix.

The anomaly score derived by normalizing the Mahalanobis

distance, which measures how far the point of standard

deviations as given in Equation (20).

𝑆𝑡 =
𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝐹𝑡,𝜇)

𝜎
 (20)

Where:

• 𝜎 - standard deviation.

The anomaly score 𝑆𝑡 provides an indication of the likelihood

of a given data point being an anomaly at each layer of the

model.

Step 4.2: Weighted Anomaly Score Aggregation

Once the anomaly scores are calculated at each layer, they

need to be combined into a weighted composite score. This

aggregation step takes into account both local (specific to

each layer) and global (considering the entire network and

multi-scale relationships) contexts for anomaly detection. The

goal is to ensure that the model can detect both subtle and

significant anomalies by weighting the importance of each

layer based on the context.

Let 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 and 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 represent the spatial and temporal

anomaly scores, respectively, for the 𝑡-th time window. To

compute the composite anomaly score 𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

, we

aggregate the scores from both the spatial and temporal layers

using weights 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and 𝑤𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 that reflect their relative

importance as calculated in Equation (21):

𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

= 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∙ 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

+ 𝑤𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∙ 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 (21)

Where:

• 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 is the anomaly score from the spatial features

(CNN layer).

• 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

 is the anomaly score from the temporal features

(LSTM layer).

• 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and 𝑤𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 are the weights assigned to spatial

and temporal layers, respectively. These weights can be

dynamically adjusted based on the relative importance of

spatial and temporal patterns in the data.

By combining the spatial and temporal anomaly scores in this

manner, the model can capture multi-scale dependencies,

ensuring that both local anomalies (e.g., specific to a region of

the sensor network) and global anomalies (e.g., across the

entire network) are detected effectively.

3.5. Context-Aware Adaptive Thresholding

Context-Aware Adaptive Thresholding is an essential part of

the HDK-NL model, as it dynamically adjusts the thresholds

for anomaly detection to reflect changes in the environment.

In a Wireless Sensor Network (WSN), environmental

conditions can vary, so it is important for the model to adjust

its decision criteria to minimize false positives and false

negatives over time.

Step 5.1: Contextual Threshold Determination

In this step, the model calculates a contextual threshold for

anomaly detection based on the overall distribution of

anomaly scores and recent data patterns. The threshold should

be high enough to identify significant anomalies but low

enough to avoid missing subtle deviations in the data.

The threshold 𝑇𝑡 for the anomaly score is determined by

calculating the mean and standard deviation of the recent

anomaly scores as calculated in Equation (22) and (23):

𝜇𝑡 =
1

𝑁
∑ 𝑆𝑖

𝑁
𝑖=1 (22)

𝜎𝑡 = √
1

𝑁
∑ (𝑆𝑖 − 𝜇𝑡)2𝑁

𝑖=1 (23)

Where:

• 𝑆𝑖 - anomaly score.

• 𝑁 - number of data points.

The contextual threshold 𝑇𝑡 is then calculated as a function of

the mean and standard deviation as shown in Equation (24):

𝑇𝑡 = 𝜇𝑡 + 𝛼 ∙ 𝜎𝑡 (24)

Where:

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 115

RESEARCH ARTICLE

• α is a user-defined parameter that determines how

sensitive the threshold is to deviations in the data. A

higher value of α\alphaα results in a more sensitive

threshold, while a lower value makes it more conservative.

This threshold determines whether an anomaly score is

considered significant enough to flag a data point as an

anomaly.

Step 5.2: Dynamic Threshold Updating

As new data points are processed, the model should

continuously update the threshold to reflect the latest data

patterns. This ensures that the model can adapt to

environmental changes and minimize the occurrence of false

positives and false negatives over time.

To update the threshold dynamically, the model uses a sliding

window approach that recalculates the threshold at regular

intervals based on the most recent data as shown in Equation

(25):

𝑇𝑡
𝑛𝑒𝑤 = 𝜇𝑡

𝑛𝑒𝑤 + 𝛼 ∙ 𝜎𝑡
𝑛𝑒𝑤 (25)

Where:

• 𝜇𝑡
𝑛𝑒𝑤 and 𝜎𝑡

𝑛𝑒𝑤 are the updated mean and standard

deviation based on the latest data window.

• 𝑇𝑡
𝑛𝑒𝑤 is the updated threshold.

By continuously updating the threshold, the model can

respond to environmental changes and adapt to new patterns

in the data, thus improving the accuracy of anomaly detection

in dynamic WSN environments.

The Context-Aware Adaptive Thresholding mechanism

enables the model to dynamically adjust its decision boundary

for anomaly detection. By determining the threshold based on

recent data patterns and continuously updating it as new data

arrives, the model minimizes false positives and false

negatives, making it robust for use in real-world environments

like WSNs. This flexibility ensures that the HDK-NL model

remains effective in detecting subtle and evolving anomalies

in complex, dynamic systems.

3.6. Real-Time Anomaly Detection and Reporting

The Real-Time Anomaly Detection and Reporting phase

focuses on efficiently detecting and reporting anomalies in

real-time, a crucial aspect in Wireless Sensor Networks

(WSNs) due to their resource-constrained nature. This phase

ensures that only significant anomalies are flagged and

transmitted, optimizing both detection accuracy and energy

consumption within the network.

Step 6.1: Anomaly Decision

In this step, the model classifies each data point based on its

aggregated anomaly score and compares it with the adaptive

threshold to determine whether the data point is normal or

anomalous. The decision-making process is straightforward

but essential for ensuring timely anomaly detection.

Let’s denote the aggregated anomaly score for the t-th data

point as St
composite

, and the adaptive threshold at time t as Tt,

which was calculated in the previous step using context-aware

adaptive thresholding. The anomaly decision for the data

point is made by comparing the aggregated score to the

threshold.

The decision rule can be expressed in Equation (26):

Anomaly Decisiont = {
Anomalous, if St

composite
≥ Tt

Normal, if St
composite

< Tt

 (26)

Where:

• St
composite

 is the combined anomaly score from the spatial

and temporal layers.

• Tt is the adaptive threshold determined in step 5.

• The Anomaly Decision for each data point is either

“Anomalous” or “Normal”.

The classification result is crucial because it informs the

system whether to trigger further actions or simply continue

monitoring.

Step 6.2: Energy-Conscious Reporting

One of the main challenges in WSNs is the limited energy

available for transmitting data. To address this, the Energy-

Conscious Reporting step ensures that only significant or

persistent anomalies trigger alerts, reducing unnecessary

energy consumption from transmitting alerts that do not

contribute valuable information.

In this step, the model aims to minimize unnecessary data

transmissions by transmitting only the significant anomalies.

This can be achieved by applying a persistence condition—

meaning that an anomaly must occur over multiple time

windows or exceed a certain threshold for a sustained period

before being reported.

Let’s denote the anomaly status at time t as At,where shown

in Equation (27):

At = {
1, if anomaly is detected at time t
0, if no anomaly is detected at time t

 (27)

For energy-conscious reporting, the model can apply a

persistence threshold to ensure that anomalies need to be

detected for several consecutive time windows before

triggering an alert. Let P be the persistence threshold as

calculated in Equation (28), which defines how many

consecutive time windows must report an anomaly for the

alert to be sent.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 116

RESEARCH ARTICLE

P = ∑ At
tN
t=t1

 (28)

where:

• At is the anomaly status for time window t.

• t1 to tN represent a series of consecutive time windows.

• If the sum P exceeds the persistence threshold (e.g.,P >
threshold), the modal generates an alert.

The Energy-Conscious Reporting Decision can then be

defined in Equation (29):

Report Anomaly = {
Yes, if P > threshold
No, if P ≤ threshold

 (29)

This decision ensures that:

• Alerts are triggered only when anomalies persist over

time, making them more significant.

• The number of transmissions is minimized, saving energy

in resource-constrained environments.

1. Input: Sensor data D, time window size 𝑤, initial kernels

2. Output: Anomaly classification for each data point

3. Step 1: Preprocess Data

4. Normalize sensor data D to get D𝑛𝑜𝑟𝑚

5. Segment data into windows of size 𝑤

6. Step 2: Extract Features

7. For each window 𝑡 do

8. Extract spatial features using CNN

9. Extract temporal features using LSTM

10. end for

11. Step 3: Dynamic Kernel Adjustment

12. for each feature layer do

13. Adjust kernel type based on the feature distributions

14. end for

15. Step 4: Calculate Anomaly Scores

16. for each window 𝑡 do

17. Calculate spatial anomaly score 𝑆𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

18. Calculate temporal anomaly score 𝑆𝑡
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

19. Combine the scores into a composite score 𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

20. end for

21. Step 5: Set Threshold and Detect Anomalies

22. Calculate threshold 𝑇𝑡 based on score mean and variance

23. for each window 𝑡 do

24. If 𝑆𝑡
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

≥ 𝑇𝑡 then

25. Mark as anomaly

26. else

27. Mark as normal

28. end if

29. end for

Algorithm 1 Simple HDK-NL Anomaly Detection Algorithm

The Algorithm 1 processes sensor data by first normalizing

and segmenting it into time windows. It then extracts spatial

and temporal features using CNN and LSTM, respectively.

Dynamic kernel adjustment is performed for each feature

layer to refine the feature representation. Anomaly scores are

calculated for each window, and anomalies are detected based

on a threshold derived from the composite score of spatial and

temporal components.

4. RESULTS AND DISCUSSIONS

The proposed Hybrid Dynamic Kernel Neural Learning

(HDK-NL) framework was evaluated using real-world

Wireless Sensor Network (WSN) datasets, focusing on

anomaly detection accuracy, false positive rate, energy

consumption, and scalability. Table 2 provides simulation

parameters with its descriptions.

Table 2 Simulation Parameters

Parameter Value Description

Dataset Real-world

WSN sensor

data

Data collected from

environmental and

healthcare monitoring

Sensor Data

Type

Multivariate

time series

Data includes temperature,

humidity, pressure, etc.

Kernel

Types

Gaussian,

Polynomial,

Linear

Types of kernels used in

dynamic kernel selection

CNN

Architecture

3 layers (32, 64,

128 filters)

Convolutional layers for

spatial feature extraction

LSTM

Architecture

2 layers (256

units each)

Long Short-Term Memory

layers for capturing

temporal patterns

Thresholding

Method

Context-aware

adaptive

Dynamic thresholding to

minimize false positives

Learning

Rate

0.001 Initial learning rate for

optimization

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 117

RESEARCH ARTICLE

The trainings were performed on a machine equipped with an

Intel Core i7 CPU, 16 GB of RAM, with NVIDIA GTX 1080

Ti GPU running Python 3.8 with TensorFlow, Keras, and

other libraries on Ubuntu 20.04 LTS using Jupyter Notebook.

This setup facilitated the implementation of the simulation for

HDK-NL.

The table 3 presents a comprehensive comparison of six

methods—ELM [12], WKN-OC [11], SEECAD [21], EPK-

DNN [13], IRADA [23], and the Proposed HDK-NL

Framework—across four key performance metrics: Accuracy

(%), False Positive Rate (%), Energy Consumption (mJ), and

Detection Time (ms).

Table 3 Comparative Results

Method Accuracy (%)
False Positive Rate

(%)
Energy Consumption (mJ) Detection Time (ms)

ELM [12] 85.3 12.8 15.4 150

WKN-OC [11] 87.6 10.5 14.2 140

SEECAD [21] 89.2 9.1 13.8 135

EPK-DNN [13] 92.8 7.6 12.7 120

IRADA [23] 93.6 6.5 11.6 110

Proposed HDK-NL

Framework
96.3 5.2 10.5 105

4.1. Accuracy

The HDK-NL framework achieves higher anomaly detection

accuracy due to its hybrid architecture combining CNNs for

spatial feature extraction and LSTMs for temporal

dependencies.

Figure 2 Overall Comparison of Accuracy

The Proposed HDK-NL Framework achieves the highest

accuracy at 96.3%, demonstrating superior performance over

all other methods as shown in Figure 2. IRADA follows with

93.6%, and EPK-DNN ranks third with 92.8%.

In contrast, SEECAD, WKN-OC, and ELM exhibit lower

accuracies of 89.2%, 87.6%, and 85.3%, respectively,

indicating room for improvement.

4.2. False Positive Rate (FPR)

Context-aware adaptive thresholding minimizes false

positives, outperforming static threshold methods.

Figure 3 Comparison of False Positive Rate

85.3
87.6

89.2

92.8 93.6

96.3

75

80

85

90

95

100

%

Models

Accuracy (%)

12.8

10.5
9.1

7.6
6.5

5.2

0

2

4

6

8

10

12

14

16

%

Models

False Positive Rate (%)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 118

RESEARCH ARTICLE

The Proposed HDK-NL Framework excels with the lowest

false positive rate of 5.2%, reducing errors significantly as

shown in Figure 3. IRADA and EPK-DNN also perform well,

with false positive rates of 6.5% and 7.6%, respectively. The

other methods, such as SEECAD (9.1%), WKN-OC (10.5%),

and ELM (12.8%), exhibit higher false positive rates, making

them less reliable.

4.3. Energy Efficiency

By reducing unnecessary transmissions and using efficient

kernel-based processing, the framework significantly

conserves energy.

Figure 4 Comparison of Energy Consumption

Energy efficiency is another area where the Proposed HDK-

NL Framework leads, consuming the least energy at 10.5 mJ

as shown in Figure 4. IRADA follows closely with 11.6 mJ,

and EPK-DNN consumes 12.7 mJ. SEECAD and WKN-OC

show moderate energy usage of 13.8 mJ and 14.2 mJ,

respectively, while ELM is the least energy-efficient at 15.4

mJ.

4.4. Scalability

The dynamic kernel hierarchy enables the framework to

handle diverse data patterns, ensuring scalability across

various WSN scenarios.

In terms of speed, the Proposed HDK-NL Framework

demonstrates the fastest detection time of 105 ms, making it

ideal for time-sensitive applications as shown in Figure 5.

IRADA achieves the second-best detection time of 110 ms,

followed by EPK-DNN with 120 ms. SEECAD, WKN-OC,

and ELM lag behind, with detection times of 135 ms, 140 ms,

and 150 ms, respectively.

Figure 5 Comparison of Detection Time

Figure 6 Confusion Matrix for HDK-NL Model

Figure 6 shows the model has a high accuracy, with most

predictions being correct, including a low false positive 5.2%

15.4

14.2
13.8

12.7

11.6

10.5

10

11

12

13

14

15

16

17

m
J

Models

Energy Consumption (mJ)

150
140 135

120
110 105

0
20
40
60
80

100
120
140
160
180

m
s

Models

Detection Time (ms)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 119

RESEARCH ARTICLE

and the sensitive 96.3% true positives. The HDK-NL

framework significantly outperforms existing methods in all

evaluation metrics. The integration of CNNs and LSTMs

ensures comprehensive feature extraction, while the dynamic

kernel hierarchy adapts effectively to diverse data patterns,

improving detection accuracy. The context-aware adaptive

thresholding mechanism reduces false positives, making the

method more reliable for real-time applications. Additionally,

the energy-efficient design of the framework aligns with the

constraints of WSNs, ensuring prolonged network lifetimes.

Compared to standard machine learning and deep learning

models, the HDK-NL framework achieves a 6-11%

improvement in accuracy and reduces false positives by 30-

50%. It also consumes up to 32% less energy and processes

anomalies 12-30% faster, making it a robust and scalable

solution for anomaly detection in resource-constrained WSN

environments.

The HDK-NL framework achieves better results due to

dynamic kernel selection. The context-aware adaptive

thresholding minimizes false positives and energy

consumption, while multi-scale anomaly scoring enhances

detection reliability. These factors collectively contribute to

the superior accuracy, reduced false positive rate, energy

efficiency, and faster detection time.

5. CONCLUSION

The proposed Hybrid Dynamic Kernel Neural Learning

(HDK-NL) framework provides an advanced and efficient

solution for anomaly detection in Wireless Sensor Networks

(WSNs), addressing key challenges such as high-dimensional

data, energy constraints, and real-time processing needs. The

inclusion of a Dynamic Kernel Hierarchy further enhances

adaptability to diverse data distributions, enabling robust

detection of complex anomalies. Additionally, the Multi-Scale

Scoring System and Context-Aware Adaptive

Thresholding mechanisms contribute to improved accuracy

with 96.3%, reduced false positives as 5.2%, and significant

energy savings. Experimental evaluations on WSN datasets

demonstrate the framework's superior performance compared

to traditional and state-of-the-art methods, with notable

improvements in detection accuracy, energy efficiency, and

scalability. The HDK-NL framework not only meets the

demands of real-time anomaly detection but also aligns with

the constraints of resource-limited WSNs, making it a

practical and scalable solution for various applications,

including environmental monitoring, infrastructure

management, and healthcare. This research underscores the

potential of hybrid neural learning approaches in advancing

the reliability and efficiency of WSNs, paving the way for

more intelligent and resilient network systems. In future work,

the HDK-NL framework can be further enhanced by

incorporating advanced techniques such as transfer learning

and ensemble methods to improve its generalization on

diverse datasets.

REFERENCES

[1] Bukhari, S. M. S., Zafar, M. H., Abou Houran, M., Moosavi, S. K. R.,

Mansoor, M., Muaaz, M., & Sanfilippo, F. (2024). Secure and privacy-
preserving intrusion detection in wireless sensor networks: Federated

learning with SCNN-Bi-LSTM for enhanced reliability. Ad Hoc

Networks, 155, 103407.
[2] Wang, Z., Wei, Z., Gao, C., Chen, Y., & Wang, F. (2023). A framework

for data anomaly detection based on iterative optimization in IoT

systems. Computing, 105(11), 2337-2362.
[3] Salmi, S., & Oughdir, L. (2023). Performance evaluation of deep

learning techniques for DoS attacks detection in wireless sensor

network. Journal of Big Data, 10(1), 17.

[4] Ahmad, R., Alhasan, W., Wazirali, R., & Almajalid, R. (2024). A

Reliable Approach for Lightweight Anomaly Detection in Sensors

Using Continuous Wavelet Transform and Vector Clustering. IEEE
Sensors Journal.

[5] Liu, Y., Wang, H., Zheng, X., & Tian, L. (2023). An efficient

framework for unsupervised anomaly detection over edge-assisted
internet of things. ACM Transactions on Sensor Networks.

[6] Jasmine Lizy, P., & Chenthalir Indra, N. (2023). Outlier detection based

energy efficient and reliable routing protocol using deep learning
algorithm. Cognitive Computation and Systems, 5(2), 138-152.

[7] Iswarya, P., & Manikandan, K. (2024, April). Algorithms for Fault

Detection and Diagnosis in Wireless Sensor Networks Using Deep
Learning and Machine Learning-An Overview. In 2024 10th

International Conference on Communication and Signal Processing

(ICCSP) (pp. 1404-1409). IEEE.
[8] Inuwa, M. M., & Das, R. (2024). A comparative analysis of various

machine learning methods for anomaly detection in cyber attacks on

IoT networks. Internet of Things, 26, 101162.
[9] Venkatesan, R. (2023). A Deep Learning Approach for Efficient

Anomaly Detection in WSNs. International Journal of Computers

Communications & Control, 18(1).
[10] Chen, J., Zhang, J., Qian, R., Yuan, J., & Ren, Y. (2023). An Anomaly

Detection Method for Wireless Sensor Networks Based on the

Improved Isolation Forest. Applied Sciences, 13(2), 702.
[11] He, Z., Chen, Y., Zhang, H., & Zhang, D. (2023). WKN-OC: a new

deep learning method for anomaly detection in intelligent

vehicles. IEEE Transactions on Intelligent Vehicles, 8(3), 2162-2172.
[12] Ravindra, C., Kounte, M. R., Lakshmaiah, G. S., & Prasad, V. N.

(2023). Etelmad: anomaly detection using enhanced transient extreme

machine learning system in wireless sensor networks. Wireless Personal
Communications, 130(1), 21-41.

[13] Raveendranadh, B., & Tamilselvan, S. (2023). An accurate attack
detection framework based on exponential polynomial kernel‐centered

deep neural networks in the wireless sensor network. Transactions on

emerging telecommunications technologies, 34(3), e4726.
[14] Haque, Ahshanul, Naseef-Ur-Rahman Chowdhury, Hamdy Soliman,

Mohammad Sahinur Hossen, Tanjim Fatima, and Imtiaz Ahmed.

"Wireless sensor networks anomaly detection using machine learning: a
survey." In Intelligent Systems Conference, pp. 491-506. Cham:

Springer Nature Switzerland, 2023.

[15] Ye, M., Zhang, Q., Xue, X., Wang, Y., Jiang, Q., & Qiu, H. (2024). A
novel self-supervised learning-based anomalous node detection method

based on an autoencoder for wireless sensor networks. IEEE Systems

Journal.
[16] Bushehri, A. S., Amirnia, A., Belkhiri, A., Keivanpour, S., De

Magalhaes, F. G., & Nicolescu, G. (2023). Deep Learning-Driven

Anomaly Detection for Green IoT Edge Networks. IEEE Transactions
on Green Communications and Networking.

[17] Cerdà-Alabern, L., Iuhasz, G., & Gemmi, G. (2023). Anomaly detection

for fault detection in wireless community networks using machine
learning. Computer Communications, 202, 191-203.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2025/08 Volume 12, Issue 1, January – February (2025)

ISSN: 2395-0455 ©EverScience Publications 120

RESEARCH ARTICLE

[18] Kumar, A. S., Raja, S., Pritha, N., Raviraj, H., Lincy, R. B., & Rubia, J.
J. (2023). An adaptive transformer model for anomaly detection in

wireless sensor networks in real-time. Measurement: Sensors, 25,

100625.
[19] García, J. C., Rivera, L. A., & Perez, J. (2024). A Literature Review on

Outlier Detection in Wireless Sensor Networks. Journal of Advances in

Information Technology, 15(3).
[20] Raza, M. A., Mustafa, A., Ahmad, I., & Gul, M. (2023). Outlier

Detection With Machine Learning in Wireless Sensor

Networks. Pakistan Journal of Scientific Research, 3(1), 81-91.
[21] Arul Jothi, S., & Venkatesan, R. (2023). A Comparison of Selective

Machine Learning Algorithms for Anomaly Detection in Wireless

Sensor Networks. Artificial Intelligence for Sustainable Applications,
231-248.

[22] El-Shafeiy, E., Alsabaan, M., Ibrahem, M. I., & Elwahsh, H. (2023).

Real-time anomaly detection for water quality sensor monitoring based

on multivariate deep learning technique. Sensors, 23(20), 8613.

[23] Shakya, V., Choudhary, J., & Singh, D. P. (2024). IRADA: integrated

reinforcement learning and deep learning algorithm for attack detection
in wireless sensor networks. Multimedia Tools and Applications, 1-20.

[24] Premkumar, M., Ashokkumar, S. R., Jeevanantham, V., Mohanbabu,
G., & AnuPallavi, S. (2023). Scalable and energy efficient cluster based

anomaly detection against denial of service attacks in wireless sensor

networks. Wireless Personal Communications, 129(4), 2669-2691.
[25] Arul, J. S., & Venkatesan, R. (2023). A deep learning approach for

efficient anomaly detection in WSNS. International Journal of

Computers, Communications and Control, 18(1).

Authors

T. Selvakumar is currently working as an Assistant

Professor in Department of Computer and
Information Science, Annamalai University,

Annamalai Nagar. He received his M.Sc (I.T)

degree from Annamalai University, Annamalai

Nagar. His current research areas are software

defined Networking (SDN), Big data analytics and

Neural Computing.

How to cite this article:

Dr. M. Jeyakarthic is a prominent academician and
researcher affiliated with Annamalai University,

where he has served as an Assistant Professor in the

Department of Computer and Information Science
since 2003. His academic qualifications include an

M.C.A. and M.Phil. from Madurai Kamaraj

University, as well as a Ph.D. and M.B.A. in E-
Business from Annamalai University. He specializes

in various fields, including content-based image

retrieval, big data, cloud computing, wireless
communication, and Tamil computing. His research

includes significant contributions to energy-efficient algorithms in wireless

sensor networks and advancements in Tamil language computing tools and
software. He had published around 80 International Journals and presented

around 20 papers in international conferences. Beyond academia, he has been

actively involved in practical applications, such as developing Tamil

computing courses for the Tamil Virtual Academy (TVA) and establishing

over 100 TVA study centers globally. He has also contributed to quality

testing and web development in the technology sector, including roles in

network engineering and server configurations.

T. Selvakumar, M. Jeyakarthic, “Hybrid Dynamic Kernel Neural Learning for Efficient Anomaly Detection in Wireless

Sensor Networks”, International Journal of Computer Networks and Applications (IJCNA), 12(1), PP: 106-120, 2025, DOI:

10.22247/ijcna/2025/08.

