1.
ETSI TR 102 638 V1.1.1, Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions 2009.
2.
R. S. Bali, N. Kumar, and J. J. P. C. Rodrigues, "Clustering in vehicular ad hoc networks: Taxonomy, challenges and solutions," Vehicular Communications, vol. 1, no. 3, pp. 134-152, 2014, doi: 10.1016/j.vehcom.2014.05.004
3.
M. Ren, J. Zhang, L. Khoukhi, H. Labiod, V. Vèque, A review of clustering al gorithms in VANETs, Ann. Telecommun. (2021) 1–23, https://doi .org /10 .1007 / s12243 -020 -00831 -x.
4.
X.; Zhang, X.; Ding, H.; Peng, B. Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Netw. 2019, 94, 101968, doi:10.1016/j.adhoc.2019.101968.
5.
Zhang, D.; Zhang, T.; Liu, X. Novel self-adaptive routing service algorithm for application in VANET. Appl. Intell. 2018, 49, 1866–1879, doi:10.1007/s10489-018-1368-y.
6.
J. B. Kenney, "Dedicated short-range communications (DSRC) standards in the United States," Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, 2011.
7.
K. A. Hafeez, A. Anpalagan and L. Zhao, "Optimizing the Control Channel Interval of the DSRC for Vehicular Safety Applications," in IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 3377-3388, May 2016, doi: 10.1109/TVT.2015.2440994.
8.
D. B. Rawat, T. Amin and M. Song, "The impact of secondary user mobility and primary user activity on spectrum sensing in cognitive vehicular networks," 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 2015, pp. 588-593, doi: 10.1109/INFCOMW.2015.7179449.
9.
Singh, K.D., Rawat, P., & Bonnin, J. (2014). Cognitive radio for vehicular ad hoc networks (CR-VANETs): approaches and challenges. EURASIP Journal on Wireless Communications and Networking, 2014, 1-22.
10.
Y. Chen and H. -S. Oh, "A Survey of Measurement-Based Spectrum Occupancy Modeling for Cognitive Radios," in IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 848-859, Firstquarter 2016, doi: 10.1109/COMST.2014.2364316.
11.
Y. Saleem and M. H. Rehmani, "Primary Radio User Activity Models for Cognitive Radio Networks: A Survey," Journal of Network and Computer Applications, vol. 43, pp. 1-16, 2014. doi: 10.1109/10.1016/j.jnca.2014.04.001.
12.
V. Kumar, A. Sharma, S. Debnath, and R. Gangopadhyay, "Impact of Primary User Duty Cycle in Generalized Fading Channels on Spectrum Sensing in Cognitive Radio," Procedia Computer Science, vol. 46, pp. 1196-1202, 2015. doi: 10.1109/10.1016/j.procs.2015.01.033.
13.
Tiwari, Jahnvi, Arun Prakash, and Rajeev Tripathi. "An adaptive and cooperative MAC protocol for safety applications in cognitive radio enabled vehicular Ad-hoc networks." Ad Hoc Networks 138 (2023): 103019.
14.
Natarajan, Rajesh, Natesh Mahadev, Badria Sulaiman Alfurhood, Christodoss Prasanna Ranjith, John Zaki, and M. N. Manu. "Optimizing radio access in 5G vehicle networks using novel machine learning-driven resource management." Optical and Quantum Electronics 55, no. 14 (2023): 1270.
15.
Ali, Rashid, Ran Liu, Anand Nayyar, Idrees Waris, Linjing Li, and Mohd Asif Shah. "Intelligent Driver Model-Based Vehicular Ad Hoc Network Communication in Real-Time Using 5G New Radio Wireless Networks." IEEE Access 11 (2023): 4956-4971.
16.
Lu, Lingyun, Xiang Li, Guizhu Wang, and Wei Ni. "Multiband Cooperative Spectrum Sensing Meets Vehicular Network: Relying on CNN-LSTM Approach." Wireless Communications and Mobile Computing 2023 (2023).
17.
Nyati, Sunil U., S. R. Suralkar, and Umesh S. Bhadade. "V2X spectrum allocation for emergency communication using cognitive radio transmission." SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology 14, no. 01 (2022): 79-85.
18.
C. Chembe, R. M Noor, I. Ahmedy, M. Oche, D. Kunda, and C. H. Liu, "Spectrum Sensing in Cognitive Vehicular Network: State-of-Art, Challenges, and Open Issues," Computer Communications, vol. 97, pp. 15-30, 2017. doi: 10.1109/10.1016/j.comcom.2016.09.002.
19.
T. Yucek and H. Arslan, "A survey of spectrum sensing algorithms for cognitive radio applications," in IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116-130, First Quarter 2009, doi: 10.1109/SURV.2009.090109.
20.
X. Qian and L. Hao, "On the performance of spectrum sensing in cognitive vehicular networks," 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 2015, pp. 1002-1006, doi: 10.1109/PIMRC.2015.7343444.
21.
Abbassi, S.H., Qureshi, I.M., Abbasi, H. et al. History-based spectrum sensing in CR-VANETs. J Wireless Com Network 2015, 163 (2015). https://doi.org/10.1186/s13638-015-0404-4.
22.
D. Borota, G. Ivkovic, R. Vuyyuru, O. Altintas, I. Seskar and P. Spasojevic, "On the Delay to Reliably Detect Channel Availability in Cooperative Vehicular Environments," 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, 2011, pp. 1-5, doi: 10.1109/VETECS.2011.5956717.
23.
X. Qian and L. Hao, "Spectrum sensing with energy detection in cognitive Vehicular Ad hoc Networks," 2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014), Vancouver, BC, Canada, 2014, pp. 1-5, doi: 10.1109/WIVEC.2014.6953263.
24.
A. Paul, A. Daniel, A. Ahmad and S. Rho, "Cooperative Cognitive Intelligence for Internet of Vehicles," in IEEE Systems Journal, vol. 11, no. 3, pp. 1249-1258, Sept. 2017, doi: 10.1109/JSYST.2015.2411856.
25.
I. Souid, H. B. Chikha and R. Attia, "Blind spectrum sensing in cognitive vehicular ad hoc networks over Nakagami-m fading channels," 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 2014, pp. 1-5, doi: 10.1109/CISTEM.2014.7076965.
26.
X. Y. Wang and P. -H. Ho, "A Novel Sensing Coordination Framework for CR-VANETs," in IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1936-1948, May 2010, doi: 10.1109/TVT.2009.2037641.
27.
Wei, Zhexiong & Yu, F. & Boukerche, Azzedine. (2015). Cooperative Spectrum Sensing with Trust Assistance for Cognitive Radio Vehicular Ad hoc Networks. 27-33. 10.1145/2815347.2815350.
28.
A. Raza, S. S. Ahmed, W. Ejaz and H. S. Kim, "Cooperative Spectrum Sensing among Mobile Nodes in Cognitive Radio Distributed Network," 2012 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 2012, pp. 18-23, doi: 10.1109/FIT.2012.12.
29.
Li, Husheng, and David K. Irick. "Collaborative spectrum sensing in cognitive radio vehicular ad hoc networks: belief propagation on highway." 2010 IEEE 71st vehicular technology conference. IEEE, 2010.
30.
Liu, Y., Xie, S., Yu, R., Zhang, Y., Zhang, X., and Yuen, C. (2015) Exploiting temporal and spatial diversities for spectrum sensing and access in cognitive vehicular networks. Wirel. Commun. Mob. Comput., 15: 2079–2094. doi: 10.1002/wcm.2476.
31.
M. Di Felice, K. R. Chowdhury and L. Bononi, "Cooperative spectrum management in cognitive Vehicular Ad Hoc Networks," 2011 IEEE Vehicular Networking Conference (VNC), Amsterdam, Netherlands, 2011, pp. 47-54, doi: 10.1109/VNC.2011.6117123.
32.
Lo, Brandon & Akyildiz, Ian. (2010). Reinforcement Learning-based Cooperative Sensing in Cognitive Radio Ad Hoc Networks. 2244 - 2249. 10.1109/PIMRC.2010.5671686.
33.
Kishore, K.K., Rajasekaran, A.S., Keshta, I. et al. Intelligent dynamic spectrum access using fuzzy logic in cognitive radio networks. Discov Appl Sci 6, 18 (2024). https://doi.org/10.1007/s42452-024-05641-7.
34.
Yu, Yue and Chen, Lingling and Zhao, Xiaohui and Liu, Wengang and Huang, Fusen and XU, Guoji and Chen, Yifan and Wang, Yifan, Cld3qn-Based Green and Efficient Dynamic Spectrum Access in Cognitive Vehicular Networks. http://dx.doi.org/10.2139/ssrn.5025254.
35.
X. Qian and L. Hao, "Performance Analysis of Cooperative Sensing over Time-Correlated Rayleigh Channels in Vehicular Environments," in Electronics, vol. 9, no. 6, p. 1004, 2020, https://doi.org/10.3390/electronics9061004.
36.
R. Pal, A. Prakash, R. Tripathi and K. Naik, "Regional Super Cluster Based Optimum Channel Selection for CR-VANET," in IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 2, pp. 607-617, June 2020, doi: 10.1109/TCCN.2019.2960683.
37.
M. Zanin, M. A. Saleem, Z. Shijie, M. U. Sarwar, T. Ahmad, A. Maqbool, C. S. Shivachi, and M. Tariq, "Deep Learning-Based Dynamic Stable Cluster Head Selection in VANET," in Proceedings of the IEEE, vol. 2021, pp. 9936299, July 12, 2021.
38.
C. Chembe, D. Kunda, I. Ahmedy, R. Md Noor, A. Q. Md Sabri, and M. A. Ngadi, "Infrastructure-Based Spectrum Sensing Scheme in VANET Using Reinforcement Learning," in IEEE Vehicular Communications, vol. 18, pp. 100161, August 1, 2019. DOI: 10.1016/j.vehcom.2019.100161.
39.
M. A. Hossain, R. Md Noor, K-L. A. Yau, S. R. Azzuhri, M. R. Z'aba, I. Ahmedy, and M. R. Jabbarpour, "Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network," in Energies, vol. 14, no. 4, p. 1169, 2021. DOI: 10.3390/en14041169.
40.
D. B. Rawat, T. Amin and M. Song, "The impact of secondary user mobility and primary user activity on spectrum sensing in cognitive vehicular networks," 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 2015, pp. 588-593, doi: 10.1109/INFCOMW.2015.7179449.
41.
Singh, K.D., Rawat, P., & Bonnin, J. (2014). Cognitive radio for vehicular ad hoc networks (CR-VANETs): approaches and challenges. EURASIP Journal on Wireless Communications and Networking, 2014, 1-22.
42.
E. Axell, G. Leus, E. G. Larsson and H. V. Poor, "Spectrum Sensing for Cognitive Radio: State-of-the-Art and Recent Advances," in IEEE Signal Processing Magazine, vol. 29, no. 3, pp. 101-116, May 2012, doi: 10.1109/MSP.2012.2183771.