1.
Liu, L., Wang, R., Xiao, G., & Guo, D. (2020). On the throughput optimization for message dissemination in opportunistic underwater sensor networks. Computer Networks, 169, 107097. https://doi.org/10.1016/j.comnet.2020.107097.
2.
Mishachandar, B., & Vairamuthu, S. (2021). An underwater cognitive acoustic network strategy for efficient spectrum utilization. Applied Acoustics, 175, 107861. https://doi.org/10.1016/j.apacoust.2020.107861.
3.
Camara Junior, E. P. M., Vieira, L. F. M., & Vieira, M. A. M. (2020). CAPTAIN: A data collection algorithm for underwater optical-acoustic sensor networks. Computer Networks, 171, 107145. https://doi.org/10.1016/j.comnet.2020.107145.
4.
Shakila, R., & Paramasivan, B. (2020). Performance Analysis of Submarine Detection in Underwater Wireless Sensor Networks for Naval Application. Microprocessors and Microsystems, 103293. https://doi.org/10.1016/j.micpro.2020.103293.
5.
Dong, M., Li, H., Yin, R., Qin, Y., & Hu, Y. (2021). Scalable asynchronous localization algorithm with mobility prediction for underwater wireless sensor networks. Chaos, Solitons & Fractals, 143, 110588. https://doi.org/10.1016/j.chaos.2020.110588.
6.
Zhang, W., Wang, X., Han, G., Peng, Y., Guizani, M., & Sun, J. (2021). A load-adaptive fair access protocol for MAC in underwater acoustic sensor networks. Journal of Network and Computer Applications, 173, 102867. https://doi.org/10.1016/j.jnca.2020.102867.
7.
Roy, A., & Sarma, N. (2020). A synchronous duty-cycled reservation based MAC protocol for underwater wireless sensor networks. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2020.09.002.
8.
Vijayan, K., Ramprabu, G., Selvakumara Samy, S., & Rajeswari, M. (2020). Cascading Model in Underwater Wireless Sensors using Routing Policy for State Transitions. Microprocessors and Microsystems, 79, 103298. https://doi.org/10.1016/j.micpro.2020.103298.
9.
Ojha, T., Misra, S., & Obaidat, M. S. (2020). SEAL: Self-adaptive AUV-based localization for sparsely deployed Underwater Sensor Networks. Computer Communications, 154, 204–215. https://doi.org/10.1016/j.comcom.2020.02.050.
10.
Toky, A., Singh, R. P., & Das, S. (2020). Localization schemes for Underwater Acoustic Sensor Networks - A Review. Computer Science Review, 37, 100241. https://doi.org/10.1016/j.cosrev.2020.100241.
11.
Zhang, M., & Cai, W. (2020). Energy-Efficient Depth Based Probabilistic Routing Within 2-Hop Neighborhood for Underwater Sensor Networks. IEEE Sensors Letters, 4(6), 1–4. https://doi.org/10.1109/LSENS.2020.2995236.
12.
Rani, S., Ahmed, S. H., Malhotra, J., & Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42–50. https://doi.org/10.1016/j.jnca.2017.01.011.
13.
Han, G., Liu, L., Bao, N., Jiang, J., Zhang, W., & Rodrigues, J. J. P. C. (2017). AREP: An asymmetric link-based reverse routing protocol for underwater acoustic sensor networks. Journal of Network and Computer Applications, 92, 51–58. https://doi.org/10.1016/j.jnca.2017.01.009.
14.
Bharamagoudra, M. R., Manvi, S. S., & Gonen, B. (2017). Event driven energy depth and channel aware routing for underwater acoustic sensor networks: Agent oriented clustering based approach. Computers & Electrical Engineering, 58, 1–19. https://doi.org/10.1016/j.compeleceng.2017.01.004.
15.
Ullah, I., Chen, J., Su, X., Esposito, C., & Choi, C. (2019). Localization and Detection of Targets in Underwater Wireless Sensor Using Distance and Angle Based Algorithms. IEEE Access, 7, 45693–45704. https://doi.org/10.1109/ACCESS.2019.2909133
16.
Du, X., Huang, K., Lan, S., Feng, Z., & Liu, F. (2014). LB-AGR: level-based adaptive geo-routing for underwater sensor network. The Journal of China Universities of Posts and Telecommunications, 21(1), 54–59. https://doi.org/10.1016/S1005-8885(14)60268-5.
17.
Faheem, M., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient multi-objective evolutionary routing scheme for reliable data gathering in Internet of underwater acoustic sensor networks. Ad Hoc Networks, 93, 101912. https://doi.org/10.1016/j.adhoc.2019.101912.
18.
Ali, T., Jung, L. T., & Faye, I. (2014). Diagonal and Vertical Routing Protocol for Underwater Wireless Sensor Network. Procedia - Social and Behavioral Sciences, 129, 372–379. https://doi.org/10.1016/j.sbspro.2014.03.690.
19.
Su, Y., Fan, R., & Jin, Z. (2019). ORIT: A Transport Layer Protocol Design for Underwater DTN Sensor Networks. IEEE Access, 7, 69592–69603. https://doi.org/10.1109/ACCESS.2019.2918561
20.
Jiang, J., Han, G., Guo, H., Shu, L., & Rodrigues, J. J. P. C. (2016). Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. Journal of Network and Computer Applications, 59, 4–13. https://doi.org/10.1016/j.jnca.2015.01.005.
21.
Patil, K., Jafri, M., Fiems, D., & Marin, A. (2019). Stochastic modeling of depth based routing in underwater sensor networks. Ad Hoc Networks, 89, 132–141. https://doi.org/10.1016/j.adhoc.2019.03.009.
22.
Ilyas, N., Alghamdi, T. A., Farooq, M. N., Mehboob, B., Sadiq, A. H., Qasim, U., Khan, Z. A., & Javaid, N. (2015). AEDG: AUV-aided Efficient Data Gathering Routing Protocol for Underwater Wireless Sensor Networks. Procedia Computer Science, 52, 568–575. https://doi.org/10.1016/j.procs.2015.05.038.
23.
Kanthimathi, N., & Dejey. (2017). Void handling using Geo-Opportunistic Routing in underwater wireless sensor networks. Computers & Electrical Engineering, 64, 365–379. https://doi.org/10.1016/j.compeleceng.2017.07.016.
24.
Javaid, N., Hussain, S., Ahmad, A., Imran, M., Khan, A., & Guizani, M. (2017). Region based cooperative routing in underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 31–41. https://doi.org/10.1016/j.jnca.2017.01.013.
25.
Jafri, M. R., Sandhu, M. M., Latif, K., Khan, Z. A., Yasar, A. U. H., & Javaid, N. (2014). Towards Delay-sensitive Routing in Underwater Wireless Sensor Networks. Procedia Computer Science, 37, 228–235. https://doi.org/10.1016/j.procs.2014.08.034.
26.
Ramkumar, J., & Vadivel, R. (2020). Improved Wolf prey inspired protocol for routing in cognitive radio Ad Hoc networks. International Journal of Computer Networks and Applications, 7(5), 126–136. https://doi.org/10.22247/ijcna/2020/202977.
27.
Ramkumar, J., & Vadivel, R. (2020b). Meticulous elephant herding optimization based protocol for detecting intrusions in cognitive radio ad hoc networks. International Journal of Emerging Trends in Engineering Research, 8(8). https://doi.org/10.30534/ijeter/2020/82882020.
28.
Wu, Tq., Yao, M. & Yang, Jh. (2016). Dolphin swarm algorithm. Frontiers Inf Technol Electronic Eng 17, 717–729. https://doi.org/10.1631/FITEE.1500287
29.
Z. Wang, G. Han, H. Qin, S. Zhang & Y. Sui. (2018). An Energy-Aware and Void-Avoidable Routing Protocol for Underwater Sensor Networks," IEEE Access, 6, 7792-7801. doi: 10.1109/ACCESS.2018.2805804.
30.
Gopi, S., Govindan, K., Chander, D., Desai, U. B., & Merchant, S. N. (2010). E-PULRP: Energy optimized path unaware layered routing protocol for underwater sensor networks. IEEE Transactions on Wireless Communications, 9(11), 3391–3401. https://doi.org/10.1109/TWC.2010.091510.090452.