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Abstract – Drone Ad Hoc Networks (DANETs) are autonomous 

networks where drones communicate directly to coordinate 

operations, especially in environments lacking conventional 

communication infrastructure. These networks face critical 

challenges related to scalability and routing efficiency, 

particularly as the number of drones increases. This complexity 

often leads to higher latency, greater energy consumption, and 

unstable communication links. The Alpine Swift Routing 

Protocol (ASRP) has been proposed in this paper to address 

these issues, inspired by the Alpine Swift bird’s agility and 

efficiency. ASRP dynamically adjusts routing paths based on 

real-time environmental conditions and network status, enabling 

the network to maintain optimal performance even as it scales. 

The protocol initiates with a detailed network scan to assess node 

positions and signal strengths, followed by continuous 

adaptations to environmental factors such as wind and node 

density. Using predictive and reactive algorithms, ASRP ensures 

stable connections, efficient energy use, and effective data 

transmission. Simulations conducted in NS-3 to evaluate ASRP’s 

performance demonstrated significant improvements in packet 

delivery (86.72%), reduced latency (702 ms), lower energy 

consumption (18.49%), enhanced link stability (9.03 ms), and 

fewer hops (4.38). These results confirm ASRP’s effectiveness in 

addressing the scalability and routing challenges in large-scale 

and dynamic DANETs, providing a reliable communication 

solution in complex scenarios. 

Index Terms – Drone Ad Hoc Networks, DANET, Routing, 

Alpine Swift Routing Protocol, Dynamic Network Adaptation, 

Energy Optimization. 

1. INTRODUCTION 

Drone Ad Hoc Networks (DANET) stand at the forefront of 

technological innovation, enabling drones to form versatile 

and resilient communication networks autonomously [1]. 
These networks are characterized by their ability to operate 

without centralized control, providing high flexibility and 

scalability. DANETs are particularly useful in scenarios 

where traditional communication infrastructure is unavailable 

or impractical, such as remote exploration, disaster 

management, and military surveillance [2]. The autonomous 

nature of DANETs allows them to adjust dynamically to the 

environment and mission objectives, ensuring continuous and 

reliable communication [3]. Ongoing research and 

advancements in sensor technology, artificial intelligence, and 

energy management are crucial to unlocking the full potential 

of DANETs, paving the way for their widespread adoption 

and deployment in various critical applications [4]. 

Innovation in routing strategies for DANET involves 

continuously refining protocols to address the unique 

challenges of mobile drone networks. Energy-aware routing 
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minimizes energy consumption while maintaining reliable 

communication links [5]. Techniques such as duty cycling, 

where drones alternate between active and sleep modes, help 

conserve battery life and extend the network’s operational 

lifespan. Security is another critical aspect of routing in 
DANET, with protocols incorporating mechanisms to detect 

and mitigate potential threats like spoofing, jamming, and 

data breaches [6]. Enhancing the security features of routing 

protocols ensures the integrity and confidentiality of 

transmitted data. Real-time data analytics and sensor 

technology provide more accurate information on network 

conditions, enabling more informed routing decisions [7]. 

Continuous advancement of these strategies promises to make 

DANET more effective and resilient, capable of supporting a 

wide range of applications from disaster management to 

industrial monitoring [8]. 

Scalability presents a significant challenge in DANETs used 

for disaster response and recovery, as the number of drones 

required varies based on disaster scale and complexity. In 

large-scale disasters, numerous drones may be needed to 

cover extensive areas, assess damage, locate survivors, and 

deliver essential supplies [9]. Maintaining efficient and 

reliable communication routes becomes increasingly complex 

as the network expands. Constant drone movement leads to 

frequent changes in network topology, overwhelming existing 

routing protocols not designed for high dynamism and large 

node numbers [10]. Environmental factors such as wind 

further complicate routing, causing drones to change direction 
and disrupt established communication links. Managing 

increased network traffic while maintaining low latency, 

minimizing packet loss, and optimizing energy consumption 

becomes increasingly challenging [11]. Addressing scalability 

in DANETs to ensure adequate support for large-scale 

disaster response operations is crucial for improving 

community resilience and recovery. Managing large numbers 

of drones in a constantly changing environment is essential 

for ensuring comprehensive coverage, timely aid, and 

effective disaster response. Ensuring scalability in DANETs 

will enhance their capability to provide robust support in 

large-scale disaster scenarios [12]. 

Bio-inspired optimization is essential for advancing 

communication and routing in drone systems, particularly 

within complex and ever-changing environments [13]. By 

drawing inspiration from natural processes and behaviors 

observed in biological systems, drones can adapt more 

effectively to challenges such as shifting terrains, obstacles, 

and dynamic network conditions. This naturalistic approach 

enables drones to make decentralized decisions, enhancing 

their ability to coordinate with one another without the need 

for centralized control [14], [15]. As a result, communication 

becomes more robust, and routing is optimized for efficiency 
and reliability. This leads to reduced energy consumption, 

which is critical for extending the operational lifespan of 

drones. Bio-inspired strategies contribute to the scalability of 

drone networks, allowing them to function effectively even as 

the number of units increases [16]. Incorporating bio-inspired 

optimization into drone communication and routing systems 

significantly improves performance, adaptability, and 
resilience in various applications ranging from environmental 

monitoring to disaster response. 

1.1. Problem Statement 

Scalability poses a significant challenge in DANETs due to 

the network’s dynamic and highly mobile nature. As drones 

increase, maintaining efficient and reliable communication 

routes becomes increasingly complex. The constant 

movement of drones leads to frequent changes in network 

topology, overwhelming existing routing protocols not 

designed to handle such high levels of dynamism. 

Environmental factors like wind can further complicate 
routing by causing drones to change direction and disrupt 

established communication links. The continuous need to 

adjust routes and manage increased network traffic can result 

in higher latency, packet loss, and greater energy 

consumption. Developing advanced routing protocols that 

efficiently manage large numbers of highly mobile nodes in a 

constantly changing environment is essential to address 

scalability challenges in DANETs. 

1.2. Motivation 

Scalability presents a significant challenge in DANETs, 

particularly as the number of drones in the network increases. 

As the network scales up, route discovery and maintenance 
complexity escalate, leading to potential increases in latency, 

overhead, and reduced routing efficiency. More extensive 

networks require more sophisticated algorithms to manage the 

increased number of nodes and their dynamic interactions. 

Ensuring that routing protocols can handle large-scale 

deployments without performance degradation is critical. 

Scalable routing algorithms must efficiently manage network 

resources, support high node densities, and maintain optimal 

routing paths despite the growing network size. These 

algorithms should be capable of distributing network load 

evenly, minimizing routing overhead, and adapting to changes 
in network topology. Addressing scalability issues is essential 

for deploying extensive DANETs for large-scale surveillance, 

environmental monitoring, and disaster response applications. 

Ensuring robust network performance, regardless of size, will 

facilitate the effective use of DANETs in various complex and 

demanding operational scenarios, where maintaining efficient 

and reliable communication is paramount. 

1.3. Objective 

This paper aims to design a bio-inspired optimization routing 

protocol that addresses scalability challenges in DANETs 

while maintaining routing efficiency. As the number of 

drones in the network increases, managing route discovery 
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and maintenance becomes increasingly complex, potentially 

leading to performance degradation. The proposed protocol 

will employ strategies inspired by natural systems to manage 

increased node interactions and resource allocation efficiently. 

By optimizing routing paths for large-scale deployments, the 
protocol aims to ensure robust network performance without 

compromising scalability. Extensive simulations and real-

world applications will validate the protocol’s effectiveness in 

supporting large-scale DANET deployments with high 

routing efficiency and minimal overhead, ensuring robust 

network performance regardless of network size. 

1.4. Organization 

In this paper, Section 1 explains the challenges of DANETs, 

focusing on issues like scalability, energy consumption, and 

routing efficiency, elaborating on the difficulties of 

maintaining efficient communication as drones increase, and 
highlighting the need for advanced routing protocols to 

address these challenges. The objective is to develop a bio-

inspired routing protocol that dynamically adjusts to network 

changes while maintaining performance. Section 2 discusses 

existing routing strategies and their limitations, emphasizing 

the gap ASRP intends to fill. Section 3 details the 

methodology, including network scan, environmental 

adaptation, route discovery, energy management, and error 

handling. Section 4 presents the simulation results comparing 

ASRP with AODV and QSCR, demonstrating superior 

performance in packet delivery, latency, energy consumption, 

and link stability. Section 5 concludes by summarizing 
ASRP’s effectiveness in addressing the challenges of 

scalability and routing in large-scale, dynamic drone 

networks. 

2. LITERATURE REVIEW 

“Vessel-Drone Routing” [17] integrates vessel and UAV 

routing for optimized delivery operations using a mixed-

integer linear programming (MILP) model. Variables include 

vessel routes, UAV flight paths, and delivery schedules, 

aiming to minimize operational costs. A tabu search heuristic 

iteratively improves solutions by making minor adjustments 

and avoiding recently visited solutions to explore the solution 
space. This robust framework addresses joint routing 

challenges effectively. “Unique and Secure Routing Protocol” 

[18] ensures reliable and secure data transmission in FANETs 

through unique routing paths and enhanced security measures. 

It uses algorithms like A* or Dijkstra’s to find optimal routes, 

considering UAV mobility and network topology. Security is 

ensured with AES encryption and mutual authentication. The 

protocol dynamically adjusts to network conditions, 

enhancing reliability and data integrity, particularly in 

healthcare applications. “Smart Delivery Synergy” [19] 

automates last-mile delivery by combining drones with self-

driving cars, serving as mobile distribution hubs. Drones 
handle the final delivery leg, synchronizing with car 

movements for efficient deliveries. Real-time data optimizes 

routes for both vehicles and drones. This coordinated 

approach leverages both technologies to reduce delivery times 

and enhance logistical efficiency. 

“Drone-Enhanced Data Routing” [20] optimizes energy-
efficient data routing in landslide-prone areas using WSNs 

and drones. Drones collect and relay data from sensor nodes, 

navigating challenging terrains autonomously. Advanced 

algorithms optimize flight paths and data relay strategies to 

minimize energy consumption. This integrated approach 

enhances the reliability and responsiveness of landslide 

monitoring and early warning systems. “Data Consolidation 

and Routing” [21] efficiently transmit gathered information to 

the destination. UAVs collect and aggregate data at 

intermediate nodes before routing it to the central processing 

unit. Algorithms like Dijkstra’s or A* determine optimal 
paths, with adaptive techniques dynamically adjusting routes 

based on real-time conditions. This ensures robust data 

transmission, minimizing delays and packet loss. 

“DisastDrone” [22] integrates disaster awareness into a 

Consumer Internet of Drone Things (IoDT) system within a 

6G network. Drones with sensors and communication 

modules monitor and respond to disaster scenarios in real-

time. Drones, leveraging 6 G’s high-speed, low-latency 

capabilities, quickly transmit data to control centres, 

enhancing situational awareness and the effectiveness of the 

emergency response. 

“Drone Logistics Insight” [11] uses Latent Dirichlet 
Allocation (LDA) for a systematic review of drone 

applications in logistics. LDA identifies and categorizes 

themes in research on drone technology in logistics. This 

approach provides a structured understanding of current 

applications and future developments in drone logistics, 

including last-mile delivery, inventory management, and real-

time tracking. “Multi-UAV Last-Mile Optimizer” [23] 

addresses vehicle routing with multiple UAVs for last-mile 

logistics using a hybrid distributed optimization approach. 

Centralized and decentralized techniques coordinate UAVs, 

dynamically adjusting paths based on real-time data. This 
iterative process refines routes to achieve optimal delivery 

efficiency, balancing workload and minimizing travel 

distance. “Drone Routing Optimization” [24]  enhances 

pickup and delivery operations efficiency with advanced 

algorithms and optimization techniques tailored to drones’ 

characteristics. Mixed-integer linear programming models 

optimize routes considering battery life and delivery 

deadlines. This research is crucial for agile and efficient 

drone-based delivery systems in various applications. “Bi-

Criteria Truck-Drone Routing” [10] coordinates trucks and 

multiple drones to optimize delivery operations by 

minimizing delivery time and reducing operational costs. 
Trucks act as mobile bases, with drones performing last-mile 

deliveries. The optimization algorithm balances truck routes 
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and drone assignments, dynamically adjusting to real-time 

conditions. This approach enhances logistical performance by 

leveraging both transportation modes. 

“Ad-hoc On-Demand Distance Vector (AODV)” [25] 

establishes routes by broadcasting RREQ packets and 
receiving RREP packets from nodes with valid routes. This 

on-demand mechanism minimizes unnecessary route 

maintenance, conserving network resources. Under certain 

conditions, AODV may form routing loops during route 

discovery, disrupting network operations. Periodic HELLO 

messages used to maintain neighbor relations contribute to 

network overhead. Packet delivery delays occur due to route 

discoveries and potential route failures. Limitations in route 

caching necessitate frequent route discoveries, increasing 

overhead. The protocol may perform inadequately in high-

speed networks where rapid transmission and processing are 

essential. Addressing these challenges is crucial to enhancing 

AODV’s efficiency and reliability in various network 

scenarios. “Q-learning-based Secure and reliable Clustering 

Routing (QSCR)” [26] involves continuous updates to the 

learning model and parameters to adapt to changes in drone 
networks, using a clustering approach for communication 

management and learning algorithms for optimal route 

selection. Regular updates are required to keep up with 

changes in drone behavior and the environment. High 

mobility in DANETs necessitates frequent route 

recalculations, increasing computational demands. Delays in 

cluster formation and maintenance hinder network 

communication setup. Greedy routing limitations may prevent 

finding the most efficient paths if the closest cluster head is 

not ideally positioned toward the destination. Outcomes are 

sensitive to the discount factor, impacting long-term strategic 

routing decisions. The summary is listed in Table 1. 

Table 1 Comparative Analysis of Scalability Solutions-Oriented Routing Strategies 

Name Methodology Merits Demerits 
How it Affects Drone 

Communication 

Vessel-Drone 

Routing [17] 

MILP model with 

tabu search heuristic 

Minimizes 

operational costs, 

efficient joint 

routing 

Complex 

implementation, the 

potential high 

computational cost 

Potential delays due to 

complex computation 

and synchronization 

issues 

Unique and Secure 

Routing Protocol 

[18] 

Dijkstra’s algorithm, 

AES encryption, 

mutual 

authentication 

Reliable and 

secure data 

transmission, 

adaptable to 

changing 

conditions 

Potential overhead 

from encryption and 

authentication 

processes 

Increased latency and 

overhead from security 

protocols 

Smart Delivery 

Synergy [19] 

Combining drones 

with self-driving 
cars, real-time data 

synchronization 

Reduces delivery 

times, leverages 
strengths of both 

technologies 

Dependence on 

continuous 
synchronization, 

complex integration 

Risk of communication 

breakdowns if 

synchronization fails 

Drone-Enhanced 

Data Routing [20] 

WSNs and drones, 

advanced routing 

algorithms 

Energy-efficient, 

optimized data 

transmission, 

robust landslide 

monitoring 

May require 

significant initial 

setup, potential data 

processing delays 

Potential data 

transmission delays due 

to initial setup and 

processing 

requirements 

Data Consolidation 

and Routing [21] 

Data aggregation, 

Dijkstra’s or A* 

algorithms, adaptive 

techniques 

Robust data 

transmission 

minimizes delays 

and packet loss 

Possible overhead 

from continuous 

network monitoring 

and adaptation 

Overhead from constant 

monitoring and real-

time route adjustments 

DisastDrone [22] 6G network, real-

time data 

transmission, 

autonomous drones 

High-speed, low-

latency 

communication 
enhances 

situational 

awareness 

Dependence on 

advanced network 

infrastructure, 

potential high-cost 

High dependency on 

6G infrastructure, 

which may not be 

universally available 
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Drone Logistics 

Insight [11] 

Latent Dirichlet 

Allocation (LDA) 

for topic modelling 

Structured 

understanding of 

drone 

applications, 

identifies trends 

May not provide real-

time data, relies on 

existing research 

corpus 

Limited real-time 

applicability and 

indirect impact on 

communication 

strategies 

Multi-UAV Last-

Mile Optimizer [23] 

Hybrid distributed 

optimization, real-

time data adjustment 

Efficient route 

adjustments, 
balanced 

workload 

Complex 

coordination, 
potential high 

computational 

demands 

High computational 

demands can slow 
down real-time 

communication and 

coordination 

Drone Routing 

Optimization  [24] 

Advanced 

algorithms, mixed-

integer linear 

programming 

Maximizes 

delivery speed, 

minimizes costs, 

improves logistics 

efficiency 

It may require 

significant 

computational 

resources, complex 

route planning 

Computational 

complexity may lead to 

delays in real-time 

communication 

adjustments 

Bi-Criteria Truck-

Drone Routing [10] 

Mixed-integer linear 

programming, 

evolutionary 

algorithms 

Balances delivery 

time and 

operational costs, 

dynamic route 

adjustment 

Complexity in 

balancing multiple 

criteria, potential high 

computational 

requirements 

Complexity can cause 

delays in route 

adjustments and 

communication 

synchronization 

2.1. Technological Gaps 

Scalability and routing efficiency in DANET face 

considerable challenges. Solutions like Vessel-Drone Routing 

and Unique and Secure Routing Protocols often involve high 

computational complexity, making them less feasible for real-

time applications, integrating security measures such as AES 

encryption adds latency, degrading performance in dynamic 

environments. Dependence on advanced algorithms for real-

time synchronization and data aggregation in Smart Delivery 

Synergy and Multi-UAV Last-Mile Optimizer poses 

significant challenges. Continuous updates and adjustments 

lead to high computational demands and potential 

communication delays. Developing scalable, efficient, and 
secure routing protocols to handle the complexities of 

dynamic environments while ensuring low latency and high 

reliability, even with security and real-time data processing 

burdens, is crucial. 

3. ALPINE SWIFT ROUTING PROTOCOL (ASRP) 

The Alpine Swift Routing Protocol (ASRP) for DANET is 

inspired by the agile and efficient behaviors of the Alpine 

Swift bird. ASRP focuses on optimizing data transmission 

and network reliability while conserving energy. The protocol 

involves network scan initialization, environmental 

adaptation, route discovery, efficient path selection, and 

dynamic route maintenance.  

By employing sophisticated mathematical models and 

algorithms, ASRP ensures robust error handling, energy 

management, and adaptive responses to network changes. 

This approach enhances the drone network’s overall 

performance, resilience, and longevity, making it ideal for 
dynamic and resource-constrained environments. This section 

discusses its operation in detail. 

3.1. Network Scan Initialization 

Network scan initialization resembles the precision of an 

Alpine Swift scanning its environment, seeking optimal 

conditions and resources necessary for survival. This analogy 

deeply intertwines with the initialization phase, where drones 

meticulously evaluate their environment to establish the 

groundwork for robust routing pathways.  

Mathematically, the drone environment operates laden with 

variables that significantly influence routing decisions. For 

instance, consider the representation of all network nodes as 

𝑁 , where each node 𝑖  in 𝑁  has attributes such as position, 

power level, and workload. These attributes can be expressed 

as vectors in a multidimensional attribute space, as expressed 

in Eq.(1). 

𝑎𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖 , 𝑤𝑖) (1) 

where 𝑥𝑖  and 𝑦𝑖  are the geographical coordinates, 𝑝𝑖  the 

power level, and 𝑤𝑖 the workload of node 𝑖. 

The path loss model governs the relationship between nodes, 

particularly the signal strength, which dictates the feasibility 

of establishing a reliable communication link. This model 
reflects the degradation of signal strength with distance. 

Eq.(2) is crucial in determining the effective range of 

communication between drones: 
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𝐿(𝑑𝑖𝑗) = 𝐿0 + 10𝛾𝑙𝑜𝑔10(𝑑𝑖𝑗) (2) 

With 𝐿(𝑑𝑖𝑗) representing the path loss between nodes 𝑖 and 𝑗, 

𝐿0 the loss at a reference distance 𝛾, the path loss exponent, 

and 𝑑𝑖𝑗  the distance between the nodes. 

To optimize the network scan, drones calculate the potential 

of each node as a relay based on a function of its attributes 

and signal strength. The following potential function can 

mathematically describe this potential as expressed in Eq.(3). 

𝑃(𝑖) =
1

𝑤𝑖 + 1
× ∑ 𝑒−𝛼𝐿(𝑑𝑖𝑗)

𝑗∈𝑁

 (3) 

where 𝛼 is a coefficient that moderates the impact of path loss 

on the relay potential. 

The initialization process further entails the assessment of 

network density, which influences the strategic positioning 

and deployment of drones. This density is quantified by 

Eq.(4). 

𝐷 =
1

|𝑁|
∑ ∑

1

𝑑𝑖𝑗
𝑗∈𝑁,𝑗≠𝑖𝑖∈𝑁

 (4) 

where 𝐷 represents the average inverse distance, providing an 

aggregate measure of node proximity across the network, 

facilitating decisions on node deployment to enhance 

coverage and connectivity. 

Eq.(5) provides the decision to establish a route from a source 

node 𝑠  to a destination node 𝑡,  which incorporates a 

comprehensive evaluation of the path costs, integrating 

energy and reliability considerations. 

𝐶𝑠𝑡 = min
𝑝∈𝑃

∑ (𝐸𝑖𝑗 + 𝑅𝑖𝑗)
(𝑖,𝑗)∈𝑝

 (5) 

where 𝑃 denotes all possible paths from 𝑠 to 𝑡, 𝐸𝑖𝑗 the energy 

cost, and 𝑅𝑖𝑗 the reliability cost associated with the link from 𝑖 

to 𝑗. Initialization of Network Scan is illustrated in Algorithm 

1.  

Input: 

 Set of all nodes 𝑁 

 Node attributes 𝑎𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖 , 𝑤𝑖) 

Output: 

 Initial network topology with potential routes 

identified 

Pseudocode: 

1. Initialize all nodes in 𝑁. 

2. For each node 𝑖 in 𝑁: 

 For each node 𝑗 in 𝑁, where 𝑗 ≠ 𝑖: 

 Calculate the distance 𝑑𝑖𝑗  using (𝑥𝑖 , 𝑦𝑖)  and 

(𝑥𝑗 , 𝑦𝑗). 

 Calculate the signal strength 𝑆𝑖𝑗  using 𝑑𝑖𝑗 . 

 If 𝑆𝑖𝑗  is greater than the threshold: 

 Add a link (𝑖, 𝑗) to the network topology. 

3. Return the initial network topology. 

Algorithm 1: Initialization of Network Scan 

3.2. Environmental Adaptation 

Environmental adaption is analogous to the Alpine Swift’s 
efficient use of environmental conditions to aid in its soaring 

and gliding, which sees drones dynamically adapting their 

routing strategies based on the real-time assessment of 

network conditions. The mathematical representation of 

environmental adaptability begins with characterizing each 

drone’s state by considering multiple parameters influencing 

operational efficiency. Eq.(6) denotes the state of each drone 

as a vector 𝑠𝑖  consisting of its position, velocity, power 

reserve, and communication capability: 

𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑣𝑖 , 𝑝𝑖 , 𝑐𝑖) (6) 

where 𝑥𝑖 , 𝑦𝑖  represent the position, 𝑣𝑖  the velocity, 𝑝𝑖  the 

power reserve, and 𝑐𝑖 the communication capability of drone 

𝑖. 

Environmental factors such as wind speed and direction, 

electromagnetic interference, and node congestion directly 

impact routing decisions. These factors can be encapsulated in 

an ecological impact function 𝐹(𝑒𝑡) , which dynamically 

adjusts based on real-time telemetry data expressed as Eq.(7). 

𝐹(𝑒𝑡) = 𝑓(𝑤𝑡 , 𝑚𝑡 , 𝑑𝑡) (7) 

where 𝑤𝑖  represents wind conditions, 𝑚𝑡  is electromagnetic 

interference, and 𝑑𝑡  denotes node density at time 𝑡. 

To optimize routing decisions, drones compute an adaptability 

index 𝐴𝑖  that factors in the environmental impact and their 

current state. Eq.(8). helps determine their ability to maintain 

communication under varying environmental conditions: 

𝐴𝑖(𝑡) = 𝛽.
𝑝𝑖(𝑡)

𝑝𝑚𝑎𝑥

. 𝑒−𝑘𝐹(𝑒𝑡) (8) 

where 𝛽 and 𝜅 are coefficients that adjust the sensitivity of the 
adaptability index to power levels and environmental impacts, 

respectively. 

Adjustment in the drone’s trajectory and communication 

strategies is then modeled by a control function 𝐶(𝑠𝑖 , 𝐴𝑖) . 
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Eq.(9) dictates the necessary adjustments to the drone’s route 

and operational parameters to maintain optimal performance: 

𝐶(𝑠𝑖 , 𝐴𝑖) = 𝑔(𝑠𝑖 , 𝐴𝑖). 𝑠𝑖+1 (9) 

where 𝑔 is a transformation function that calculates the next 

state of the drone based on its current state and adaptability 

index. 

Drones execute a real-time optimization protocol to ensure 

network resilience and robust data transmission. This is 

expressed through a network optimization function 𝑂(𝑁, 𝐴) 

expressed in Eq.(10), which evaluates all drones’ adaptability 

indices to configure the most stable and efficient routing 

topology. 

𝑂(𝑁, 𝐴) = 𝑚𝑖𝑛 (∑ ∑ 𝐿(𝑑𝑖𝑗). (1 − 𝐴𝑖)

𝑗∈𝑁,𝑖≠𝑗𝑖∈𝑁

) (10) 

This function minimizes the total weakened links in the 

network by adjusting routes and communication strategies 

based on the collective adaptability of the drones. 

Environmental Adaptation is shown in algorithm 2.  

Input: 

 Nodes states 𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑣𝑖 , 𝑝𝑖 , 𝑐𝑖) 

 Environmental impact function 𝐹(𝑒𝑡) 

Output: 

 Adjusted routing strategies 

Pseudocode: 

1. For each node 𝑖 in 𝑁: 

 Monitor environmental factors 𝑒𝑡 . 

 Calculate the environmental impact 𝐹(𝑒𝑡). 

 Update the adaptability index 𝐴𝑖(𝑡). 

2. For each link (𝑖, 𝑗): 

 Adjust the control function 𝐶(𝑠𝑖 , 𝐴𝑖). 

3. Return updated routing strategies. 

Algorithm 2: Environmental Adaptation 

3.3. Route Discovery 

Route Discovery mirrors the precision with which Alpine 

Swifts identify and target their prey. In the context of 

DANET, this step involves the discovery of viable 

communication routes through a network-wide scan, 

effectively seeking paths that promise optimal data 

transmission with minimal losses. The foundational concept 

in this step is deploying a probing mechanism where drones 

broadcast discovery packets across the network. This method 

is similar to a radar sweep, scanning for potential relay nodes 

that can facilitate the end-to-end data route. Eq.(11) represents 

the probability that a link exists between drones 𝑖  and 𝑗  at 

time 𝑡. 

𝑝𝑖𝑗(𝑡) = 𝜎 (𝑟𝑖𝑗 − 𝐿(𝑑𝑖𝑗)) (11) 

where 𝑟𝑖𝑗  is the received signal strength indicator (RSSI) from 

drone 𝑗 to drone 𝑖, 𝐿(𝑑𝑖𝑗) the expected loss over distance 𝑑𝑖𝑗 , 

and 𝜎 a sigmoid function ensuring 𝑝𝑖𝑗  ranges between 0 and 

1. 

The route discovery process is essentially an optimization 

problem where each drone seeks to maximize its connectivity 

by selecting links with the highest probabilities. For a given 

node 𝑖 , the set of potential next-hop candidates 𝑆𝑖  can be 

determined by Eq.(12). 

𝑆𝑖 = {𝑗|𝑝𝑖𝑗(𝑡) > 𝜃} (12) 

with 𝜃  being a threshold value dictating the minimum 

acceptable link probability for inclusion in the route discovery 

process. 

To further refine the route discovery process, the drones 

calculate the expected effective throughput for each potential 

link, which measures the data rate that can be realistically 

achieved given the link conditions. This is modeled as 

Eq.(13). 

𝑇𝑖𝑗 = 𝐵. 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖𝑗) (13) 

where 𝐵  is the channel bandwidth and 𝑆𝑁𝑅𝑖𝑗  the signal-to-

noise ratio on the link between drones 𝑖 and 𝑗. 

A routing table is constructed once each drone has identified 
its viable links. The table construction uses Dijkstra’s 

algorithm [27] to compute the shortest paths from each drone 

to all others regarding cost, which is inversely related to the 

expected throughput as mathematically expressed in Eq.(14). 

𝐶𝑖𝑗 =
1

𝑇𝑖𝑗

 (14) 

The process of route establishment thus involves each drone 

iteratively updating its routing table by minimizing the cost 

𝐶𝑖𝑗 as expressed in Eq.(15). 

𝑅𝑖 = arg min
𝑗∈𝑆𝑖

𝐶𝑖𝑗 (15) 

This routing table 𝑅𝑖  for each drone 𝑖  then guides the 

transmission of data packets, aiming to utilize the paths that 

offer the highest data transfer efficiency. Algorithm 3 defines 

the route discovery process.  
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Input: 

 Current network topology 

 Node attributes 

Output: 

 Discovered routes with minimal cost 

Pseudocode: 

1. For each node 𝑖 in 𝑁: 

 Identify neighboring nodes 𝑆𝑖 . 

 Calculate the probability 𝑝𝑖𝑗(𝑡)  for each link 

(𝑖, 𝑗). 

 Calculate the expected throughput 𝑇𝑖𝑗 . 

 Update the routing table using Dijkstra’s 

algorithm to minimize the cost 𝐶𝑖𝑗 . 

2. Return discovered routes. 

Algorithm 3 Route Discovery 

3.4. Route Establishment 

Route Establishment is crucial for optimizing the network’s 

performance. Following the discovery of potential routes, this 

step involves evaluating each identified path to establish the 

most efficient ones based on specific criteria. The primary 

objective is to minimize energy consumption and maximize 

reliability, ensuring robust and efficient data transmission. 
The process begins by assessing the relay potential of each 

node along the discovered routes. Each discovered route’s 

relay potential is evaluated based on node attributes such as 

energy levels, processing power, and link quality. This 

evaluation ensures that only nodes with sufficient resources 

and stable connections are selected as relays, preventing 

bottlenecks and ensuring smooth data flow. The routing table 

is updated to reflect these optimal paths. Paths with the lowest 

cumulative costs are selected using a modified version of 

Dijkstra’s algorithm. The cost function integrates factors such 

as energy consumption 𝐸𝑖𝑗 , reliability 𝑅𝑖𝑗 , and link quality 

𝐿𝑄𝑖𝑗 , ensuring a balanced approach to route selection. 

This dynamic process ensures the network remains adaptive, 

continuously updating routes to reflect current conditions. By 

focusing on energy efficiency and reliability, the ASRP 

enhances the overall performance and sustainability of the 

drone network, ensuring that data is transmitted through the 

most effective and resource-efficient paths. Route 

Establishment process is depicted in algorithm 4.  

Input: 

 Discovered routes 

 Node attributes 

Output: 

 Established optimal paths 

Pseudocode: 

1. For each discovered route: 

 Evaluate the potential of each node as a relay. 

 Establish the most efficient path based on 

minimum energy consumption and maximum 

reliability. 

2. Return established paths. 

Algorithm 4 Route Establishment 

3.5. Data Packet Tagging 

Data Packet Tagging parallels the precision with which 

Alpine Swifts select and consume their prey while in motion. 

For ASRP, this involves the meticulous tagging of data 

packets based on their priority and type, ensuring that each 

packet is routed optimally through the network. In this 

process, each data packet 𝑃  is assigned a priority level 𝜋 , 

which influences its routing path and handling within the 

network. The priority assignment is based on the packet’s 

content type, source, destination urgency, and other 

contextual information. This can be modeled mathematically 

as Eq.(16) and uses a priority function. 

𝜋(𝑃) = 𝛼𝑠 . 𝑠(𝑃) + 𝛼𝑢 . 𝑢(𝑃) + 𝛼𝑐 . 𝑐(𝑃) (16) 

where 𝑠(𝑃), 𝑢(𝑃)  and 𝑐(𝑃)  represent the security 

requirement, urgency, and content value of packet 𝑃 , 

respectively. Coefficients 𝛼𝑠 , 𝛼𝑢 ,  and 𝛼𝑐  are weights that 

adjust the influence of each factor based on network policies 

and operational contexts. 

Once tagged, the routing of packets is influenced by a 

combined cost function that considers both the network’s 

current state and the packet’s priority. This routing cost for a 

packet 𝑃 from drone 𝑖 to drone 𝑗 can be described as Eq.(17). 

𝐶𝑖𝑗(𝑃) =
1

𝜋(𝑃)
. (𝑑𝑖𝑗 + 𝜆. 𝐿𝑖𝑗) (17) 

where 𝑑𝑖𝑗  is the distance between the drones, 𝐿𝑖𝑗  the current 

load on the link between 𝑖 and 𝑗, and 𝜆 a factor that scales the 

impact of link load on the routing decision. 
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To minimize the total transmission delay and maximize the 

reliability of high-priority data, drones use Dijkstra’s 

algorithm to update their routing decisions based on the above 

cost function. The next hop for each packet is selected by 

Eq.(18). 

𝑁𝑖(𝑃) = argmin
𝑗∈𝑆𝑖

𝐶𝑖𝑗 (𝑃) (18) 

where 𝑆𝑖 is the set of neighboring nodes to drone 𝑖. 

A dynamic load balancing mechanism is employed to manage 

network traffic efficiently and avoid congestion, adjusting the 

routing paths based on real-time network conditions. This is 

achieved through an adjustment function expressed in 

Eq.(19). 

∆𝑖𝑗(𝑃) = 𝛾. (1 −
𝐿𝑖𝑗

𝐿𝑚𝑎𝑥

) (19) 

where 𝛾  is a tuning parameter, and 𝐿𝑚𝑎𝑥  is the maximum 

acceptable load on a link. This function reduces the cost 𝐶𝑖𝑗 

for underutilized links, encouraging their use, and preventing 

congestion on heavily used routes. Data Packet Tagging is 

illustrated in algorithm 5.  

Input: 

 Data packets 

 Priority levels 

Output: 

 Tagged data packets 

Pseudocode: 

1. For each data packet 𝑃: 

 Calculate priority 𝜋(𝑃)  based on security, 

urgency, and content. 

2. For each node 𝑖: 

 Calculate routing cost 𝐶𝑖𝑗(𝑃). 

 Select next-hop 𝑁𝑖(𝑃)  using Dijkstra’s 

algorithm. 

3. Implement load balancing if necessary. 

4. Return tagged data packets. 

Algorithm 5 Data Packet Tagging 

3.6. Efficient Path Selection 

Efficient Path Selection mirrors the Alpine Swift’s adept 

ability to leverage air currents for energy-efficient flight. This 

step in ASRP focuses on selecting the most energy-efficient 

paths for data transmission across the network, optimizing the 

overall energy consumption while maintaining high data 

transfer reliability and speed. This energy-efficient path 

selection is crucial because drones, like birds, have limited 

energy reserves, and they must be managed wisely to 

maximize their operational lifespan and effectiveness. The 

decision-making process involves assessing various potential 
routes based on their energy demands and selecting the 

optimal balance between energy consumption and 

transmission efficiency. 

The mathematical foundation of Efficient Path Selection starts 

with quantifying the energy cost associated with transmitting 

data over different paths. Let 𝐸𝑖𝑗 represent the energy cost to 

transmit a packet from drone 𝑖 to drone 𝑗. This cost generally 

includes the energy required for data processing and the 

energy expended in overcoming the path loss in 
communication. Eq.(20) is applied to calculate the total cost 

of selecting the path. 

𝐸𝑖𝑗 = 𝐸𝑡𝑥(𝑖, 𝑗) + 𝐸𝑟𝑥(𝑗) (20) 

where 𝐸𝑡𝑥(𝑖, 𝑗) is the transmission energy, which depends on 

the distance and required signal strength, and 𝐸𝑟𝑥(𝑗) is the 

reception energy at drone 𝑗. 

To calculate the transmission energy, Eq.(21) (i.e., Friis 

transmission strategy) is employed in ASRP, modified to 

account for drone-specific factors such as antenna 

characteristics and environmental conditions: 

𝐸𝑡𝑥(𝑖, 𝑗) = 𝑃𝑡𝑥 . 𝐺𝑡𝑥 . 𝐺𝑟𝑥 . (
𝜆

4𝜋𝑑𝑖𝑗

)

2

. 𝜏 (21) 

where, 𝑃𝑡𝑥  is the transmission power, 𝐺𝑡𝑥  and 𝐺𝑟𝑥  are the 

transmit and receive antenna gains, respectively, 𝜆  is the 

wavelength of the signal, 𝑑𝑖𝑗  is the distance between the 

drones, and 𝜏 is the transmission duration. 

The optimal route from a source 𝑠  to a destination 𝑡  is 

determined by minimizing the total energy cost over all 

possible paths. This is done using a modified version of 

Dijkstra’s algorithm, expressed as Eq.(22), incorporating 

energy cost and a reliability factor to ensure robust data 

transfer. 

𝐶𝑜𝑠𝑡(𝑝) = ∑ (𝐸𝑖𝑗 + 𝛿.
1

𝑅𝑖𝑗

)

(𝑖,𝑗)∈𝑝

 (22) 

where 𝑝 denotes the path consisting of links (𝑖, 𝑗), 𝑅𝑖𝑗  is the 

reliability of the link, and 𝛿 is the factor that balances energy 

cost against reliability. 

To further enhance energy efficiency, drones can dynamically 

adjust their transmission power based on the current network 

conditions and the required quality of service. This 

adjustment can be modeled as Eq.(23). 
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𝑃𝑡𝑥
𝑛𝑒𝑤 = 𝑃𝑡𝑥 . (1 −

𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐸𝑚𝑎𝑥

) (23) 

where 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current energy reserve of the drone, and 

𝐸𝑚𝑎𝑥 is the maximum energy reserve. Efficient Path Selection 

process is shown in algorithm 6. 

Input: 

 Current routes 

 Energy levels 

Output:  

 Energy-efficient paths 

Pseudocode: 

1. For each link (𝑖, 𝑗): 

 Calculate energy cost 𝐸𝑖𝑗 . 

 Adjust transmission power 𝑃𝑡𝑥
𝑛𝑒𝑤 

2. Optimize path selection to minimize total energy 

cost. 

3. Return energy-efficient paths. 

Algorithm 6 Efficient Path Selection 

3.7. Agile Response to Network Changes 

The agile and responsive flight patterns of the Alpine Swift 

directly inspire this step. This step involves the capability of 
the drone network to quickly adapt to sudden changes in the 

network environment, such as node failures, new node 

additions, or varying traffic conditions. The agile response 

mechanism in ASRP utilizes a combination of predictive and 

reactive strategies to adjust routes dynamically. The 

foundation of this agility is based on a real-time monitoring 

system that continuously assesses network status, updating a 

set of predictive metrics that inform about potential network 

disruptions before they occur [28]. 

Each drone in the network continually sends and receives 

state packets, including information about its state and the 
network segments it interacts with. ASRP denotes the state 

information from drone 𝑖  to drone 𝑗  as 𝑆𝑖𝑗 , which includes 

metrics such as link quality, traffic load, and operational 

status. Eq.(24) is applied to capture the state information. 

𝑆𝑖𝑗 = (𝐿𝑄𝑖𝑗 , 𝑇𝐿𝑖𝑗 , 𝑂𝑆𝑖𝑗) (24) 

where 𝐿𝑄𝑖𝑗  is the link quality, 𝑇𝐿𝑖𝑗  the traffic load and 𝑂𝑆𝑖𝑗  

the operational status (active, idle, error, etc). 

Using the result obtained from Eq.(24), each drone calculates 

a predictive adjustment factor, 𝐴𝑖𝑗, which estimates the future 

state of the link. Eq.(25) is used to adjust routing decisions to 

avoid potential problems preemptively. 

𝐴𝑖𝑗 = 𝛼. 𝑒𝑥𝑝(−𝛽. 𝐿𝑄𝑖𝑗) + 𝛾. 𝑇𝐿𝑖𝑗  (25) 

where 𝛼, 𝛽,  and 𝛾  are weighting factors that balance the 

importance of link quality and traffic load in the prediction. 

A reactive adjustment mechanism is triggered in response to 

immediate changes or errors detected by the monitoring 

system. Eq.(26) recalculates routes using a modified cost 

function that prioritizes stability and quick reconfiguration. 

𝑅𝑖𝑗 = 𝑚𝑖𝑛 (
1

𝐿𝑄𝑖𝑗

+ 𝛿. 𝐴𝑖𝑗) (26) 

where 𝛿  is a factor that increases the responsiveness to the 

predictive adjustment factor, ensuring that routes are 

recalculated to avoid potential disruptions. 

Whenever a significant change is detected, the entire route is 

recalculated using an enhanced version of Dijkstra’s 

algorithm that integrates both the predictive and reactive 

adjustment metrics, expressed as Eq.(27). 

𝑁𝑒𝑤 𝑅𝑜𝑢𝑡𝑒 = argmin
𝑝∈𝑃

( ∑ 𝑅𝑖𝑗

(𝑖,𝑗)∈𝑝

) (27) 

where 𝑃 represents all possible paths from the source to the 

destination. 

Dynamic path updates are distributed across the network, 

ensuring that all drones adjust their routing tables 

simultaneously to reflect the new optimal paths, 

mathematically expressed as Eq.(28). 

𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑡ℎ𝑖𝑗 = 𝑖𝑓 ∆𝑅𝑖𝑗 > 𝜀 𝑡ℎ𝑒𝑛 𝑢𝑝𝑑𝑎𝑡𝑒 𝑅𝑖𝑗  (28) 

where ∆𝑅𝑖𝑗 is the change in the route cost and 𝜖 a threshold 

for updating routes. Agile Response to Network Changes is 

shown in algorithm 7. 

Input: 

 Current network state 

 Predictive metrics 

Output: 

 Updated routes 

Pseudocode: 

1. Monitor network state 𝑆𝑖𝑗 . 

2. Calculate the predictive adjustment factor 𝐴𝑖𝑗 . 
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3. Recalculate routes using modified Dijkstra’s 

algorithm. 

4. Implement dynamic path updates based on feedback. 

5. Return updated routes. 

Algorithm 7 Agile Response to Network Changes 

3.8. Data Transmission 

Data Transmission embodies the seamless and continuous 

nature of the Alpine Swift’s ability to consume food while in 

flight. This phase focuses on the constant and efficient 

transmission of data packets across the network. The data 

transmission process in ASRP is designed to maximize 

throughput while minimizing delays and packet losses. The 

underlying mathematical models facilitate the optimization of 

these parameters, ensuring efficient use of network resources 

and maintaining high data integrity. 

Each link (𝑖, 𝑗)  in the network has a defined capacity 𝐶𝑖𝑗 , 

representing the maximum rate at which data can be 

transmitted to nodes 𝑖  and 𝑗.  The actual data flow 𝐹𝑖𝑗  is 

managed to prevent congestion and ensure efficient data 

distribution, as expressed in Eq.(29). 

𝐹𝑖𝑗 = 𝑚𝑖𝑛(𝐶𝑖𝑗 , 𝐷𝑖𝑗) (29) 

where 𝐷𝑖𝑗 is the demand for data transmission from node 𝑖 to 

node 𝑗. This formula ensures that the flow does not exceed the 

link’s capacity while attempting to meet the demand as 

closely as possible. 

The network aims to optimize the utilization of its resources 

to maximize overall throughput. This involves solving a 

network flow problem using Eq.(30), formulated as a linear 

programming problem to maximize total flow from a set of 

sources to a set of sinks. 

𝑚𝑎𝑥 ∑ 𝐹𝑖𝑗

(𝑖,𝑗)∈𝐸

 (30) 

Subject to: 

∑ 𝐹𝑖𝑗 − ∑ 𝐹𝑗𝑖 = 0 𝑗:(𝑖,𝑗)∈𝐸𝑗:(𝑖,𝑗)∈𝐸 for all 𝑖 ≠

𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘 
(31) 

Eq.(31) ensures the conservation of flow at each node except 

for the source and sink, indicating that the amount of data 

entering a node equals the amount of data leaving it, thereby 

maintaining balance across the network. 

The data routing strategy incorporates path latency and error 

rates to minimize transmission delays and maximize 

reliability. Each link (𝑖, 𝑗)  has an associated delay 𝛿𝑖𝑗  and 

error rate 𝜀𝑖𝑗𝑇he route selection is adjusted to minimize these 

factors for high-priority data, expressed in Eq.(32). 

𝐶𝑜𝑠𝑡𝑖𝑗 = 𝜆1𝛿𝑖𝑗 + 𝜆2𝜀𝑖𝑗  (32) 

where 𝜆1 and 𝜆2 are weighting factors that prioritize delay and 

reliability according to the current network strategy. 

Adaptive transmission strategies adjust data rates dynamically 

based on real-time feedback regarding network conditions. 
This adaptability is modeled using Eq.(33) by changing the 

flow rates based on the observed network performance. 

𝐹𝑖𝑗
𝑛𝑒𝑤 = 𝐹𝑖𝑗 . (1 − 𝛼. 𝛿𝑖𝑗

𝑜𝑏𝑠) (33) 

where 𝛼 is a sensitivity parameter, and 𝛿𝑖𝑗
𝑜𝑏𝑠  is the observed 

delay on the link (𝑖, 𝑗). The process of data transmission is 

shown in algorithm 8. 

Input: 

 Established routes 

 Network traffic 

Output: 

 Continuous data flow 

Pseudocode: 

1. For each link (𝑖, 𝑗): 

 Calculate link capacity 𝐶𝑖𝑗 and data flow 𝐹𝑖𝑗 . 

 Optimize network flow to maximize total 

throughput. 

2. Adjust transmission strategies based on feedback. 

3. Return continuous data flow. 

Algorithm 8 Data Transmission 

3.9. Error Handling and Recovery 

Error Handling and Recovery reflect Alpine Swift’s efficiency 

in swiftly dealing with its captured prey. Similarly, in ASRP, 
this step focuses on promptly addressing errors and 

disruptions in data transmission, ensuring rapid recovery and 

restoration of the network’s functionality. Following the 

mechanisms of continuous data flow and network 

optimization discussed in the “Data Transmission” step, this 

phase involves detecting, correcting, and recovering any 

errors or packet losses during transmission.  

Each data packet transmitted across the network is subject to 

potential errors and losses, primarily due to unreliable links or 

environmental interference. The probability of a packet loss 

on a link (𝑖, 𝑗) can be modeled as Eq.(34). 

𝑃𝑙𝑜𝑠𝑠(𝑖, 𝑗) = 1 − 𝑒−𝜆.𝐿𝑖𝑗  (34) 
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where 𝜆 is the coefficient reflecting the sensitivity of the link 

to errors and 𝐿𝑖𝑗  represents the load or stress on the link, 

which was dynamically managed in the earlier transmission 

step. 

Upon detecting an error or loss, an immediate recovery 

mechanism is activated. This involves recalculating the 

routing paths using a modified version of Dijkstra’s 

algorithm, incorporating an urgency factor for retransmission. 

Eq.(35) prioritizes links with lower loss probabilities for 

urgent retransmissions, ensuring quick recovery of lost or 

corrupted data. 

𝑅𝑖𝑗
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

= 𝑚𝑖𝑛 (
1

1 − 𝑃𝑙𝑜𝑠𝑠 (𝑖, 𝑗)
) (35) 

To enhance reliability, the protocol implements redundancy 
strategies, including packet replication. This method involves 

sending duplicate packets over multiple routes, increasing the 

chances of at least one packet reaching its destination without 

errors. Eq.(36) is applied to measure the effectiveness of 

sending duplicate packets. 

𝑛𝑟𝑒𝑝𝑙 = [𝑙𝑜𝑔
(1−𝑃𝑙𝑜𝑠𝑠

𝑚𝑖𝑛)
(1 − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡)] (36) 

where 𝑛𝑟𝑒𝑝𝑙  is the number of replicas needed, 𝑃𝑙𝑜𝑠𝑠
𝑚𝑖𝑛  the 

minimum loss probability among selected routes and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡  

the target probability of successful transmission. 

In addition to redundancy, the adaptive error correction 

technique utilizes Eq.(37) to adjust the level of error 

correction coding based on the observed error rates. 

𝐸𝐶𝑙𝑒𝑣𝑒𝑙 = ⌊𝛽. 𝜀�̅�𝑏𝑠⌋ (37) 

where 𝐸𝐶𝑙𝑒𝑣𝑒𝑙  is the level of error correction coding, 𝛽  a 

scaling factor, and 𝜀�̅�𝑏𝑠 the average observed error rate across 

the network. 

A systematic feedback loop continually monitors the 

outcomes of the recovery processes using Eq.(38) to update 

the network’s error-handling strategies accordingly. 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑖, 𝑗) = 𝛼𝑓 . (𝑃𝑙𝑜𝑠𝑠
𝑜𝑏𝑠 (𝑖, 𝑗) − 𝑃𝑙𝑜𝑠𝑠(𝑖, 𝑗)) (38) 

where 𝛼𝑓  is a feedback sensitivity parameter, and 𝑃𝑙𝑜𝑠𝑠
𝑜𝑏𝑠 (𝑖, 𝑗) 

the observed loss probability after recovery actions. Error 

Handling and Recovery process is depicted in algorithm 9.  

Input: 

 Data packets 

 Network errors 

Output: 

 Recovered data and stable network 

Pseudocode: 

1. Detect errors and calculate packet loss probability 

𝑃𝑙𝑜𝑠𝑠(𝑖, 𝑗). 

2. Activate the recovery mechanism and recalculate 

routes. 

3. Implement redundancy and packet replication 

strategies. 

4. Adjust error correction coding based on observed 

error rates. 

5. Return recovered data and stable network. 

Algorithm 9 Error Handling and Recovery 

3.10. Dynamic Route Maintenance 

Dynamic Route Maintenance captures the essence of the 

Alpine Swift’s behavior of returning to high-altitude flight 

after feeding about. After addressing errors and recovering 
from potential disruptions in the “Error Handling and 

Recovery” step, the network must regularly update and refine 

its routing paths to adapt to changing environmental and 

network conditions. This dynamic route maintenance ensures 

that the network remains agile, reliable, and efficient over 

time. 

Dynamic route maintenance is underpinned by continuous 

monitoring, where each drone in the network periodically 

broadcasts its state information, including current position, 

energy levels, and link quality. The result obtained from 

Eq.(39) is crucial for maintaining an up-to-date network 

topology view. 

𝑆𝑖 = {𝑥𝑖 , 𝑦𝑖 , 𝐸𝑖 , 𝐿𝑄𝑖𝑗∀𝑗 ∈ 𝑁𝑖} (39) 

where 𝑥𝑖 , 𝑦𝑖  are the coordinates, 𝐸𝑖  is the energy level and 

𝐿𝑄𝑖𝑗  is the link quality to each neighboring drone 𝑗. 

The routing paths are recalculated based on the monitored 

data to adapt to the dynamic conditions. Route optimization 

involves recalculating the cost of each potential path while 

considering the latest network state. The cost function 

specified in Eq.(40) integrates distance, existing traffic, 

energy consumption, and link reliability. 

𝐶𝑖𝑗 = 𝜔1. 𝑑𝑖𝑗 + 𝜔2. 𝑇𝑖𝑗 + 𝜔3 . 𝐸𝑖𝑗
−1 + 𝜔4. 𝐿𝑄𝑖𝑗

−1 (40) 

where 𝑑𝑖𝑗  is the distance, 𝑇𝑖𝑗  the traffic load, 𝐸𝑖𝑗  the energy 

efficiency, 𝐿𝑄𝑖𝑗  the link quality, and 𝜔1 , 𝜔2, 𝜔3 , 𝜔4  are 

weighting factors that prioritize these aspects based on current 

network requirements. The optimization of routes is 

conducted using a variation of Dijkstra’s algorithm that 

accounts for the multi-faceted cost function, selecting paths 
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that minimize the overall cost. Eq.(41) ensures efficient data 

flow, conserves drone energy, and enhances communication 

reliability. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑅𝑜𝑢𝑡𝑒 = 𝑎𝑟𝑔 min
𝑝∈𝑃

( ∑ 𝐶𝑖𝑗

(𝑖,𝑗)∈𝑝

) (41) 

where 𝑃  represents all possible paths from source to 

destination. 

To proactively manage the network, drones adjust their routes 

based on predictive analytics, forecasting potential network 

failures or congestions before they occur. It is computed using 

Eq.(42).  

∆𝐶𝑖𝑗 = 𝛾. (
𝜕𝐶𝑖𝑗

𝜕𝑡
) (42) 

where 𝛾 is a sensitivity parameter, and 
𝜕𝐶𝑖𝑗

𝜕𝑡
 indicates the rate 

of change in the cost function over time, allowing for 

anticipatory adjustments. 

Feedback mechanisms are integral to refining the maintenance 

process. Adjustments are made based on the success rates of 
previous routing decisions, integrating learning from past 

actions to continually enhance routing strategies, as specified 

in Eq.(43). 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑖, 𝑗) = 𝜂. (𝐶𝑖𝑗
𝑜𝑏𝑠 − 𝐶𝑖𝑗) (43) 

where 𝜂  is a feedback integration factor, and 𝐶𝑖𝑗
𝑜𝑏𝑠  is the 

observed cost of using link 𝑖, 𝑗  after routing decisions. 

Dynamic route maintenance process is shown in algorithm 10. 

Input: 

 Current network state 

 Node attributes 

Output: 

 Maintained and optimized routes 

Pseudocode: 

1. Continuously monitor network state 𝑆𝑖. 

2. Recalculate cost 𝐶𝑖𝑗 for each path. 

3. Optimize routes using Dijkstra’s algorithm. 

4. Proactively adjust routes based on predictive 

analytics. 

5. Return maintained and optimized routes. 

Algorithm 10 Dynamic Route Maintenance 

 

3.11. Energy Management 

Energy Management reflects the Alpine Swift’s remarkable 

ability to hydrate while soaring at high speeds. This 

metaphorically parallels the continuous and efficient 

management of energy resources within the drone network, 
ensuring that each drone operates optimally without depleting 

its energy reserves prematurely. After ensuring robust data 

transmission and optimizing routes in previous steps, this step 

focuses on strategic energy management across the drone 

network. The approach involves monitoring, conserving, and 

efficiently distributing energy among drones to extend 

operational time and maintain network functionality. 

Each drone’s energy consumption is tracked with a model that 

accounts for various operational modes, including idle, 

transmission, reception, and movement. The energy 

consumed by drone 𝑖  during transmission to drone 𝑗 can be 

calculated using Eq.(44). 

𝐸𝑖𝑗
𝑡𝑥 = 𝑃𝑡𝑥 . 𝑡𝑡𝑥 . 𝑑𝑖𝑗

𝛼  (44) 

where 𝑃𝑡𝑥 is the power used during transmission, 𝑡𝑡𝑥 the time 

spent transmitting, 𝑑𝑖𝑗  the distance to the receiving drone, and 

𝛼 a constant representing the energy increase with distance. 

To optimize energy use, drones dynamically adjust their 

transmission power based on their remaining energy levels 

and the required transmission distance, expressed as Eq.(45). 

𝑃𝑡𝑥
𝑛𝑒𝑤 = 𝑃𝑡𝑥 . (

𝐸𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐸𝑖
𝑚𝑎𝑥 )

𝛽

 (45) 

where 𝐸𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current energy level of drone 𝑖, 𝐸𝑖

𝑚𝑎𝑥 is 

its maximum energy capacity, and 𝛽 is a factor determining 

the sensitivity of power adjustment to the energy ratio.  

An energy redistribution strategy is implemented to balance 

the energy levels among drones, ensuring that no single drone 

depletes its energy too quickly. Eq.(46) involves transferring 

less demanding tasks to drones with higher energy reserves. 

𝐸𝑟𝑒𝑑𝑖𝑠𝑡(𝑖, 𝑗) = 𝑚𝑖𝑛(𝐸𝑖
𝑒𝑥𝑐𝑒𝑠𝑠 , 𝐸𝑗

𝑛𝑒𝑒𝑑) (46) 

where 𝐸𝑖
𝑒𝑥𝑐𝑒𝑠𝑠 is the excess energy available with drone 𝑖, and 

𝐸𝑗
𝑛𝑒𝑒𝑑 is the additional energy required by drone 𝑗 to perform 

its tasks effectively. 

The routing decisions also incorporate the energy efficiency 

metric specified in Eq.(47), choosing paths that minimize 

overall energy consumption without significantly 

compromising performance. 

𝐶𝑖𝑗
𝑒𝑛𝑒𝑟𝑔𝑦

=
1

𝐸𝑖𝑗
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (47) 
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where 𝐸𝑖𝑗
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  is the residual energy after considering the 

expected energy consumption for a proposed transmission 

between drones 𝑖 and 𝑗. 

A proactive management approach predicts future energy 

requirements and adjusts operations to prevent crises. This 

prediction uses Eq.(48) based on past energy usage patterns 

and anticipated operational demands. 

𝐸𝑓𝑢𝑡𝑢𝑟𝑒 = 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − ∫ �̇�(𝑡)𝑑𝑡
𝑡1

𝑡0

 (48) 

where �̇�(𝑡) represents the rate of energy consumption over 

time from 𝑡0 to 𝑡1. Energy management process is shown in 

algorithm 11.  

Input: 

 Energy levels 

 Transmission demands 

Output: 

 Optimized energy usage 

Pseudocode: 

1. Monitor energy consumption 𝐸𝑖𝑗
𝑡𝑥 . 

2. Adjust transmission power 𝑃𝑡𝑥
𝑛𝑒𝑤  based on energy 

levels. 

3. Implement energy redistribution among nodes. 

4. Optimize routing decisions for energy efficiency. 

5. Return optimized energy usage. 

Algorithm 11 Energy Management 

3.12. Termination and Sleep Mode 

Termination and Sleep Mode mirrors the Alpine Swift’s 

behavior of resting after long flights to conserve energy. This 

step focuses on efficiently managing the drones’ energy by 

transitioning them into sleep modes when they are not 

actively needed, thereby saving battery life and prolonging the 

operational lifespan of the network. Following the intensive 
data transmission, dynamic route maintenance, and energy 

management steps, it is crucial to implement a systematic 

approach to transition drones into a low-power state when 

their activity is not required. This approach involves 

predictive modeling and real-time monitoring to identify 

optimal times for entering sleep mode. 

The state of each drone can be modeled using a finite state 

machine with states including Active, Idle, and Sleep. The 

transition probabilities specified in Eq.(49) is between these 

states depend on current network conditions, energy levels, 

and task demands. 

𝑃𝑠𝑡𝑎𝑡𝑒(𝑡 + 1)

= {

𝑃𝑎𝑐𝑡𝑖𝑣𝑒→𝑖𝑑𝑙𝑒(𝑡) 𝑖𝑓 𝑖𝑑𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡

𝑃𝑖𝑑𝑙𝑒→𝑠𝑙𝑒𝑒𝑝(𝑡) 𝑖𝑓 𝑠𝑙𝑒𝑒𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡

𝑃𝑠𝑙𝑒𝑒𝑝→𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑟𝑖𝑠𝑒𝑠

 
(49) 

where 𝑃𝑎𝑐𝑡𝑖𝑣𝑒→𝑖𝑑𝑙𝑒(𝑡), 𝑃𝑖𝑑𝑙𝑒→𝑠𝑙𝑒𝑒𝑝(𝑡),  and 𝑃𝑠𝑙𝑒𝑒𝑝→𝑎𝑐𝑡𝑖𝑣𝑒(𝑡)  are 

the probabilities of transitioning between states at time 𝑡. 

Drones continuously monitor their task queues and energy 

levels to determine when they can enter an idle state. An idle 
condition is met when there are no immediate tasks, and the 

drone’s energy level is above a predefined threshold. Eq.(50) 

is applied for the same. 

𝐶𝑖𝑑𝑙𝑒 = (∑ 𝑇𝑘

𝑛

𝑘=1

) = 0⋀𝐸𝑖 > 𝐸𝑚𝑖𝑛  (50) 

where 𝑇𝑘  represents the tasks in the queue, 𝐸𝑖  the current 

energy level, and 𝐸𝑚𝑖𝑛  the minimum required energy to 

remain operational. 

Once idle, the drone evaluates the benefits of entering sleep 

mode. The sleep mode is activated if the projected idle time 

exceeds a certain threshold specified in Eq.(51), ensuring that 

the energy savings justify the transition costs: 

𝐶𝑠𝑙𝑒𝑒𝑝 = 𝑇𝑖𝑑𝑙𝑒 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (51) 

where 𝑇𝑖𝑑𝑙𝑒  is the projected idle time, and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is the 

minimum duration that justifies entering sleep mode. 

The energy savings from entering sleep mode can be 

quantified using Eq.(52). It compares the energy consumption 

in active or idle states with that in sleep mode. 

𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = (𝐸𝑎𝑐𝑡𝑖𝑣𝑒 − 𝐸𝑠𝑙𝑒𝑒𝑝). 𝑇𝑠𝑙𝑒𝑒𝑝 (52) 

where 𝐸𝑎𝑐𝑡𝑖𝑣𝑒  is the energy consumption rate in the active 

state, 𝐸𝑠𝑙𝑒𝑒𝑝 the energy consumption rate in sleep mode, and 

𝑇𝑠𝑙𝑒𝑒𝑝 the duration spent in sleep mode. 

A wake-up trigger mechanism ensures that drones in sleep 

mode can be quickly reactivated when needed. This trigger is 

based on external signals such as network activity, emergency 

tasks, or scheduled wake-up times. Eq.(53) expresses the 

wake-up trigger. 

𝑇𝑤𝑎𝑘𝑒−𝑢𝑝

= {
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑟𝑖𝑠𝑒𝑠

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑡𝑖𝑚𝑒   𝑖𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑐ℎ𝑒𝑐𝑘
 

(53) 

Combining these models, the overall energy management 

strategy ensures that drones transition efficiently between 

active, idle, and sleep states, optimizing energy consumption 

and extending the network’s operational lifespan, as shown in 

Eq.(54). 
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𝑚𝑖𝑛 ∑(𝐸𝑎𝑐𝑡𝑖𝑣𝑒 . 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐸𝑖𝑑𝑙𝑒 . 𝑇𝑖𝑑𝑙𝑒 + 𝐸𝑠𝑙𝑒𝑒𝑝. 𝑇𝑠𝑙𝑒𝑒𝑝)

𝑛

𝑖=1

 (54) 

where 𝑛 is the number of drones and 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑇𝑖𝑑𝑙𝑒, and 𝑇𝑠𝑙𝑒𝑒𝑝 

are the times spent in each respective state. Termination and 

sleep model is shown in algorithm 12.  

Input: 

 Task queues 

 Energy levels 

Output: 

 Drones in sleep mode 

Pseudocode: 

1. For each drone: 

 Monitor task queue and energy level. 

 If the idle condition is met, transition to the idle 

state. 

 If sleep condition is met, transition to sleep 

mode. 

2. Calculate energy savings. 

3. Implement wake-up triggers. 

4. Optimize overall energy management. 

5. Return drones to sleep mode. 

Algorithm 12 Termination and Sleep Mode 

3.13. Framework of ASRP 

This section provides an overview of the ASRP’s structure 

and operation. Figure 1 illustrates the flow and framework of 

ASRP, providing a visual guide to its key processes and 

interactions within the network. For a deeper understanding, 
Algorithm 13 presents the pseudocode, detailing the specific 

steps and logic that underpin the protocol’s functionality. This 

combination of diagrammatic and algorithmic representations 

ensures a clear and comprehensive understanding of ASRP’s 

operational framework. 

Input: 

 Set of all nodes 𝑁 

 Node attributes 𝑎𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖 , 𝑤𝑖) 

 Data packets with priority levels 

Output: 

 Optimized and maintained network with efficient 

data transmission 

Pseudocode: 

1. For each node 𝑖 in 𝑁: 

 For each node 𝑗 in 𝑁, where 𝑗 ≠ 𝑖: 

 Calculate distance 𝑑𝑖𝑗  and signal strength 

𝑆𝑖𝑗 . 

 If 𝑆𝑖𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,  add a link (𝑖, 𝑗)  to the 

topology. 

2. For each node 𝑖 in 𝑁: 

 Monitor environmental factors and calculate 

impact 𝐹(𝑒𝑡). 

 Update adaptability index 𝐴𝑖(𝑡). 

3. For each node 𝑖 in 𝑛: 

 Identify neighbors 𝑆𝑖  and calculate 𝑝𝑖𝑗(𝑡) 

and 𝑇𝑖𝑗 . 

 Update the routing table using Dijikstra’s 

algorithm. 

4. For each discovered route: 

 Evaluate relay potential and establish 

efficient paths. 

5. For each data packet 𝑃: 

 Calculate priority 𝜋(𝑃)  and routing cost 

𝐶𝑖𝑗(𝑃). 

 Select the next-hop using Dijkstra’s 

algorithm. 

6. For each link (𝑖, 𝑗): 

 Calculate energy cost 𝐸𝑖𝑗  and adjust the 

transmission power 𝑃𝑡𝑥
𝑛𝑒𝑤 . 

 Optimize paths to minimize energy 

consumption. 

7. Monitor network state and calculate adjustment 

factors 𝐴𝑖𝑗 . 

 Recalculate routes and update paths 

dynamically. 

8. For each link (𝑖, 𝑗): 

 Calculate 𝐶𝑖𝑗 and 𝐹𝑖𝑗 . 

 Optimize network flow and adjust 

transmission strategies. 

9. Detect errors and calculate 𝑃𝑙𝑜𝑠𝑠(𝑖, 𝑗). 
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 Activate recovery mechanisms and implement 

redundancy. 

10. Monitor network state and recalculate 𝐶𝑖𝑗 . 

 Optimize routes and adjust proactively. 

11. Monitor energy consumption and adjust 𝑃𝑡𝑥
𝑛𝑒𝑤 . 

 Implement energy consumption and adjust 𝑃𝑡𝑥
𝑛𝑒𝑤 . 

12. For each drone: 

 Monitor task queues and energy levels. 

 If idle conditions are met, transition to an 

idle state. 

 If sleep conditions are met, transition to 

sleep mode. 

 Calculate energy savings and implement 

wake-up triggers. 

Algorithm 13 ASRP

 

Figure 1 Framework of ASRP 

 

Initialization 

Environmental Adaption 

Adaption Needed? 

Route Recovery 

Route Optimization 

Data Management 

Path Selection 

Error? 

Network Operation 

Energy Management 

Route Maintenance 

Energy Level Sufficient? 

No 

No 

No 

Yes 

Yes 

Yes 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/45                         Volume 11, Issue 5, September – October (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       742 

     

RESEARCH ARTICLE 

4. RESULTS AND DISCUSSION 

4.1. Simulation Setting 

In this research on DANET, the NS-3 simulation tool is used. 

Simulations run for 900 seconds, with data collected every 

second and initialized with random seeds. The network 
features 50 to 500 nodes within a 1000m x 1000m area, 

employing grid and random topologies and the Random 

Waypoint mobility model. Communication follows IEEE 

802.11 standards. Environmental factors such as wind speed 

and obstacles are considered. Table 2 provides the simulation 

settings for evaluating the proposed routing protocol against 

the state-of-the-art literature. 

Table 2 Simulation Setting 

 Parameter 

Category  

Parameter Value/Range 

General Simulation Tool NS-3 

Simulation Duration 900 seconds 

Data Collection 

Frequency 

1 second 

Simulation Seed Random 

Network 

and 
Environme

nt 

Parameters 

Nodes 50 - 500 

Environment 

Dimensions 

1000m x 1000m 

Network Topology Grid, Random 

Model of Mobility Random Waypoint 

Speed of Drone 

Movement 

5 - 18 m/s 

Standby Time 20 - 180 seconds 

Environmental Factors Wind Speed, 

Obstacles 

Communic

ation 

Parameters 

MAC and PHY Layers IEEE 802.11 

Transmission Range 80m - 240m 

Channel Bandwidth 20 MHz 

Interference Model Basic, Detailed 

Propagation Model Two-Ray Ground 

Reflection 

Path Loss Model Free Space, Two-

Ray Ground 

Collision Avoidance 

Mechanism 

RTS/CTS 

Traffic and 

Protocol 

Parameters 

Protocol AODV, DSR, 

OLSR, etc. 

Traffic Pattern CBR (Constant Bit 

Rate) 

Packet Size 256 bytes 

Transmission Rate 2 Mbps - 12 Mbps 

Packet Interval 0.2 - 1 second 

Queue FIFO, DropTail 

Control Packet Interval 0.5 - 5 seconds 

Congestion Control 

Mechanism 

TCP, UDP 

Energy 

Parameters 

Initial Energy 1000 Joules 

Energy Model Linear Battery 

Model 

Sleep Mode Energy 

Consumption 

0.1 Joules/second 

Packet Transmission 

Energy 
0.5 Joules/packet 

Packet Reception 

Energy 

0.3 Joules/packet 

4.2. Packet Delivery Ratio and Packet Loss Ratio Analysis 

Figure 2, titled “Packet Delivery Ratio and Packet Loss Ratio 

Results,” showcases the number of drones on the X-axis, 

ranging from 50 to 500. The left side of the Y-axis represents 

the Packet Delivery Ratio (PDR), and the right side displays 

the Packet Loss Ratio (PLR), with both metrics measured in 

percentages. These values are crucial for assessing the 

effectiveness and reliability of network communications. The 

PDR, represented on the left side of the Y-axis, quantifies the 

percentage of packets that successfully reach their intended 
destination, serving as a gauge of network reliability. The 

PLR, detailed on the right side of the Y-axis, calculates the 

percentage of packets that do not reach their destination, 

indicating potential inefficiencies or problems within the 

network’s routing protocols. Degradation in AODV’s 

performance, reflected in the data from Table 3, arises from 

its susceptibility to loop formations during route discovery. 

This issue leads to unnecessary routing loops, significantly 

increasing packet loss and decreasing delivery rates, 

particularly as the network expands in drone numbers. 

QSCR’s performance is negatively impacted by its 
dependency on dynamic cluster formations. The constant 

adjustments required in the high-mobility environment of 

DANETs lead to delays and disrupt routing accuracy, 

adversely affecting the Packet Delivery and Loss Ratios. 
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Figure 2 Packet Delivery Ratio and Packet Loss Ratio Results 

Table 3 Packet Delivery Ratio and Packet Loss Ratio Result Values 

 
Packet Delivery Ratio (%) Packet Loss Ratio (%) 

No. of Drones AODV QSCR ASRP AODV QSCR ASRP 

50 44.492 52.260 94.290 55.508 47.740 5.710 

100 41.557 49.538 92.208 58.443 50.462 7.792 

150 38.696 46.866 90.119 61.304 53.134 9.881 

200 35.178 44.049 88.639 64.822 55.951 11.361 

250 32.268 41.841 87.269 67.732 58.159 12.731 

300 29.881 40.044 85.967 70.119 59.956 14.033 

350 27.680 38.501 84.537 72.320 61.499 15.463 

400 25.530 36.788 83.126 74.470 63.212 16.874 

450 23.549 35.088 81.544 76.451 64.912 18.456 

500 21.541 33.251 79.557 78.459 66.749 20.443 

Average 32.037 41.823 86.726 67.963 58.177 13.274 

ASRP demonstrates significant performance improvements 

across various drone densities. Its design effectively manages 

node mobility and adapts to substantial changes in network 

topology without declining performance. The robustness of 

ASRP in adverse conditions and its compatibility with various 

network architectures improve its packet-handling 

capabilities. This is evidenced by consistently lower packet 

loss and higher delivery rates compared to AODV and QSCR, 

as shown in Table 3. ASRP’s ability to maintain high 

efficiency and reliability suits it, particularly for complex and 

dynamic networks like DANETs. 

4.3. Latency Analysis 

Figure 3, titled “Latency Analysis Results,” presents how 

latency, measured in milliseconds, scales with the number of 

drones from 50 to 500. This data highlights how each routing 
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protocol handles the increasing demands of larger network 

configurations. 

In the analysis of latency based on Table 4, AODV shows an 

upward trend in latency as the network size increases, with an 

average latency of 3907 milliseconds. This increasing delay is 
primarily due to AODV’s reliance on periodic HELLO 

messages needed to maintain network topology. While these 

messages are crucial for connectivity, they also add 

significant overhead, slowing the network as more drones 

participate. QSCR, designed to handle dynamic clustering, 

also exhibits increasing latency, averaging 3312 milliseconds. 

The protocol’s need to frequently update and recalculate 

routes in response to drone mobility introduces additional 
delays. Each recalculation, necessary to maintain accurate 

cluster information, adds to the time it takes for packets to 

navigate the network, thus extending latency significantly as 

the number of drones increases. 

 

Figure 3 Latency Analysis Results 

Table 4 Latency Analysis Result Values 

No. of Drones AODV (ms) QSCR (ms) ASRP (ms) 

50 3623 3017 555 

100 3735 3039 579 

150 3808 3073 613 

200 3868 3120 652 

250 3909 3214 685 

300 3948 3320 718 

350 3984 3431 752 

400 4023 3537 787 

450 4066 3633 824 

500 4105 3732 859 

Average 3907 3312 702 
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ASRP stands out with its markedly lower average latency of 

702 milliseconds across varying drone counts. This efficiency 

is attributed to ASRP’s design, which adapts swiftly to 

changes in network topology without excessive recalculations 

or routing overhead. By minimizing the time packets remain 
in transit and reducing the need for frequent network-wide 

updates, ASRP ensures faster packet delivery and 

significantly lowers latency, proving its effectiveness in 

managing dynamic and complex drone networks. 

4.4. Energy Consumption Analysis 

Figure 4, “Energy Consumption Results,” quantifies the 

energy consumption rates for different routing protocols as a 

function of increasing drone counts, ranging from 50 to 500. 

This figure, supported by data from Table 5, highlights the 

direct impact of routing efficiencies on energy utilization 

across varied network scales. 

 

Figure 4 Energy Consumption Results 

For AODV, the notable increase in energy consumption, 
which averages 67.743%, is significantly influenced by its 

inherent disadvantage related to delayed packet delivery. 

Frequent route discoveries and potential failures require 

substantial energy resources, leading to increased 

consumption. As network size expands, these inefficiencies 

compound, necessitating more energy to maintain network 

stability and flow of communication, thus escalating overall 

consumption. QSCR also shows an upward trend in energy 

usage, averaging 63.464%. This increase aligns with its 

challenge of managing high node mobility, which often leads 

to frequent route recalculations and higher energy demands to 

maintain effective communication pathways. Each 

recalculation impacts timely data transmission and increases 

the energy footprint of the routing process. 

Table 5 Energy Consumption Result Values 

No. of 

Drones 

AODV 

(%) 

QSCR 

(%) 

ASRP 

(%) 

50 58.567 52.093 8.459 

100 60.135 54.494 10.168 

150 61.905 57.741 12.611 

200 64.326 60.759 15.378 

250 66.685 63.192 17.649 

300 68.725 65.149 19.768 

350 70.764 67.065 21.998 

400 73.043 69.089 24.129 

450 75.521 71.342 26.294 

500 77.762 73.713 28.525 

Average 67.743 63.464 18.498 

ASRP demonstrates a considerably lower average energy 
consumption of 18.498%. This efficiency stems from ASRP’s 

robust performance even in adverse network conditions, a 

vital advantage of the protocol. By maintaining high 

efficiency and minimizing disruptions in the data flow, ASRP 

reduces the need for repetitive route recalculations and 

excessive signaling. The protocol’s ability to sustain 

connectivity and ensure consistent data delivery with minimal 

energy expenditure underlines its suitability for large-scale, 

energy-conscious network deployments. This characteristic is 

critical in extending drone networks’ operational duration and 

reliability, particularly when power availability is a limiting 

factor. 

4.5. Link Stability 

Figure 5, “Link Stability Results,” provides a comparative 

analysis of how AODV, QSCR, and ASRP maintain 

communication link stability across increasing numbers of 

drones, with stability measured in milliseconds (ms). This 

metric is crucial for understanding the network’s reliability as 

the number of participating nodes scales up. 

AODV shows declining link stability, with an average 

stability value of 4.339 ms, as indicated in Table 6. This 

decline can be linked to the lack of a practical route caching 

mechanism in AODV. The protocol’s inability to store and 
efficiently reuse routes results in frequent rediscovery 

processes. This constant need to establish new routes disrupts 

the continuity of connections, significantly reducing link 

stability as the number of drones increases. 
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Figure 5 Link Stability Results 

QSCR exhibits slightly better stability, averaging 5.381 ms, as 

detailed in Table 6. However, the greedy nature of its routing 

algorithm introduces limitations. Greedy routing often relies 

on the nearest cluster head, which may not always be ideally 

positioned toward the destination. This misalignment can lead 

to suboptimal routing paths that strain the network, reducing 
overall stability and causing fluctuations in link reliability as 

drone positions change. 

Table 6 Link Stability Result Values 

No. of 

Drones 

AODV 

(ms) 

QSCR 

(ms) 

ASRP 

(ms) 

50 5.368 6.380 9.672 

100 5.076 6.197 9.559 

150 4.905 5.929 9.440 

200 4.677 5.652 9.297 

250 4.474 5.443 9.165 

300 4.254 5.246 9.026 

350 4.011 5.045 8.842 

400 3.771 4.829 8.643 

450 3.545 4.632 8.453 

500 3.310 4.458 8.249 

Average 4.339 5.381 9.035 

ASRP shows a significantly higher average link stability of 

9.035 ms, as shown in Table 6. The protocol’s broad 

compatibility with various network architectures is a crucial 

advantage, allowing it to adapt seamlessly across different 

environments. ASRP’s ability to integrate smoothly with a 
wide range of network types ensures that communication 

links are maintained consistently without the interruptions 

seen in other protocols. This robustness in link stability makes 

ASRP particularly suitable for dynamic drone networks, 

where maintaining continuous and reliable communication is 

critical to operational success. 

4.6. Hop Count Analysis 

Figure 6, “Hop Count Analysis,” evaluates the number of 

hops required for data packets to reach their destination across 

varying numbers of drones. The X-axis represents the number 

of drones in the network, ranging from 50 to 500, while the 
Y-axis shows the average hop count, reflecting the efficiency 

of the routing protocols. 

AODV demonstrates a high and consistent average hop count 

of 10.059, as seen in Table 7. Its inability to handle high-

speed network demands effectively hinders the protocol’s 

performance. This limitation forces the protocol to use longer, 

less efficient paths, resulting in more hops. QSCR, with an 

average hop count of 9.031, is also affected by its routing 

algorithm’s sensitivity to the discount factor. This sensitivity 

leads to suboptimal routing decisions, particularly in more 

extensive networks, where it struggles to consistently choose 

the most direct paths, thereby increasing the hop count. 

 

Figure 6 Hop Count Analysis 
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Table 7 Hop Count Analysis Result Values 

No. of 

Drones 
AODV QSCR ASRP 

50 9.969 8.834 3.607 

100 9.992 8.896 3.903 

150 10.010 8.946 4.084 

200 10.035 8.988 4.222 

250 10.055 9.025 4.373 

300 10.072 9.059 4.512 

350 10.090 9.091 4.641 

400 10.107 9.123 4.747 

450 10.124 9.156 4.839 

500 10.141 9.188 4.921 

Average 10.059 9.031 4.385 

ASRP significantly reduces the average hop count to 4.385, as 

indicated in Table 7. The protocol’s design optimizes for 
long-distance routing, ensuring that data packets traverse the 

network using the most direct paths available. This 

optimization minimizes the number of intermediary hops, 

improving overall network efficiency and performance. The 

substantial reduction in hop count achieved by ASRP 

highlights its effectiveness in environments requiring fast and 

reliable data transmission, making it a superior choice for 

managing complex and large-scale drone networks. 

5. CONCLUSION 

ASRP sets a new standard for managing the complexities of 

DANETs. By addressing the critical challenges of scalability 
and routing efficiency, ASRP ensures that drone networks 

remain stable, efficient, and capable of adapting to dynamic 

environments. The protocol employs a design that 

continuously adjusts to changing conditions within the 

network, ensuring optimal performance. This approach 

significantly enhances communication reliability and reduces 

energy consumption, which is crucial for extending the 

operational life of drones in various scenarios. Simulation 

results confirm the protocol’s ability to deliver improved data 

transmission efficiency while minimizing resource usage, 

underscoring its effectiveness in managing large-scale drone 

networks. ASRP’s capabilities suggest a strong foundation for 
future advancements in drone communication, offering a 

reliable and scalable solution for increasingly demanding 

applications. Adopting ASRP within DANETs promises to 

support more complex missions by maintaining consistent 

network performance, even under challenging conditions. 

This advancement addresses current limitations and opens the 

door to further innovation in autonomous drone networks, 

ensuring they can meet the evolving demands of modern 

operations. 
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