1.
R DaÅŸ, A Karabade, G Tuna, “Common Network Attack Types and Defense Mechanismsâ€, in Signal Processing and Communications Applications Conference (SIU), 16-19 May 2015, pp. 2658 – 266.
2.
P. Kessel, K. Allan, “Get ahead of cybercrime†in Global Information Security Survey, October 2014, pp. 1-36.
3.
M Panda, A. Abraham, M. R. Patra, “A hybrid intelligent approach for network intrusion detection†in International Conference on Communication Technology and System Design, vol. 30, 2012, pp. 1-9.
4.
O. Can, O.K. Sahingoz, “A survey of intrusion detection systems in wireless sensor networks†in 6th International Conference on in Modeling, Simulation, and Applied Optimization (ICMSAO), 27-29 May 2015, pp.1-6.
5.
R.C. Summers, “Secure computing: Threats and safe-guards†in Computers, New York: McGraw-Hill, 2000, pp. 1-688
6.
C. P. Pfleeger, S. L. Pfleeger, “Security in Computing†in Computer Security, 4th ed., USA: Prentice Hall PTR, 2006, pp. 1-845.
7.
Firewalls (2015). Firewall definition from pc magazine encyclopedia. Retrieved from http://www.pcmag.com/encyclopedia/term /43218/firewall; accessed June 18, 2015.
8.
W. Stallings, “Cryptography and Network Security: Principles and Practice†5th ed., USA: Prentice Hall Press, pp. 1-900
9.
H. M. Imran, A. B. Abdullah, M. Hussain, S. Palaniappan, and I. Ahmad, “Intrusions detection based on optimum features subset and efficient dataset selection†in International Journal of Engineering and Innovative Technology(IJEIT) vol. 2, no. 6, 2012, pp. 265-270.
10.
U. Bashir, M. Chachoo, “Intrusion detection and prevention system: Challenges & opportunities†in International Conference on Computing for Sustainable Global Development (INDIA Com), 5-7 March 2014, pp.806-809.
11.
M. Baykara, R. DaÅŸ, “A Survey on Potential Applications of Honeypot Technology in Intrusion Detection Systemsâ€, in International Journal of Computer Networks and Applications (IJCNA), vol. 2, no. 5, October 2015, pp. 203-208.
12.
M. J. Ikram, J. Cazalas, “Efficient Collaborative Technique using Intrusion Detection System for Preserving Privacy in Location based Servicesâ€, in International Journal of Computer Networks and Applications (IJCNA), vol. 2, no. 5, October 2015, pp. 222-231.
13.
H. Benmoussa, A. A. Kalam, A. A. Ouahman, “Towards a new intelligent generation of intrusion detection systemâ€, in Proceedings of the 4th Edition of National Security Days, 12-13 May 2014, pp.1-5.
14.
S. Benferhat, K. Tabia, “Integrating Anomaly-Based Approach into Bayesian Network Classifiers†in e-Business and Telecommunications, 2009, vol.8, eds. Joaquim Filipe, Mohammad S. Obaidat, pp. 127-139.
15.
J. McHugh, “Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory†in ACM Transactions on Information and System Security, vol. 3, no. 4, 2000, pp. 262–294.
16.
A. Hofmann, B. Sick, “Online Intrusion Alert Aggregation with Generative Data Stream Modeling," in IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 2, 2011, pp. 282-294.
17.
O. Maimon, L. Rokach (Eds.), “Data Mining and Knowledge Discovery Handbook†in Database Management & Information Retrieval, 2nd ed. Springer, 2010, pp. 1-1285
18.
J. P. Anderson, “Computer security threat monitoring and surveillance,†Technical Report, Fort Washington, Pennsylvania, USA, 1980.
19.
W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detection†in Proceedings of the 7th conference on USENIX Security Symposium, vol. 7, San Antonio, TX, 1998.
20.
R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999 DARPA off-line intrusion detection evaluation†in Computer Networks, vol. 34, no. 4, 2000, pp. 579-595.
21.
M. G. Schultz, E. Eskin, E. Zadok, S. J. Stolfo, “Data Mining Methods for detection of New Malicious Executablesâ€, in IEEE Symposium on Security and Privacy, Columbia University, 14-16 May 2000, pp.38-49.
22.
T. Hwang, T.Lee, and Y. Lee, “A Three-tier IDS via Data Mining Approach†in Proceedings of the 3rd annual ACM workshop on Mining network data, 2007, pp. 1-6.
23.
P. Srinivasulu, D. Nagaraju, P. R. Kumar, and K. N. Rao, “Classifying the Network Intrusion Attacks using Data Mining Classification Methods and their Performance Comparison†in IJCSNS International Journal of Computer Science and Network Security, vol. 9, no.6, 2009, pp. 11-18.
24.
M. Tavallaee, E. Bagheri, L. Wei, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 dataset†in IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA’09, Piscataway, NJ, USA, 2009, pp. 53–58. IEEE Press.
25.
K. Reddy, M. Iaeng, V. N. Reddy, and P. G. Rajulu, in “A Study of Intrusion Detection in Data Mining†in World Congress on Engineering, vol. III, 2011, July 6-8.
26.
G. V. Nadiammai and M. Hemalatha, “Perspective analysis of machine learning classifiers for detecting network intrusions†in IEEE Third International Conference on Computing Communication & Networking Technologies (ICCCNT), India, 26-28 July 2012, 2012, pp. 1-7.
27.
G. Kalyani and A. J. Lakshmi, “Performance Assessment of Different Classification Techniques for Intrusion Detection†in IOSR Journal of Computer Engineering (IOSRJCE), vol. 7, no. 5, 2012, pp. 25-29.
28.
S. Subramanian, V. B. Srinivasan, and C. Ramasa, “Study on Classification Classifiers for Network Intrusion Systems†in Journal of Communication and Computer, vol. 9, 2012, pp. 1242-1246.
29.
B. Neethu, “Classification of Intrusion Detection Dataset using machine learning Approaches†in International Journal of Electronics and Computer Science Engineering, vol. 1, 2012, pp. 1044-51.
30.
S. Revathi, Dr. A. Malathi, “A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detectionâ€, in International Journal of Engineering Research & Technology (IJERT), vol. 2 no. 12, 2013, pp. 1848-1853
31.
L. Dhanabal, Dr. S.P. Shantharajah, “A Study on NSL-KDD Dataset for IntrusionDetection System Based on Classification Algorithms†in International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 6, 2015, pp. 446-452.
32.
P. C. Murthy, Dr. A. S. Manjunatha, A. Jaiswal, B. R. Madhu, “Building Efficient Classifiers For Intrusion Detection With Reduction of Features†in International Journal of Applied Engineering Research, vol. 11, no. 6, 2016, pp. 4590-4596
33.
WEKA. (2014). Weka 3 - Data Mining with Open Source Machine Learning Software in Java. [Online] Available at: http://www.cs.waikato.ac.nz/ml/weka/ [Accessed: 4 Mar 2014].
34.
KDD Cup 1999. Available on: http://kdd.ics.uci.edu/databases/kddcup 99/kddcup99.html
35.
M. Lichman, (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml. accessed sep 2016.
36.
I. H. Witten, E. Frank, and M. A. Hall, “Data Mining: Practical Machine Learning Tools and Techniquesâ€, 3rd ed., eds. J. Geller, E. Davis, P.A. Flach, Morgan Kaufmann Publishers Inc, 2011, pp. 1-558
37.
G. H. John, P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers†in Proc. Of the 11th Conference on Uncertainity in Artificial Intelligence, August 18 - 20, 1995, pp. 338-345
38.
Dash, R. Kumari. “Selection of the Best Classifier from Different Datasets Using WEKA†in International Journal ofEngineering Research and Technology, vol. 2, no. 3, March-2013.
39.
S. L Cessie, J. C. Van Houwelingen, “Ridge Estimators in Logistic Regression†in Applied Statistics, vol. 41, no. 1, 1992, pp. 191-201.
40.
P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciencesâ€. PhD Thesis, Harvard University, 1974.
41.
B.R. Gaines, P. Compton, “Induction of ripple-down rules applied to modeling large databasesâ€
42.
S Vijayaran, Sudha. “An Effective Classification Rule Technique for Heart Disease Prediction†in International Journal of Engineering Associates (IJEA), vol.1, no. 4, 2013, pp.81-85.
43.
S. Ali, K. A. Smith, “On learning algorithm selection for classification†in Applied Soft Computing, vol. 6, no. 2, 2006, pp. 119-138.
44.
J. Quinlan “C4.5: Programs for Machine Learning†in -----. Morgan Kaufmann, San Mateo, 1993.
45.
R. Kohavi, “Scaling up the accuracy of naïve-bayes classifier: A decision-tree hybrid†in Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, pp.202–207. AAAI Press, Menlo Park, 1996.