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Abstract – Vehicular Ad Hoc Networks (VANETs), a fast-

evolving technology, improves safety and traffic management 

and acting as the foundation for intelligent transportation 

systems. Because VANET is linking more vehicles in a larger 

network, it is a tough challenge to provide bandwidth to all 

vehicles at all times. Consequently, the effectiveness of 

transportation is diminished. Cognitive Radio (CR) is a 

transformative communication paradigm that facilitates the 

efficient utilization and dynamic access to spectrum. Without 

knowledge of the signal's fundamental properties, it is a critical 

operation to sense the unused spectrum in conditions of low SNR 

and noise uncertainty. The proposed Threshold-based Fuzzy 

Deep Q-network (T-FuzzyDQN) is a new mathematical 

framework that has been developed to resolve the 

aforementioned challenges. This framework is designed to 

compute the triple threshold using the dynamic threshold factor. 

Clustering is implemented by the VANET environment vehicles 

and Roadside Units (RSUs) in accordance with vehicle density. 

The triple threshold mechanism is used to elect the cluster chief, 

who will be responsible for estimating the transmission in all 

clusters. The sensing findings are communicated to the RSU, 

which receives a fresh state and an incentive for sensing and 

obtaining the channel if it has not been in use. The RSU 

dynamically modifies the channel status in accordance with the 

present reward and condition after the spectrum sensing 

process. It strategically selects high-reward channels for efficient 

vehicle communication. This iterative procedure continues until 

congestion is effectively managed, ensuring reliable and 

uninterrupted transmission of emergency messages in the 

vehicular environment.  Simulation findings demonstrate that, 

compared to existing works, the proposed T-FuzzyDQN yields 

superior results in spectrum management. 

Index Terms – Spectrum Management, Cognitive Radio, 

VANET, Clustering, Road Side Unit, T-FuzzyDQN. 

1. INTRODUCTION 

Vehicular Ad Hoc Networks (VANETs) are an unavoidable 

study area since they always include reducing human efforts 

in traffic control while also allowing vehicles to connect with 

one another and with Road Side Units (RSUs). In general, the 

transport system consists of a significant number of vehicles. 

As part of its standard, the European Telecommunications 

Standards Institute (ETSI) has classified many uses related to 

road safety [1]. To meet these objectives, the network needs 

to have minimal latency and outstanding precision. But 

scalability and intermittent connection issues are brought on 

by VANET's dynamic network structure and huge number of 

mobility vehicles. Clustering is one effective method to 

address these issues; it essentially arranges automobiles into 

groupings called clusters [2]. A good clustering algorithm 

may produce a small number of clusters and maintain the 

cluster structure solidly without adding a lot of network cost. 

Further, an effective cluster conservation strategy is required 

to prevent unnecessary cluster re-formations [3]. VANET 

facilitates connections between vehicles and infrastructure 
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through the utilization of wireless electromagnetic radio 

frequency. The original standard established to facilitate 

communication solutions among vehicles within short to 

medium distances is dedicated short range communications 

(DSRC). Thus, it is difficult for vehicles to gain access to the 

spectrum due to the combination of all the aforementioned 

communications [4]. Spectrum voids, where no permission is 

required to use radio waves, are home to cognitive radios 

(CRs), which are intelligent radios [5]. In the context of 

DSRC, a dedicated spectrum band of 75 MHz has been 

allocated within the 5.9 GHz frequency range. This specific 

spectrum allocation serves the purpose of enabling seamless 

communication for Intelligent Transportation Systems (ITS), 

with a particular focus on VANETs [6]. Six of the seven 

channels in total have been allocated for the transfer of 

operational messages, with one channel serving as the channel 

for control and being utilized primarily for the dissemination 

of safety-oriented messages. The number of vehicles on the 

road increases during peak hours and after accidents, which 

causes traffic jams. As a result, not enough DSRC channels 

are available to accommodate all vehicles [7].  

Extending the DSRC channels beyond the 5.9 GHz ranges is 

not feasible due to the current fixed radio frequency 

allotment. However, there is now what is known as an 

artificially produced shortage of radio frequency spectrum due 

to the static allotment of spectrum resources. Comprehensive 

assessments of spectrum usage and associated efforts have 

indicated that certain radio frequency bands are heavily 

utilized, while others are not being used to their full potential 

[8]. Consequently, there is a necessity for implementing 

mechanisms to enhance the utilization of underutilized 

frequency bands, if no interference occurs with the original 

license holders.  

The FCC introduced a proposal for a mechanism aimed at 

optimizing the utilization of underutilized radio spectrum, and 

this was achieved through the concept of Dynamic Spectrum 

Access (DSA). The core principle of DSA is that unlicensed 

users should be allowed to use channels that were originally 

meant for licensed users, as long as it doesn't cause adverse 

effects for the primary owner of the license. Main users (PUs) 

inside DSA are individuals or organizations having valid 

licenses, whereas secondary users (SUs) are those without 

such a license.  

The fundamental technology that drives DSA is called CR. 

One definition of a cognitive radio is a sophisticated software-

defined radio (SDR) that can sense its environment and adjust 

its transceiver settings accordingly [9]. Maximizing the 

efficient utilization of radio spectrum resources while 

ensuring the utmost protection for licensed users against 

communication channel interference is contingent upon the 

precision of spectrum sensing results. The effectiveness of a 

spectrum sensing system relies on the assumptions made 

regarding the primary user activity model. A thorough 

understanding of PU behaviors is therefore crucial for 

improving the accuracy of sensing results. The current 

research has a plethora of models for PU activity [10,11].   A 

prevalent PU activity model utilized by numerous spectrum 

monitoring algorithms in VANET environments is the fixed 

ON/OFF activity model. Nevertheless, it has become apparent 

that this model proves to be impractical in real-world 

scenarios due to the perceived randomness in the operation of 

primary systems [12].  

In environments characterized by low Signal-to-Noise Ratio 

(SNR), where noise levels fluctuate and signal characteristics 

remain ambiguous, this study introduces an innovative 

approach aimed at enhancing the robustness of spectrum 

sensing. The proposed approach selects the cluster head using 

a triple threshold mechanism that takes into account the 

vehicle speed, energy level, and data rate. The implementation 

of Fuzzy DQN results in a hybrid model that merges the 

interpretative strengths of fuzzy logic with the advanced 

learning abilities of a deep Q-network. This fusion improves 

decision-making in complicated and unpredictable settings by 

providing a more nuanced and adaptable framework for 

spectrum sensing and communication in VANETs. 

 The key contributions of the paper are outlined below: 

• Triple threshold method:  

• The use of triple thresholds provides a more nuanced and 

adaptive approach to decision-making. Adjusting these 

thresholds based on the characteristics of the observed signals 

or the operating environment allows for better customization 

of the detection system to specific requirements, especially in 

challenging scenarios characterized by low SNR or dynamic 

conditions. 

• Dynamic threshold factor (α'):  

• It significantly enhances the robustness of spectrum sensing in 

scenarios characterized by consistently low SNR. By 

dynamically updating threshold values according to changing 

SNR conditions, the proposed method maximizes the 

probability of successful detection, ensuring reliable 

performance in challenging environments. 

• Fuzzy Deep Q-network (Fuzzy DQN):   

• The incorporation of Fuzzy DQN introduces a hybrid model 

that combines the interpretability of fuzzy logic with the 

learning capabilities of a Deep Q-network. This fusion 

enhances decision-making in complex and uncertain 

scenarios, offering a more nuanced and adaptive system for 

spectrum sensing and communication in VANETs. The model 

addresses a central concern in VANETs by focusing on the 

efficient utilization of unoccupied spectrum bands initially 

reserved for PUs. Utilizing the available frequency spectrum 
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to its fullest potential, the suggested methodology repurposes 

these bands through dynamic spectrum management. 

1.1. Motivation 

CR technology has indeed been a subject of research for a 

considerable period, but its application in vehicular networks 

is increasingly relevant, especially in the field of vehicular 

environments. The dynamic nature of vehicular environments 

requires adaptive and intelligent communication systems, 

where CR can enhance spectrum sensing and congestion 

control to contribute to safer driving conditions. The strategic 

selection of cluster leaders and effective spectrum allocation 

are interdependent processes that, when coordinated, can 

significantly enhance the performance and optimization of 

Vehicular Ad-hoc Networks (VANETs). 

In Section 2, inspiration is presented along with a thorough 

synopsis of previous works, problems, and reasons for each. 

The system model and the suggested approach are explained 

in Section 3, and the findings are thoroughly discussed in 

Section 5. The study is finally concluded in Section 5, which 

summarizes important discoveries and possible future paths. 

2. LITERATURE SURVEY 

Several spectrum sensing methods are examined in this 

review.  Due to the arrival of primary users and unpredictable 

traffic, unreliable broadcast services occur. Due to this Jahnvi 

Tiwari et al. [13] proposed a MAC protocol, which addressed 

the issues by incorporating a dynamic contention window 

back-off mechanism based on a cooperative makeup strategy, 

resulting in significant improvements. The research 

emphasizes the importance of analyzing throughput and delay 

efficiency criteria and selecting appropriate utility and cost 

functions. Rajesh Natarajan et al. [14] underscored the critical 

role of resolving radio access challenges in 5G vehicle 

networks for realizing the full potential of connected vehicles 

and achieving the goals of smart transportation systems. With 

limited spectrum and dynamic vehicular communication, 

effective resource allocation strategies are needed to minimize 

interference, diminish channel congestion, and prioritize 

services. The 5G Optimization strategy uses Magnified 

Network for traffic classification and radio access 

optimization.  Rashid Ali et al. [15] introduced a driver model 

for adopting the various challenges in lane detection by 

considering various road scenarios. The method showed high 

effectiveness and better feasibility but the difference between 

the scene and the model acts as a disadvantage. Lingyun Lu et 

al. [16] dwell on the unique challenges posed by high 

mobility and dynamic topology in vehicular networks by 

using an innovative approach for spectrum sensing. This 

study employs CNN and LSTM networks to develop a 

cooperative spectrum sensing (CSS) technique for multiband 

spectrum sensing. Eliminating specified choice criteria 

improves detection accuracy, robustness, and spectrum 

sensing time compared to conventional approaches. Sunil U. 

Nyat et al. [17] integrated the GPS technology, especially 

with 4G and 5G infrastructure for enhancing vehicular 

communication, particularly in emergency message 

transmission between vehicles and infrastructure 

environments. This emphasized the importance of utilizing 

local wireless networks and existing infrastructure for 

efficient information exchange in dynamic wireless 

communication scenarios. 

In the existing literature, three conventional spectrum sensing 

techniques have gained recognition: the Energy-based 

detector, the Cyclostationary feature-based detector, and the 

Matched filter detector [18]. Furthermore, it is crucial to 

recognize that the operations of primary users (PUs) are often 

unknown to cars beforehand, and the PU system itself does 

not participate in the spectrum sensing procedure [19]. Recent 

research suggests that cooperative decision-making may 

address some challenges associated with traditional spectrum 

sensing techniques [20]. Since SUs simply communicate a 

binary bit (0 or 1), hard fusion cooperative decisions are easy 

to implement. Participating automobiles may transmit harmful 

data that the hard fusion rule cannot identify. This implies the 

fusion center (FC) cannot distinguish between a valid SU's 

binary bit and a malignant SU's, which might compromise the 

cooperative decision process [21,22]. The soft combining 

strategy in cooperative decision-making needs the FC to 

receive channel sample measurements from individual SUs to 

solve some of the constraints of the hard fusion rule. This 

method improves decision-making by conveying more 

channel information than a binary bit [23]. Centralized 

cooperative decision-making systems, unlike hard fusing and 

soft combining, include a range of methodologies. The 

Renewal Process Method employs renewal processes to 

improve the precision of spectrum sensing [24]. It focuses on 

modelling the renewal process of PU activities to make 

informed decisions regarding PU occupancy. Covariance 

Matrix-Based General Likelihood Ratio Test (GLRT) 

leverages statistical likelihood ratios and covariance matrix 

information to detect PU signals in the presence of noise and 

interference, making it a powerful tool for cooperative 

decision-making [25]. The coordinated Spectrum Sensing 

approach emphasizes the importance of coordination among 

participating vehicles in the spectrum sensing process. 

Vehicles share information and collectively determine PU 

occupancy, improving overall decision accuracy [26]. The 

principal aim of the coordinated approach is to surmount the 

constraints associated with conventional methods through the 

assignment of a coordinator, which may take the form of a 

vehicle or an RSU. The coordinator plays a pivotal role in 

streamlining the cooperative decision process. However, it is 

important to note that cooperative decision-making in the 

centralized approach can face challenges related to 

synchronization, which are often overlooked by the spectrum 
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sensing methods discussed earlier [19]. The collective delay 

caused by numerous vehicles operating in concert can have a 

substantial influence on the overall efficacy of spectrum 

sensing. Considering the high velocities of vehicles, there is a 

likelihood that, by the time the global result from the RSU is 

ascertained, a vehicle may have transitioned into an area 

outside the coverage of the RSU. This could lead to missed 

opportunities in the spectrum. To mitigate the challenges 

linked to synchronization, one potential solution is to explore 

the utilization of an asynchronous approach, as suggested in 

the study by [26].  

For distributed cooperative decision-making, a dedicated 

infrastructure support functioning as an FC is absent. 

Consequently, vehicles engage in an ad hoc collaboration to 

collectively achieve consensus on the sensing results. A range 

of distributed cooperative sensing decision algorithms has 

been proposed in the current literature, primarily categorized 

as follows: consensus-based [27,28], belief propagation [29], 

and weighted [30,31].  

The large bandwidth requirement needed to allow vehicle-to-

vehicle information sharing for a worldwide result is often 

overlooked. The requirement for automobiles to communicate 

across the common channel drives this need. In low vehicle 

density scenarios, distributed cooperative decision-making 

algorithms perform poorly, making them unsuitable for 

suburban regions with sparse vehicle populations. Malignant 

assaults can provide erroneous data into the distributed 

collaborative decision strategy, causing cars to disseminate 

disinformation and impairing the cooperative choice process 

[27]. In a second study, Reinforcement Learning (RL) was 

used to solve cooperative overhead concerns such sensing 

latency while reporting local judgments. However, RL 

algorithms in VANET have yet to reach their full potential. 

This work uses RL to help the RSU comprehend PU activity 

pattern behavior. Predicting which licensed channels cars may 

use during congested scenarios is the goal. The RL model 

optimizes output depending on reward. PUs that transmit on a 

channel for a long time may earn a low reward as a penalty. 

Conversely, if the PU stays dormant for a long period, the 

linked PU channel is more likely to get a large payout, 

making it a good DSA pick. Thus, RL is used to constantly 

improve the PU activity model, a key spectrum sensing 

component. The PU model, updated by RL, is used to predict 

future channels. This projection is based on past and present 

incentives, making spectrum management more efficient and 

forward-looking [32]. This study [33] demonstrates how 

fuzzy logic improves cognitive radio network performance. 

Cognitive radio's flexibility and fuzzy logic's uncertainty 

management create a compelling framework for spectrum use, 

interference control, and network performance. Cognitive 

radio networks require more study on fuzzy logic-based 

methods that can adapt to complex and unpredictable 

situations. This work introduces a novel time slot framework 

that substitutes the conventional spectrum sensing phase with 

the reception of spectrum information, resulting in a notable 

decrease in vehicle energy consumption. A new hybrid access 

mode is introduced, which combines overlay and underlay 

approaches. This allows for flexible adjustments under 

varying network conditions and significantly improves 

spectrum access effectiveness [34]. Table 1 provides a 

summary of the most relevant work conducted in the same 

field. 

Table 1 Prior Research was Discussed by Different Authors in the Field 

Author Technique Used Pros Cons 

X. Qian and L.  

Hao [35] 

Cooperative sensing 

Binary Decision 

Making 

Collaborative sensing 

techniques (soft fusion and hard 

fusion) improve detection 

performance in extremely 

dynamic vehicular settings. 

It potentially requires a 

substantial allocation of 

computational resources. 

Pal et al. [36] 

Regional Super 

Cluster-Based 

Optimum Channel 

Selection 

Minimized interference, leading 

to improved network metrics. 

Sensing data overhead and the 

complexity of data processing. 

Zanin et al. [37] 
long short-term 

memory 

Improved Cluster Head (CH) 

stability, reduced overhead, and 

spectrum sensing based on trust. 

The rate of misclassification is 

elevated. 

Chembe et al. 

[38] 

Adaptive Spectrum 

Sensing 
Autonomous modelling of PU 

traffic patterns for enhanced 

Elevated computational 

complexity, which could 
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channel prediction. restrict practicality in 

resource-constrained 

situations. 

Hossain et al. 

[39] 

Segment-based 

spectrum sensing 

Selects sensing techniques 

dynamically. 

Managing dynamic 

segmentation involves high 

complexity. 

2.1. Challenges 

Nevertheless, proper resolution of the remaining obstacles to 

spectrum sensing in the domain of vehicular communication 

is imperative before the full implementation of cognitive 

radios for spectrum administration in VANETs. Significantly, 

one of the primary obstacles in spectrum sensing for VANET 

environments is related to the mobility of vehicles [40]. In the 

context of vehicular communication, a critical requirement is 

the rapid detection of available spectrum gaps within a limited 

timeframe before the vehicle relocates to areas where such 

spectrum openings may no longer be accessible. Conversely, 

the mobility of vehicles can be harnessed to potentially secure 

spectrum opportunities at future times and locations, provided 

that the vehicle's speed and trajectory are well understood 

[41]. Furthermore, the Doppler Effect contributes to radio 

signal fading, resulting in a reduction of the SNR between the 

SU and the source of the PU. Multiple solutions have been 

proposed to tackle some of these challenges [42]. The T-

FuzzyDQN-based CR-VANET model presents an innovative 

and promising solution to the spectrum management 

challenges in VANETs. Through robust spectrum sensing, 

reward-driven channel selection, and adaptive network 

coordination, this model strives to create a more efficient and 

congestion-free wireless communication environment. 

3. SYSTEM MODEL OF THE VANET NETWORK 

The road model, as depicted in the figure 1, presents a 

simulation profile situated within an urban environment. The 

road network is comprised of four primary roads, each 

designated as WW', XX', YY', and ZZ', and is equipped with 

two lanes for vehicular traffic. 

 
Figure 1 System model of VANET Environment 

Notably, the segment between roads W' and X' features a 

single lane, which distinguishes it from the other roads within 

this urban setting. This road configuration is emblematic of 

the diversity and intricacies often encountered in urban traffic 

scenarios, where multiple lanes and varying lane 

configurations are essential to accommodate the flow of 

vehicles and address the specific traffic dynamics of this 

environment. 

4. PROPOSED METHODOLOGY 

The system model represents a pivotal advancement in the 

realm of VANETs. Initially, the vehicle density is estimated 
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to manage the number of vehicles in a specific area and if the 

density is beyond the threshold, then the prediction of the 

channel is performed else the density will be evaluated again. 

Clustering is performed using Intelligent Bald Eagle 

Optimization [42]. Here, the channel prediction is performed 

using the proposed Threshold-based Fuzzy Deep Q-Network 

(T-FuzzyDQN), and after the prediction spectrum sensing is 

performed to analyze the availability and usage of the radio 

frequency spectrum.  If there is an available channel then the 

communication is enabled otherwise, a request for the new 

channel will be generated. The overall schematic 

representation of the proposed model is shown in figure 2. 

 

Figure 2 Schematic Representation of the Proposed Model 

The model integrates several components, including sensing 

units and RSUs, to facilitate dynamic and adaptive spectrum 

management. In considered VANET model, there are 𝑁 

vehicles in the VANET, each with a unique role in the 

network. To initiate this network, the clusters vehicles into 

distinct clusters, denoted as 𝐶1,  𝐶2, 𝐶3, and so on, up to 𝐶𝑛. In 

the context of the VANET environment with predefined 

parameters, this operational sequence outlines the spectrum 

sensing and decision-making process for an individual 

vehicle, denoted as 𝑋𝑛(𝑡) . The vehicle commences by 

receiving signals, which are indicative of local spectrum 

conditions, and initiates local spectrum sensing. During this 

process, it calculates two critical threshold values, 𝛽1 and 𝛽2, 

based on specific statistical parameters, signal-to-noise ratios, 

and probabilities of false alarm and detection. Depending on 

the relationship between the received signal strength (𝑇𝑠) and 

these thresholds, the vehicle classifies the channel as either 

occupied (𝑆1) or unoccupied (𝑆0). When the received signal 

strength falls between 𝛽1  and 𝛽2 , a secondary assessment 

involving 𝛽3  and ∆𝛽  is employed to make the final 

determination. Subsequently, the vehicle utilizes a Fuzzy-

DQN to compute the final spectrum sensing result and 

communicates it to an RSU, which is responsible for 

allocating spectrum channels to the vehicles based on these 

determinations, thus effectively managing spectrum resources 

in the VANET.  

4.1. Estimation of Vehicle Density 

These factors include the total number of vehicles within a 

given area and the distances between these vehicles in 

corresponding RSU. Continuously, the RSU estimates the 

vehicle density within each cluster. When the vehicle density 
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surpasses a predefined threshold (𝑉𝐷𝑡ℎ), the system activates 

R-DQN, a robust approach for spectrum sensing and 

congestion control in equation (1).  

𝑓(𝑥) = {
𝑇_𝐹𝑢𝑧𝑧𝑦𝐷𝑄𝑁 , 𝑉𝐷 ≥ 𝑉𝐷𝑡ℎ

𝑁𝑜 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑉𝐷 < 𝑉𝐷𝑡ℎ
                         (1) 

where 𝑇_𝐹𝑢𝑧𝑧𝑦𝐷𝑄𝑁 denotes the proposed method and 𝑉𝐷 

notifies the vehicle density. 𝑉𝐷𝑡ℎ  is the vehicle density 

threshold. It should be remembered that when there is 

congestion, more spectrum is required. In high-density traffic 

jams, vehicles travel at very low speeds of 0 to 10 km/h, and 

up to 45 km/h in medium-density traffic. As a result, the T-

FuzzyDQN protocol approach is only used when there is 

heavy traffic on the road. Each frame in the frame-by-frame 

structure of VANET communication contains the sensing 

time and transmission time.  

4.2. Proposed T-FuzzyDQN 

Combining the principles of the Triple Threshold Method and 

Fuzzy Logic with the capabilities of DQN, the T-FuzzyDQN 

shown in the figure 3 aims to enhance the adaptability and 

precision of channel predictions in dynamic environments. By 

incorporating triple thresholds, the model can categorize 

channel conditions into distinct states, facilitating a nuanced 

understanding of spectrum availability. The integration of 

fuzzy logic enables the system to handle uncertainties 

inherent in real-world scenarios, while the deep Q-learning 

aspect allows for the learning of optimal strategies over time. 

This amalgamation creates a sophisticated framework capable 

of making informed decisions regarding communication 

channel selection based on both crisp and fuzzy inputs, 

contributing to improved reliability and efficiency in 

vehicular communication systems. 

 
Figure 3 Proposed T-FuzzyDQN 

4.2.1. Triple Threshold Method  

Each vehicle in the VANET environment uses an energy 

detector to perceive its surroundings by the hypothesis 

𝑆𝑜  and 𝑆1, so that the signal received at the nth sensing vehicle 

is given in equation (2).  

𝑋𝑛(𝑡) = {
𝑛(𝑡),  𝑓𝑜𝑟 𝑆𝑜

𝐴(𝑡) + 𝑛(𝑡),  𝑓𝑜𝑟  𝑆1
                                      (2) 

Where, A is amplitude of received signal, 𝑆𝑠𝑛𝑟(𝑡)  is SNR 

signal originating from the PU transmitter. 𝑆1  indicates that 

the PU signal is occupied, and 𝑆𝑜 indicates that there is no PU 

signal at all, indicating that just noise is present.  

The test statistic(𝑇𝑠) for K sensing samples of the PU signal is 

given by equation (3), 

𝑇𝑠 = ∑ |𝑋𝑛(𝑡)|
2𝐾

𝑡=0                                                            (3) 

In the absence of noise uncertainty, the central limit theorem 

provides performance analysis probabilities for detection and 

false alarm as depicted in equation (4) and (5). 

𝑃𝑓𝑤𝑜=𝑄 (
𝛽−𝐾𝜎𝑛

2

√2𝐾𝜎𝑛
2 
)                                                              (4) 

𝑃𝑑𝑤𝑜=𝑄 (−
𝛽−𝐾𝜎𝑡𝑜𝑡

√2𝐾𝜎𝑡𝑜𝑡 
)                                                       (5) 

Where,   𝜎𝑡𝑜𝑡 = 𝜎𝑥
2 + 𝜎𝑛

2. 𝜎𝑥
2 is power variance transmitted by 

PU signal, 𝜎𝑛
2 is variance of AWGN noise n(t) distorted by 

PU signal and β is the detection threshold, Q (…) is the 

standard generalized Marcum Q-function. From equation (3), 

threshold 𝛽1  is calculated and it is given in equation (6). 

𝛽1 = 𝜎𝑛
2(√2𝐾𝑄−1(𝑃𝑓𝑤𝑜) + 𝐾)                                     (6) 

From equation (4), threshold β2 is calculated and it is given in 

equation (7), 

𝛽2 = 𝐾(𝜎𝑛
2 + 𝜎𝑥

2) − √2𝐾(𝜎𝑛
2 + 𝜎𝑥

2)𝑄−1(𝑃𝑑𝑤𝑜)           (7) 

Above mentioned thresholds β1 and β2, is compared to energy 

statistic Ts observed from sensing to detect the occupancy 

state of the PU signal. If the test result is smaller than β1, the 

conclusive determination about the occupancy status of the 

PU signal will be  So. If the test statistic is larger than or equal 

to β₂, the final conclusion about the occupancy condition of 

the PU signal will be S₁ as given in equation (8). 

𝑃𝐷 = {
𝑆0,   𝑃(𝑇𝑆 < 𝛽1
𝑆1,   𝑃(𝑇𝑆  ≥  𝛽2

                                                (8) 

However, if the test statistic falls within the test static, this 

threshold is not fit. Also, the selection of threshold by each 

SU becomes critical in conditions of low SNR and unknown 

noise, in order to prevent missed detection or triggered false 

alarm. The detection scheme's sensing capabilities fails in 

such a case; therefore, noise uncertainty and dynamic 

threshold are updated to improve the probability of detection. 
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The noise uncertainty factor α in the noise model and the 

dynamic threshold factor α′ in the detection probabilities 

should be taken into account after the probabilities of 

detection in equation (4) and false alarm in equation (5) have 

been adjusted and given as equation (9) and equation (10) 

respectively, 

𝑃𝑓𝑤=𝑄 (
𝛼′𝛽− 𝐾𝛼𝜎𝑛

2

𝐾𝛼𝜎𝑛
2 

)                                                        (9) 

 𝑃𝑑𝑤=𝑄 (−
𝛽

𝛼′
 − 𝐾(𝜎𝑥

2+
𝜎𝑛
2

𝛼
)

√2𝐾(𝜎𝑥
2+

𝜎𝑛
2

𝛼
)
)                                             (10) 

The distributed in the interval of noise uncertainty factor and 

dynamic threshold factor is [σn2/α, ασn2] and [β/α′, βα′] 

respectively. In this section, considering simplicity and 

sensing time, a novel threshold factor β3has been presented in 

equation (11) 

𝛽3 = (
𝛽1+𝛽2

2
) × (∆𝛽)                                                    (11) 

∆𝛽 =  𝛼′ (1 −
𝛼

𝛼′
)                                                         (12) 

where, ∆β is given in equation (12) the change in thresholds 

β1 and β2  due to noise uncertainty factor and dynamic 

threshold factor α′  and α′ respectively. The updated 

occupancy condition is given in equation (13).  

𝑃𝐹𝐴−𝑇𝐷𝑄𝑁𝑒𝑡 = {
𝑆0, 𝑃(𝑇𝑠 < 𝛽3)
𝑆1, 𝑃(𝑇𝑠 ≥ 𝛽3)  

                                  (13) 

The next level involves employing Fuzzy DQN agent-based 

reinforcement learning to let SA decide on its own. These 

results from the dual validating sensing technique offer 

improved performance and reliability in CR-VANET. 

4.2.2. Fuzzy Deep Q Network 

A Fuzzy Deep Q Network is a hybrid model that combines 

elements of fuzzy logic and deep reinforcement learning, 

specifically using a Deep Q Network.  

4.2.2.1. Deep Q Network 

 

Figure 4 Interaction Between Agent and Environment in DQN 

DQNDQN, a reinforcement learning method, approximates 

the Q-function with a neural network to determine each state's 

action quality. Addressing channel assignment complexities 

and uncertainty improves performance and spectrum 

management. Deep reinforcement learning creates several 

actions in state Q and selects the best channel selection action. 

State, reward, and action interactions guide the agent's 

decision-making to improve performance and spectrum use. 

DQN architecture, displayed in figure 4, shows agent-

environment interaction. 

4.2.2.2. Fuzzy Logic 

Fuzzy logic is employed in channel prediction to handle 

uncertainties and imprecise information inherent in vehicular 

environments. Linguistic variables, such as traffic density, 

interference levels, and signal quality, are defined with 

associated linguistic terms like Good, Fair, and Worst. 

Membership functions capture the degree to which input 

values belong to these linguistic terms. Fuzzy rules are 

established, connecting input variables to output linguistic 

terms. This linguistic approach enhances interpretability and 

adaptability, allowing the system to make nuanced predictions 

even in scenarios with incomplete or uncertain information. 

The fuzzy logic acts as an intelligent decision-making 

component, refining channel predictions. 

• Fuzzification 

Here, each linguistic variables are associated with a 

corresponding membership function. In the initial stage, the 

assessment involves evaluating the triangular membership 

functions for each input. The characteristics of these 

triangular membership function is defined in equation (14).  

 μ(ς) =

{
 
 

 
 

0, ς ≤ a
ς−a

b−a
, a ≤ ς ≤ b

c−ς

c−b
, b ≤ ς ≤ c

0, c ≤ ς

                                                                  (14) 

The membership function μ(ς) , denoted as, quantifies the 

degree of membership.   

• Fuzzy Rules 

Fuzzy rules, employing the Mamdani method, guide decision-

making in prediction. For clarity, the limit values good, fair, 

and worst are used. Three instances exemplify the rules: good 

chance for minimum traffic density, and minimum 

interference level; worst chance for maximum traffic density, 

and maximum interference level and fair chance for moderate 

traffic density and moderate interference level. These rules 

form the channel. 

• Defuzzification 

The defuzzification process involves two sequential steps. 

Initially, the membership function depicted in Figure 5 is 
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evaluated at the values obtained in the second stage. 

Subsequently, a singular numerical value is derived. This two-

step process refines the fuzzy logic output, converting it into a 

crisp, numerical result. It enables the extraction of a clear and 

actionable decision from the fuzzy system, facilitating 

straightforward implementation and further analysis. This 

defuzzification step is crucial in translating fuzzy logic-based 

assessments into precise, understandable outcomes with 

VANET. 

 

Figure 5 Defuzzification 

4.2.2.3. Integration 

The integration of the output from the fuzzy logic layer with 

the learned predictions from the DQN involves a sophisticated 

weighted fusion approach. This process combines the 

interpretability of fuzzy logic with the learning capabilities of 

the DQN algorithm, creating a hybrid decision-making 

system. The weighted fusion considers the confidence levels 

of both the fuzzy logic and DQN components, ensuring a 

balanced integration of their outputs. This synergistic fusion 

approach harnesses the strengths of both fuzzy logic and deep 

learning, providing an intelligent and responsive system 

capable of making informed decisions in complex and 

dynamic environments. The final decision, whether the 

spectrum is accessible, is decided by SSA in accordance with 

the FuzzyDQN as given in equation (15) and the cooperative 

decision.  

DM(SAn) ∈ {S0, S1}                                                      (15) 

This choice is then conveyed to the cluster's RSU for optimal 

network operations. The RSU allocates channels to SUs for 

data transmission. Vehicles can use assigned channels to send 

data. The pseudo code is shown in algorithm 1. 

1. Start 

2. create VANET environment with specified parameters 

3. clustering 

4. get the received signal from sensing vehicle Xn(t)  

5. // Local Spectrum sensing  

6. find   β1 = σn
2(√2KQ−1(Pfwo) + K)                                      

7. find  β2 = K(σn
2 + σx

2) − √2K(σn
2 + σx

2)Q−1(Pdwo)                      

8. if Ts < β1: 

9. detect as S0  (Absence of PU) 

10. else if Ts ≥ β2: 

11. detect as S1  (Presence of PU) 

12. else if β1 < Ts < β2 

13. find   ∆β = α′ (1 −
α

α′
) 

14. find   β3 = (
β1+β2

2
) × (∆β)                                                  

15. if Ts < β3: 

16. detect as S0  (Absence of PU) 

17. else if Ts ≥ β3: 

18. detect as S1  (Presence of PU) 
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19. end 

20. end 

21. // Decision making  

22. compute DM(SAn) ∈ {S0, S1} , by DQNet 

23. send sensing result to RSU 

24. RSU allocate channel to vehicle 

25. End 

Algorithm 1 T-FuzzyDQN 

5. RESULTS AND DISCUSSION 

This section delves into the operation of the proposed T-

FuzzyDQN system for CR-VANET across various 

parameters. It also provides insights into the configuration of 

the experimental environment. 

Table 2 Simulation Parameters for the Proposed Model 

Parameter Specific Value 

Road length 100km 

Road width 7m 

Number of lanes 4 

Number of RSU 4 

Simulation time 100s 

Vehicle Speed 10-70km/h 

RSU transmission range 1000m 

Bandwidth 10MHz 

Frequency of operation 5.9GHz 

 

The simulated road segment spans 100 kilometers with a 

width of 7 meters, accommodating four lanes for vehicular 

traffic. In this environment, four strategically placed RSUs are 

present. The simulation runs for 100 seconds, during which 

vehicles exhibit speeds ranging from 10 to 70 kilometers per 

hour.  

Each RSU has a transmission range of 1000 meters, ensuring 

comprehensive coverage. The available bandwidth for 

communication is set at 10 megahertz, and the system 

operates at a frequency of 5.9 gigahertz. These parameters 

collectively define the conditions under which the T-

FuzzyDQN is evaluated, providing a comprehensive 

perspective on its performance in a realistic vehicular network 

setting. 

5.1. Simulation Environment  

MATLAB simulator was utilized for simulations to assess the 

effectiveness of the proposed method. The performance of the 

Threshold-based Fuzzy Deep Q-Network approach was 

evaluated by comparing it against four existing techniques: 

BDM [32], RC-based sensing [33], LSTM-based VANET 

[34], RL-ASS [35], and Seg-CR-VANET [36].  

Various metrics, including Delay, Jitter, Packet Loss Ratio 

(PLR), Packet Delivery Ratio (PDR), Probability of 

Detection, and Throughput, were employed for performance 

evaluation. Table 2 outlines the simulation parameters for the 

proposed Robust Deep Q-Learning Network (T-FuzzyDQN), 

encompassing specific values and conditions.  

5.2. Experimental Results 

In the context of VANETs, the dynamic nature of vehicle 

speeds underscores the need for adaptive mechanisms in 

protocol design, moving beyond static criteria.  

Figure 6 displays the Graphical User Interface (GUI) created 

in MATLAB, depicting the VANET environment featuring 

clustering and spectrum sensing components. Triangles 

symbolize vehicles, and round shapes represent clustering 

heads elected by the Intelligent Bald Eagle Optimization [42].  

This visual representation captures the adaptability required to 

address the changing conditions in VANETs and highlights 

the role of clustering for effective communication and 

spectrum management. 

 

(a) 
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(b) 

 

(c) 

Figure 6 Experimental Results (a) Environment (b) Clustering 

(c) Sensing 

5.3. Performance Evaluation  

The proposed T-FuzzyDQN diminishes jitter, lowers the 

packet loss ratio, reduces delay, and improves the probability 

of detection in comparison to existing methods. Accuracy is 

characterized as the ratio of correctly identified outcomes, 

encompassing both positives and negatives as given in 

equation (16).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑃𝑇+𝑁𝑇

𝑃𝐹+𝑁𝐹+𝑃𝑇+𝑁𝑇
                                      (16) 

Where PT represents number of true positives, NT represents 

number of true negatives, PF represents number of false 

positives and NF represents number of false negatives. 

Precision, on the other hand, in equation (17), represents the 

ratio of genuine positives among positive outcomes.  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑃𝑇

𝑃𝑇+𝑃𝐹
                                               (17) 

Meanwhile, Recall in equation (18) denotes the fraction of 

properly detected positive outcomes. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑃𝑇

𝑃𝑇+𝑁𝐹
                          (18)  

When compared to the existing methods, the proposed T-

FuzzyDQN demonstrates an average improvement of 0.05% 

across all three parameters shown in figure 7. 

 

Figure 7 Comparative Analysis of Accuracy, Precision and 

Recall 

5.3.1. Relying on Delay 

Figure 8 compares packet transmission latency over a 

network. T-FuzzyDQN reduces latency by reducing 

calculation time. Delays are measured in milliseconds. The 

proposed solution cuts the latency to 14 milliseconds, a big 

improvement. 

5.3.2. Relying on Jitter 

The jitter is the fluctuation in the transmission delays 

experienced by data packets. A measure of how inconsistent 

or out of the ordinary the packet arrival timings are. The 

quality of streaming or real-time applications can be 

negatively impacted by jitter, leading to delays or 
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interruptions in the transmission of data. The formula in 

equation (19) is to calculate jitter and is typically expressed as 

the difference between the inter-arrival times of consecutive 

packets.  

𝐽𝑖𝑡𝑡𝑒𝑟 = |𝐼𝑡 − 𝐸𝑡|               (19) 

Where It is the time between packet n and packet n-1 and Et is 

the expected time between packet n and packet n-1. The 

results demonstrate that the proposed mechanism reduces 

jitter by 50% than the existing mechanisms. Figure 9 

illustrates the comparative analysis of jitter with existing 

methods. 

 

Figure 8 Vehicle Speed vs Delay 

 

Figure 9 Vehicle Speed vs Jitter 
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5.3.3. Packet Loss Ratio 

Packet Loss Ratio (PLR) in equation (20) is a network 

performance metric that quantifies the proportion of data 

packets transmitted over a network that do not reach their 

intended destination, or are lost during transmission. It is 

typically expressed as a percentage and is used to assess the 

reliability and effectiveness of data transmission within a 

network. 

𝑃𝑎𝑐𝑘𝑒𝑡 𝐿𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 x 100  (20) 

A lower PLR indicates a more reliable network with fewer 

lost data packets, while a higher PLR suggests a less reliable 

or congested network where a significant number of packets 

fail to reach their destination. In the proposed method, the 

PLR is significantly reduced, measuring at only 5%. Figure 

10 depicts the comparative analysis of packet loss ratio. 

 
Figure 10 Vehicle Speed vs PLR 

5.3.4. Packet Delivery Ratio 

Figure 11 depicts the comparative analysis of packet delivery 

ratio.  As a network performance metric, Packet Delivery 

Ratio (PDR) indicates the percentage of packets of 

information that are delivered effectively from the original 

location to the destination during a network's interaction 

process. It is usually expressed as a percentage and is used to 

assess the efficiency and effectiveness of data transmission in 

a network. The proposed T-FuzzyDQN indicates that 95% of 

the data packets sent using the proposed method successfully 

reach their intended destination, which is a higher PDR 

compared to other existing methods. 

 
Figure 11 Vehicle Speed vs PDR 
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5.3.5. Probability of Detection 

In CR- VANET, Probability of Detection (PD) is a crucial 

performance indicator that analyses a cognitive radio system's 

capability to properly detect the existence of principal users or 

signals within the radio spectrum, as provided in equation 

(21). It quantifies the likelihood of the system successfully 

detecting the primary user's signal when it is present. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  
𝑃𝑇

𝑃𝑇+𝑁𝐹
  (21) 

True Positives (PT) represent the number of instances in 

which the system correctly detects the primary user's signal 

when it is present. False Negatives (NF) represent the number 

of instances in which the system fails to detect the primary 

user's signal when it is present. The proposed T-FuzzyDQN 

exhibits a significant increase in the Probability of Detection 

while also demonstrating a noteworthy decrease in the 

Probability of Missed Detection (PMD). Figure 12(a), 12(b) 

depicts the comparative analysis of PD and PMD 

respectively. 

 
(a) 

 
(b) 

Figure 12 Vehicle Speed Versus (a) PD, (b) PMD 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/55                         Volume 11, Issue 6, November – December (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       929 

     

RESEARCH ARTICLE 

5.3.6. Throughput 

Throughput analysis is shown in figure 13.  It is a network 

performance indicator that measures the rate at which 

information is effectively transported from source to 

destination inside a network, as defined in equation (22). It 

represents the amount of data that can be transferred in each 

period and is often expressed in bits per second (bps) or 

megabits per second (Mbps). The proposed T-FuzzyDQN can 

transmit data at a rate of 18 megabits per second, which is 

higher than the data transfer rates achieved by other existing 

methods. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 
      (22) 

 

Figure 13 Vehicle Speed vs Throughput 

5.4. Comparative Discussion  

The F1 Measure is a performance statistic employed to 

evaluate the accuracy and efficacy of classification or 

detection systems, including those utilized in CR-VANETs. It 

is the harmonic mean of accuracy and recall, offering a 

balanced assessment of a system's capability to accurately 

categorize positive cases while reducing false positives and 

false negatives. The False Positive Rate (FPR), or Type I 

Error Rate, is the ratio of negative events misclassified as 

positive. In the context of CR-VANETs, it may denote the 

frequency at which secondary users are erroneously identified 

as primary users. The False Negative Rate (FNR), or Type II 

Error Rate, measures the percentage of positive cases 

misclassified as negative. In CR-VANETs, this may represent 

the rate at which primary users are erroneously missed or not 

detected. Table 3 provides a comparison of the F1 Measure, 

FPR, and FNR for various existing methods and the proposed 

T-FuzzyDQN. 

Table 3 Comparative Discussion 

Techniques  Accuracy Precision Recall Specificity F1 

Measure 

FPR FNR 

RC-based 

Clustering 

0.7533 0.75 0.76 0.7467 0.755 0.2467 0.24 

BDM 0.7167 0.7138 0.7233 0.71 0.7185 0.2833 0.2767 

RL-ASS 0.835 0.817 0.8633 0.8067 0.8395 0.165 0.1367 
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LSTM based 

VANET 

0.96 0.9567 0.9631 0.957 0.9599 0.04 0.0369 

Seg-CR-VANET 0.94 0.9371 0.9433 0.9367 0.9402 0.06 0.0567 

Proposed  

T-FuzzyDQN 

0.975 0.9799 0.9702 0.9799 0.975 0.025 0.0298 

Based on the results presented in table 3, the performance of 

the proposed T-FuzzyDQN is enhanced in spectrum-scarce 

scenarios. The network model is continually updated with the 

assistance of adaptive threshold parameters, improving the 

effectiveness of spectrum sensing through the accumulation 

of historical sensing patterns. 

6. CONCLUSION 

Finally, the suggested Threshold-based Fuzzy Deep Q-

network (T-FuzzyDQN) provides a new solution to spectrum 

management difficulties in Vehicular Ad Hoc Networks. 

Using cognitive radio engineering, the model applies a triple 

threshold framework with a dynamic threshold factor to 

improve robustness and detection probability, especially in 

low Signal-to-Noise Ratio (SNR) and noise uncertainties. The 

clustering-based technique to grouping cars and Roadside 

Units (RSUs) allows for precise channel prediction, making it 

easier to strategically pick high-reward channels for 

successful communication. The integration of the output from 

the fuzzy logic layer with the learned predictions from the 

DQN involves a sophisticated weighted fusion approach. This 

process combines the interpretability of fuzzy logic with the 

learning capabilities of the DQN, creating a hybrid decision-

making system. Simulation results showcase T-FuzzyDQN 

superior performance, achieving an accuracy of 97.5% and 

surpassing existing methods, holding promise for optimizing 

spectrum utilization and enhancing communication reliability 

in VANETs. As a direction for future work, focusing on 

security aspects, particularly incorporating machine learning 

models, can further enhance the robustness and resilience of 

the proposed solution in dynamic vehicular environments. 
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