1.
Ishteyaq, I., Muzaffar, K., Shafi, N., & Alathbah, M. A. (2024). Unleashing the power of tomorrow: exploration of next frontier with 6G networks and cutting edge technologies. IEEE Access, 12, 29445-29463.
2.
Mahmoud, H. H. H., Amer, A. A., & Ismail, T. (2021). 6G: A comprehensive survey on technologies, applications, challenges, and research problems. Transactions on Emerging Telecommunications Technologies, 32(4), e4233.
3.
Dogra, A., Jha, R. K., & Jain, S. (2020). A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE access, 9, 67512-67547.
4.
Ahokangas, P., Gisca, O., Matinmikko-Blue, M., Yrjölä, S., & Gordon, J. (2023). Toward an integrated framework for developing European 6G innovation. Telecommunications Policy, 47(9), 102641.
5.
Habibi, M. A., Han, B., Fellan, A., Jiang, W., Sánchez, A. G., Pavón, I. L., … & Schotten, H. D. (2023). Towards an open, intelligent, and end-to-end architectural framework for network slicing in 6G communication systems. IEEE Open Journal of the Communications Society, 4, 1615-1658.
6.
Mahmood, M. R., Matin, M. A., Sarigiannidis, P., & Goudos, S. K. (2022). A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access, 10, 87535-87562.
7.
Chataut, R., Nankya, M., & Akl, R. (2024). 6G networks and the AI revolution—Exploring technologies, applications, and emerging challenges. Sensors, 24(6), 1888.
8.
Shehzad, M. K., Rose, L., Butt, M. M., Kovacs, I. Z., Assaad, M., & Guizani, M. (2022). Artificial intelligence for 6G networks: technology advancement and standardization. IEEE Vehicular Technology Magazine, 17(3), 16-25.
9.
Salh, A., Audah, L., Shah, N. S. M., Alhammadi, A., Abdullah, Q., Kim, Y. H., … & Almohammedi, A. A. (2021). A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems. IEEE Access, 9, 55098-55131.
10.
Liu, Y., Deng, Y., Nallanathan, A., & Yuan, J. (2023). Machine learning for 6G enhanced ultra-reliable and low-latency services. IEEE Wireless Communications, 30(2), 48-54.
11.
Langpoklakpam, B., & Murry, L. K. (2023). Review on machine learning for intelligent routing, key requirement and challenges towards 6G. Computer Networks and Communications, 1(2), 214-230.
12.
Khan, A., Fouda, M. M., Do, D. T., Almaleh, A., & Rahman, A. U. (2023). Short-term traffic prediction using deep learning long short-term memory: taxonomy, applications, challenges, and future trends. IEEE Access, 11, 94371-94391.
13.
Abd Elaziz, M., Al?qaness, M. A., Dahou, A., Alsamhi, S. H., Abualigah, L., Ibrahim, R. A., & Ewees, A. A. (2024). Evolution toward intelligent communications: impact of deep learning applications on the future of 6G technology. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(1), e1521.
14.
Shi, H., & Wang, C. (2018). LSTM-based traffic prediction in support of periodically light path reconfiguration in hybrid data center network. In IEEE 4th International Conference on Computer and Communications, pp. 1124-1128.
15.
Tshakwanda, P. M., Arzo, S. T., & Devetsikiotis, M. (2024). Advancing 6G network performance: AI/ML framework for proactive management and dynamic optimal routing. IEEE Open Journal of the Computer Society, 5, 303-314.
16.
Zeb, S., Rathore, M. A., Mahmood, A., Hassan, S. A., Kim, J., & Gidlund, M. (2021). Edge intelligence in softwarized 6G: Deep learning-enabled network traffic predictions. In IEEE Globecom Workshops, pp. 1-6.
17.
Guo, S., Lin, Y., Wan, H., Li, X., & Cong, G. (2021). Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering, 34(11), 5415-5428.
18.
Alnawayseh, S. E., Al-Sit, W. T., & Ghazal, T. M. (2022). Smart congestion control in 5g/6g networks using hybrid deep learning techniques. Complexity, 2022(1), 1781952.
19.
Khan, S., Hussain, A., Nazir, S., Khan, F., Oad, A., & Alshehri, M. D. (2022). Efficient and reliable hybrid deep learning-enabled model for congestion control in 5G/6G networks. Computer Communications, 182, 31-40.
20.
Sun, X., Wei, B., Gao, J., Cao, D., Li, Z., & Li, Y. (2022). Spatio-temporal cellular network traffic prediction using multi-task deep learning for AI-enabled 6G. Journal of Beijing Institute of Technology, 31(5), 441-453.
21.
Peng, R., Fu, X., & Ding, T. (2022). Machine learning with variable sampling rate for traffic prediction in 6G MEC IoT. Discrete Dynamics in Nature and Society, 2022(1), 8190688.
22.
Zhang, Y., Zhang, X., Yu, P., & Yuan, X. (2023). Machine learning with adaptive time stepping for dynamic traffic load prediction in 6G satellite networks. Electronics, 12(21), 4473.
23.
Song, C., Wu, J., Xian, K., Huang, J., & Lu, L. (2024). Spatio-temporal graph learning: Traffic flow prediction of mobile edge computing in 5G/6G vehicular networks. Computer Networks, 252, 110676.
24.
Su, J., Cai, H., Sheng, Z., Liu, A. X., & Baz, A. (2024). Traffic prediction for 5G: A deep learning approach based on lightweight hybrid attention networks. Digital Signal Processing, 146, 104359.