International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

A Novel LPRPO-LSTDCNN Based Side Channel Attack Detection and Secure Data Transmission Framework Using DH-ATM-RFICC

Author NameAuthor Details

Prasath Vijayan, Sudalaimuthu T

Prasath Vijayan[1]

Sudalaimuthu T[2]

[1]Department of Computer Science and Engineering, Perunthalaivar Kamarajar Institute of Engineering and Technology, Karaikal, India.

[2]School of Engineering and Technology, Hindustan Institute of Technology and Science (Deemed to be University), Chennai, India.

Abstract

Side Channel Attack (SCA) is the exploitation of data security due to information leakage from a device. However, the existing studies didn’t focus on the detection of SCA based on its types and the prevailing works had security leakage and time complexities. Therefore, the paper presents the SCA detection with multi-class classification for secured data transmission. First, the device is installed and the public and private keys are generated. Next, Universally Unique Identifier (UUID) is generated and based on the public key and UUID, a hash code is generated using Interpolation Harmonic Entropy based SWIFFT(IHE-SWIFFT) hashing algorithm. At the same time, a secret key is generated using a public key and UUID. Then, with the help of a secret key and public key, data is encrypted using Diffie-Hellman Asymmetric Tent map-based Robust Frobenius Isogenies Curve Cryptography (DH-ATM-RFICC). For the purpose of user authorization, hash code matching is carried out. If the hash code is not matched, then the transaction will be declined to prevent from unauthorized transactions. If the hash code at the time of transaction initialization is matched with the hash code generated during the transaction, then the data is gathered by extracting the features using Gini Point Bi-serial Correlation-based Empirical Wavelet Transform (GPBC-EWT).The extracted features are then reduced using Bag of Deep Features (BoDF) and through hybrid classifier to detect the SCAs using Lagrange Polynomial Red Panda Optimization with Logistic Softmax Tree Hierarchical Deep Convolutional Neural Network (LPRPO-LSTDCNN). Finally, the data under no attack are decrypted in the server for successful transaction. Hence, the proposed model detected the attack with 98.87% Accuracy, 98.86% Precision, 98.88% Recall, and decrypted the data securely in 978ms, thus showing better performance than existing models.

Index Terms

Side Channel Attack

Deep Learning

Cryptography

Deep Convolutional Neural Network

Red Panda Optimization

Hashing algorithm

Reference

  1. 1.
    Griswold-Steiner, Z. LeFevre, and A. Serwadda, “Smartphone speech privacy concerns from side-channel attacks on facial biomechanics,” Comput. Secur., vol. 100, pp. 1–19, 2021, doi: 10.1016/j.cose.2020.102110.
  2. 2.
    D. Das, J. Danial, A. Golder, S. Ghosh, A. R. Wdhury, and S. Sen, “Deep Learning Side-Channel Attack Resilient AES-256 using Current Domain Signature Attenuation in 65nm CMOS,” Proc. Cust. Integr. Circuits Conf., vol. 2020-March, pp. 2–5, 2020, doi: 10.1109/CICC48029.2020.9075889.
  3. 3.
    R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting code-reuse and side-channel attacks in embedded systems,” Comput. Secur., vol. 133, pp. 1–14, 2023, doi: 10.1016/j.cose.2023.103405.
  4. 4.
    A. Johnson and R. Ward, “Introducing the ‘Unified Side Channel Attack - Model’ (USCA-M),” 8th Int. Symp. Digit. Forensics Secur. ISDFS 2020, pp. 1–9, 2020, doi: 10.1109/ISDFS49300.2020.9116291.
  5. 5.
    R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for side-channel analysis and introduction to ASCAD database,” J. Cryptogr. Eng., vol. 10, no. 2, pp. 163–188, 2020, doi: 10.1007/s13389-019-00220-8.
  6. 6.
    Z. Tong, Z. Zhu, Z. Wang, L. Wang, Y. Zhang, and Y. Liu, “Cache side-channel attacks detection based on machine learning,” Proc. - 2020 IEEE 19th Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2020, pp. 919–926, 2020, doi: 10.1109/TrustCom50675.2020.00123.
  7. 7.
    M. Salehi, G. De Borger, D. Hughes, and B. Crispo, “NemesisGuard: Mitigating interrupt latency side channel attacks with static binary rewriting,” Comput. Networks, vol. 205, pp. 1–11, 2022, doi: 10.1016/j.comnet.2021.108744.
  8. 8.
    A. Garg and N. Karimian, “Leveraging deep cnn and transfer learning for side-channel attack,” Proc. - Int. Symp. Qual. Electron. Des. ISQED, vol. 2021-April, pp. 91–96, 2021, doi: 10.1109/ISQED51717.2021.9424305.
  9. 9.
    A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Exploring Cortex-M Microarchitectural Side Channel Information Leakage,” IEEE Access, vol. 9, pp. 156507–156527, 2021, doi: 10.1109/ACCESS.2021.3124761.
  10. 10.
    A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat, “Meet the Sherlock Holmes’ of Side Channel Leakage: A Survey of Cache SCA Detection Techniques,” IEEE Access, vol. 8, pp. 70836–70860, 2020, doi: 10.1109/ACCESS.2020.2980522.
  11. 11.
    C. Jin and Y. Zhou, “Enhancing non-profiled side-channel attacks by time-frequency analysis,” Cybersecurity, vol. 6, no. 1, pp. 1–26, 2023, doi: 10.1186/s42400-023-00149-w.
  12. 12.
    J. Galbally, “A new Foe in biometrics: A narrative review of side-channel attacks,” Comput. Secur., vol. 96, pp. 1–17, 2020, doi: 10.1016/j.cose.2020.101902.
  13. 13.
    T. Miki, N. Miura, H. Sonoda, K. Mizuta, and M. Nagata, “A Random Interrupt Dithering SAR Technique for Secure ADC against Reference-Charge Side-Channel Attack,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 1, pp. 14–18, 2020, doi: 10.1109/TCSII.2019.2901534.
  14. 14.
    S. Liu and W. Yi, “Task parameters analysis in schedule-based timing side-channel attack,” IEEE Access, vol. 8, pp. 157103–157115, 2020, doi: 10.1109/ACCESS.2020.3019323.
  15. 15.
    A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti, “AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 5, pp. 4869–4882, 2023, doi: 10.1007/s12652-020-01770-0.
  16. 16.
    L. Zhang, X. Xing, J. Fan, Z. Wang, and S. Wang, “Multilabel Deep Learning-Based Side-Channel Attack,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 40, no. 6, pp. 1207–1216, 2021, doi: 10.1109/TCAD.2020.3033495.
  17. 17.
    S. Ghandali, S. Ghandali, and S. Tehranipoor, “Deep K-TSVM: A Novel Profiled Power Side-Channel Attack on AES-128,” IEEE Access, vol. 9, pp. 136448–136458, 2021, doi: 10.1109/ACCESS.2021.3117761.
  18. 18.
    T. T. Tsai, S. S. Huang, Y. M. Tseng, Y. H. Chuang, and Y. H. Hung, “Leakage-Resilient Certificate-Based Authenticated Key Exchange Protocol,” IEEE Open J. Comput. Soc., vol. 3, pp. 137–148, 2022, doi: 10.1109/OJCS.2022.3198073.
  19. 19.
    D. Kwon, H. Kim, and S. Hong, “Non-Profiled Deep Learning-Based Side-Channel Preprocessing with Autoencoders,” IEEE Access, vol. 9, pp. 57692–57703, 2021, doi: 10.1109/ACCESS.2021.3072653.
  20. 20.
    Y. Xiang, Y. Xu, Y. Li, W. Ma, Q. Xuan, and Y. Liu, “Side-Channel Gray-Box Attack for DNNs,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 1, pp. 501–505, 2021, doi: 10.1109/TCSII.2020.3012005.
  21. 21.
    U. Rioja, L. Batina, J. L. Flores, and I. Armendariz, “Auto-tune POIs: Estimation of distribution algorithms for efficient side-channel analysis,” Comput. Networks, vol. 198, pp. 1–19, 2021, doi: 10.1016/j.comnet.2021.108405.
  22. 22.
    A. A. J. Al-Hchaimi, N. Bin Sulaiman, M. A. Bin Mustafa, M. N. Bin Mohtar, S. L. B. Mohd Hassan, and Y. R. Muhsen, “A comprehensive evaluation approach for efficient countermeasure techniques against timing side-channel attack on MPSoC-based IoT using multi-criteria decision-making methods,” Egypt. Informatics J., vol. 24, no. 2, pp. 351–364, 2023, doi: 10.1016/j.eij.2023.05.005.
  23. 23.
    S. D. P. Tran, B. Seok, and C. Lee, “HANMRE - An authenticated encryption secure against side-channel attacks for nonce-misuse and lightweight approaches,” Appl. Soft Comput. J., vol. 97, pp. 1–13, 2020, doi: 10.1016/j.asoc.2020.106663.
  24. 24.
    S. Paguada, L. Batina, and I. Armendariz, “Toward practical autoencoder-based side-channel analysis evaluations,” Comput. Networks, vol. 196, pp. 1–17, 2021, doi: 10.1016/j.comnet.2021.108230.
  25. 25.
    Y.-S. Won, X. Hou, Dirmanto Jap, J. Breier, and S. Bhasin, “Back to the Basics?: Seamless Integration of Side-Channel Pre-Processing in Deep Neural Networks,” IEEE Trans. Inf. FORENSICS Secur., vol. 16, pp. 3215–3227, 2021.
  26. 26.
    M. Mushtaq et al., “WHISPER: A tool for run-time detection of side-channel attacks,” IEEE Access, vol. 8, pp. 83871–83900, 2020, doi: 10.1109/ACCESS.2020.2988370.
  27. 27.
    N. Mukhtar, A. P. Fournaris, T. M. Khan, C. Dimopoulos, and Y. Kong, “Improved hybrid approach for side-channel analysis using efficient convolutional neural network and dimensionality reduction,” IEEE Access, vol. 8, pp. 184298–184311, 2020, doi: 10.1109/ACCESS.2020.3029206.
  28. 28.
    D. Chen et al., “MAGLeak: A Learning-Based Side-Channel Attack for Password Recognition with Multiple Sensors in IIoT Environment,” IEEE Trans. Ind. Informatics, vol. 18, no. 1, pp. 467–476, 2022, doi: 10.1109/TII.2020.3045161.
  29. 29.
    H. Wang and E. Dubrova, “Tandem Deep Learning Side-Channel Attack on FPGA Implementation of AES,” SN Comput. Sci., vol. 2, no. 5, pp. 1–12, 2021, doi: 10.1007/s42979-021-00755-w.
  30. 30.
    Y. S. Won, D. G. Han, D. Jap, S. Bhasin, and J. Y. Park, “Non-Profiled Side-Channel Attack Based on Deep Learning Using Picture Trace,” IEEE Access, vol. 9, pp. 22480–22492, 2021, doi: 10.1109/ACCESS.2021.3055833.
SCOPUS
SCImago Journal & Country Rank