International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

Alpine Swift Routing Protocol (ASRP) for Strategic Adaptive Connectivity Enhancement and Boosted Quality of Service in Drone Ad Hoc Network (DANET)

Author NameAuthor Details

J. Ramkumar, R. Karthikeyan, V. Valarmathi

J. Ramkumar[1]

R. Karthikeyan[2]

V. Valarmathi[3]

[1]Department of Computer Science, Faculty of Management and Technology, Apex Professional University, Arunachala Pradesh, India.

[2]Department of Computer Technology, Sri Krishna Adithya College of Arts and Science, Tamil Nadu, India.

[3]Department of Information Technology and Cognitive Systems, Sri Krishna Arts and Science College, Tamil Nadu, India.

Abstract

Drone Ad Hoc Networks (DANETs) are autonomous networks where drones communicate directly to coordinate operations, especially in environments lacking conventional communication infrastructure. These networks face critical challenges related to scalability and routing efficiency, particularly as the number of drones increases. This complexity often leads to higher latency, greater energy consumption, and unstable communication links. The Alpine Swift Routing Protocol (ASRP) has been proposed in this paper to address these issues, inspired by the Alpine Swift bird’s agility and efficiency. ASRP dynamically adjusts routing paths based on real-time environmental conditions and network status, enabling the network to maintain optimal performance even as it scales. The protocol initiates with a detailed network scan to assess node positions and signal strengths, followed by continuous adaptations to environmental factors such as wind and node density. Using predictive and reactive algorithms, ASRP ensures stable connections, efficient energy use, and effective data transmission. Simulations conducted in NS-3 to evaluate ASRP’s performance demonstrated significant improvements in packet delivery (86.72%), reduced latency (702 ms), lower energy consumption (18.49%), enhanced link stability (9.03 ms), and fewer hops (4.38). These results confirm ASRP’s effectiveness in addressing the scalability and routing challenges in large-scale and dynamic DANETs, providing a reliable communication solution in complex scenarios.

Index Terms

Drone Ad Hoc Networks

DANET

Routing

Alpine Swift Routing Protocol

Dynamic Network Adaptation

Energy Optimization

Reference

  1. 1.
    M. Hosseinzadeh et al., “A greedy perimeter stateless routing method based on a position prediction mechanism for flying ad hoc networks,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 8, p. 101712, 2023, doi: 10.1016/j.jksuci.2023.101712.
  2. 2.
    N. Bartolini, A. Coletta, F. Giorgi, G. Maselli, M. Prata, and D. Silvestri, “Stop & Route: Periodic Data Offloading in UAV Networks,” 2023 18th Wirel. On-Demand Netw. Syst. Serv. Conf. WONS 2023, vol. 212, pp. 92–99, 2023, doi: 10.23919/WONS57325.2023.10062043.
  3. 3.
    M. Y. Arafat and S. Moh, “Routing protocols for unmanned aerial vehicle networks: A survey,” IEEE Access, vol. 7, pp. 99694–99720, 2019, doi: 10.1109/ACCESS.2019.2930813.
  4. 4.
    Q. Qian, Y. Wang, and D. Boyle, “On solving close enough orienteering problems with overlapped neighborhoods,” Eur. J. Oper. Res., 2024, doi: 10.1016/j.ejor.2024.05.032.
  5. 5.
    T. Hardes and C. Sommer, “Opportunistic airborne virtual network infrastructure for urban wireless networks,” Comput. Commun., vol. 208, pp. 220–230, 2023, doi: 10.1016/j.comcom.2023.06.003.
  6. 6.
    Y. Sasi Supritha Devi, T. Kesava Durga Prasad, K. Saladi, and D. Nandan, “Analysis of Precision Agriculture Technique by Using Machine Learning and IoT,” Advances in Intelligent Systems and Computing, vol. 1154. pp. 859–867, 2020. doi: 10.1007/978-981-15-4032-5_77.
  7. 7.
    A. Rovira-Sugranes, A. Razi, F. Afghah, and J. Chakareski, “A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook,” Ad Hoc Networks, vol. 130, p. 102790, 2022, doi: 10.1016/j.adhoc.2022.102790.
  8. 8.
    M. Ofori and O. El-Gayar, “The State and Future of Smart Agriculture: Insights from mining social media,” in Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 2019, pp. 5152–5161. doi: 10.1109/BigData47090.2019.9006587.
  9. 9.
    T. A. Shaikh, W. A. Mir, T. Rasool, and S. Sofi, “Machine Learning for Smart Agriculture and Precision Farming: Towards Making the Fields Talk,” Arch. Comput. Methods Eng., vol. 29, no. 7, pp. 4557–4597, 2022, doi: 10.1007/s11831-022-09761-4.
  10. 10.
    P. L. Gonzalez-R, D. Sanchez-Wells, and J. L. Andrade-Pineda, “A bi-criteria approach to the truck-multidrone routing problem,” Expert Syst. Appl., vol. 243, p. 122809, 2024, doi: 10.1016/j.eswa.2023.122809.
  11. 11.
    I. Zrelli, A. Rejeb, R. Abusulaiman, R. AlSahafi, K. Rejeb, and M. Iranmanesh, “Drone Applications in Logistics and Supply Chain Management: A Systematic Review Using Latent Dirichlet Allocation,” Arab. J. Sci. Eng., pp. 1–20, Jan. 2024, doi: 10.1007/s13369-023-08681-0.
  12. 12.
    W. Najy, C. Archetti, and A. Diabat, “Collaborative truck-and-drone delivery for inventory-routing problems,” Transp. Res. Part C Emerg. Technol., vol. 146, p. 103791, 2023, doi: 10.1016/j.trc.2022.103791.
  13. 13.
    R. Jaganathan, S. Mehta, and R. Krishan, Intelligent Decision Making Through Bio-Inspired Optimization, vol. i. 2024. doi: 10.4018/979-8-3693-2073-0.
  14. 14.
    S. P. Geetha, N. M. S. Sundari, J. Ramkumar, and R. Karthikeyan, “Energy Efficient Routing in Quantum Flying Ad Hoc Network ( Q-Fanet ) Using Mamdani Fuzzy Inference Enhanced Dijkstra ’ S Algorithm ( Mfi-Eda ),” J. Theor. Appl. Inf. Technol., vol. 102, no. 9, pp. 3708–3724, 2024.
  15. 15.
    N. K. Ojha, A. Pandita, and J. Ramkumar, “Cyber security challenges and dark side of AI: Review and current status,” in Demystifying the Dark Side of AI in Business, 2024, pp. 117–137. doi: 10.4018/979-8-3693-0724-3.ch007.
  16. 16.
    R. Jaganathan, S. Mehta, and R. Krishan, Bio-Inspired intelligence for smart decision-making, vol. i. 2024. doi: 10.4018/9798369352762.
  17. 17.
    Y. Li, S. Wang, S. Zhou, and Z. Wang, “A mathematical formulation and a tabu search heuristic for the joint vessel-UAV routing problem,” Comput. Oper. Res., vol. 169, p. 106723, 2024, doi: 10.1016/j.cor.2024.106723.
  18. 18.
    J. V. Ananthi and P. S. H. Jose, “Performance of Unique and Secure Routing Protocol (USRP) in Flying Adhoc Networks for healthcare applications,” High-Confidence Comput., p. 100170, 2023, doi: https://doi.org/10.1016/j.hcc.2023.100170.
  19. 19.
    N. M. Imran, S. Mishra, and M. Won, “A-VRPD: Automating Drone-Based Last-Mile Delivery Using Self-Driving Cars,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 9, pp. 9599–9612, 2023, doi: 10.1109/TITS.2023.3266460.
  20. 20.
    K. Karunanithy, B. Velusamy, S. Krishnakumar, and V. J. Senthilkumar, “Energy-Efficient Data Routing in Landslide-Prone Area Using Wireless Sensor Networks with Drone,” IEEE Internet Things J., vol. 11, no. 3, pp. 4497–4507, 2024, doi: 10.1109/JIOT.2023.3301955.
  21. 21.
    X. Li, P. Yan, K. Yu, P. Li, and Y. Liu, “Parcel consolidation approach and routing algorithm for last-mile delivery by unmanned aerial vehicles[Formula presented],” Expert Syst. Appl., vol. 238, p. 122149, 2024, doi: 10.1016/j.eswa.2023.122149.
  22. 22.
    A. Mukherjee, D. De, N. Dey, R. G. Crespo, and E. Herrera-Viedma, “DisastDrone: A Disaster Aware Consumer Internet of Drone Things System in Ultra-Low Latent 6G Network,” IEEE Trans. Consum. Electron., vol. 69, no. 1, pp. 38–48, 2023, doi: 10.1109/TCE.2022.3214568.
  23. 23.
    A. Sadok, J. Euchi, and P. Siarry, “Vehicle routing with multiple UAVs for the last-mile logistics distribution problem: hybrid distributed optimization,” Ann. Oper. Res., pp. 1–41, May 2024, doi: 10.1007/s10479-024-06019-z.
  24. 24.
    T. Mulumba and A. Diabat, “Optimization of the drone-assisted pickup and delivery problem,” Transp. Res. Part E Logist. Transp. Rev., vol. 181, p. 103377, 2024, doi: 10.1016/j.tre.2023.103377.
  25. 25.
    C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector (AODV) Routing,” in Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, USA: IEEE, 1999, pp. 90–100.
  26. 26.
    M. Hosseinzadeh et al., “A Q-learning-based smart clustering routing method in flying Ad Hoc networks,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 1, p. 101894, 2024, doi: 10.1016/j.jksuci.2023.101894.
  27. 27.
    S. P. Geetha, N. M. S. Sundari, J. Ramkumar, and R. Karthikeyan, “Energy Efficient Routing In Quantum Flying Ad Hoc Network (Q-FANET) Using Mamdani Fuzzy Inference Enhanced Dijkstra ’ S Algorithm (MFI-EDA),” vol. 102, no. 9, pp. 3708–3724, 2024.
  28. 28.
    R. Karthikeyan and R. Vadivel, “Boosted Mutated Corona Virus Optimization Routing Protocol (BMCVORP) for Reliable Data Transmission with Efficient Energy Utilization,” Wirel. Pers. Commun., vol. 135, no. 4, pp. 2281–2301, 2024, doi: 10.1007/s11277-024-11155-7.
SCOPUS
SCImago Journal & Country Rank