1.
Griswold-Steiner, Z. LeFevre, and A. Serwadda, “Smartphone speech privacy concerns from side-channel attacks on facial biomechanics,” Comput. Secur., vol. 100, pp. 1–19, 2021, doi: 10.1016/j.cose.2020.102110.
2.
D. Das, J. Danial, A. Golder, S. Ghosh, A. R. Wdhury, and S. Sen, “Deep Learning Side-Channel Attack Resilient AES-256 using Current Domain Signature Attenuation in 65nm CMOS,” Proc. Cust. Integr. Circuits Conf., vol. 2020-March, pp. 2–5, 2020, doi: 10.1109/CICC48029.2020.9075889.
3.
R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting code-reuse and side-channel attacks in embedded systems,” Comput. Secur., vol. 133, pp. 1–14, 2023, doi: 10.1016/j.cose.2023.103405.
4.
A. Johnson and R. Ward, “Introducing the ‘Unified Side Channel Attack - Model’ (USCA-M),” 8th Int. Symp. Digit. Forensics Secur. ISDFS 2020, pp. 1–9, 2020, doi: 10.1109/ISDFS49300.2020.9116291.
5.
R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for side-channel analysis and introduction to ASCAD database,” J. Cryptogr. Eng., vol. 10, no. 2, pp. 163–188, 2020, doi: 10.1007/s13389-019-00220-8.
6.
Z. Tong, Z. Zhu, Z. Wang, L. Wang, Y. Zhang, and Y. Liu, “Cache side-channel attacks detection based on machine learning,” Proc. - 2020 IEEE 19th Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2020, pp. 919–926, 2020, doi: 10.1109/TrustCom50675.2020.00123.
7.
M. Salehi, G. De Borger, D. Hughes, and B. Crispo, “NemesisGuard: Mitigating interrupt latency side channel attacks with static binary rewriting,” Comput. Networks, vol. 205, pp. 1–11, 2022, doi: 10.1016/j.comnet.2021.108744.
8.
A. Garg and N. Karimian, “Leveraging deep cnn and transfer learning for side-channel attack,” Proc. - Int. Symp. Qual. Electron. Des. ISQED, vol. 2021-April, pp. 91–96, 2021, doi: 10.1109/ISQED51717.2021.9424305.
9.
A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Exploring Cortex-M Microarchitectural Side Channel Information Leakage,” IEEE Access, vol. 9, pp. 156507–156527, 2021, doi: 10.1109/ACCESS.2021.3124761.
10.
A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat, “Meet the Sherlock Holmes’ of Side Channel Leakage: A Survey of Cache SCA Detection Techniques,” IEEE Access, vol. 8, pp. 70836–70860, 2020, doi: 10.1109/ACCESS.2020.2980522.
11.
C. Jin and Y. Zhou, “Enhancing non-profiled side-channel attacks by time-frequency analysis,” Cybersecurity, vol. 6, no. 1, pp. 1–26, 2023, doi: 10.1186/s42400-023-00149-w.
12.
J. Galbally, “A new Foe in biometrics: A narrative review of side-channel attacks,” Comput. Secur., vol. 96, pp. 1–17, 2020, doi: 10.1016/j.cose.2020.101902.
13.
T. Miki, N. Miura, H. Sonoda, K. Mizuta, and M. Nagata, “A Random Interrupt Dithering SAR Technique for Secure ADC against Reference-Charge Side-Channel Attack,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 1, pp. 14–18, 2020, doi: 10.1109/TCSII.2019.2901534.
14.
S. Liu and W. Yi, “Task parameters analysis in schedule-based timing side-channel attack,” IEEE Access, vol. 8, pp. 157103–157115, 2020, doi: 10.1109/ACCESS.2020.3019323.
15.
A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti, “AlphaLogger: detecting motion-based side-channel attack using smartphone keystrokes,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 5, pp. 4869–4882, 2023, doi: 10.1007/s12652-020-01770-0.
16.
L. Zhang, X. Xing, J. Fan, Z. Wang, and S. Wang, “Multilabel Deep Learning-Based Side-Channel Attack,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 40, no. 6, pp. 1207–1216, 2021, doi: 10.1109/TCAD.2020.3033495.
17.
S. Ghandali, S. Ghandali, and S. Tehranipoor, “Deep K-TSVM: A Novel Profiled Power Side-Channel Attack on AES-128,” IEEE Access, vol. 9, pp. 136448–136458, 2021, doi: 10.1109/ACCESS.2021.3117761.
18.
T. T. Tsai, S. S. Huang, Y. M. Tseng, Y. H. Chuang, and Y. H. Hung, “Leakage-Resilient Certificate-Based Authenticated Key Exchange Protocol,” IEEE Open J. Comput. Soc., vol. 3, pp. 137–148, 2022, doi: 10.1109/OJCS.2022.3198073.
19.
D. Kwon, H. Kim, and S. Hong, “Non-Profiled Deep Learning-Based Side-Channel Preprocessing with Autoencoders,” IEEE Access, vol. 9, pp. 57692–57703, 2021, doi: 10.1109/ACCESS.2021.3072653.
20.
Y. Xiang, Y. Xu, Y. Li, W. Ma, Q. Xuan, and Y. Liu, “Side-Channel Gray-Box Attack for DNNs,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 1, pp. 501–505, 2021, doi: 10.1109/TCSII.2020.3012005.
21.
U. Rioja, L. Batina, J. L. Flores, and I. Armendariz, “Auto-tune POIs: Estimation of distribution algorithms for efficient side-channel analysis,” Comput. Networks, vol. 198, pp. 1–19, 2021, doi: 10.1016/j.comnet.2021.108405.
22.
A. A. J. Al-Hchaimi, N. Bin Sulaiman, M. A. Bin Mustafa, M. N. Bin Mohtar, S. L. B. Mohd Hassan, and Y. R. Muhsen, “A comprehensive evaluation approach for efficient countermeasure techniques against timing side-channel attack on MPSoC-based IoT using multi-criteria decision-making methods,” Egypt. Informatics J., vol. 24, no. 2, pp. 351–364, 2023, doi: 10.1016/j.eij.2023.05.005.
23.
S. D. P. Tran, B. Seok, and C. Lee, “HANMRE - An authenticated encryption secure against side-channel attacks for nonce-misuse and lightweight approaches,” Appl. Soft Comput. J., vol. 97, pp. 1–13, 2020, doi: 10.1016/j.asoc.2020.106663.
24.
S. Paguada, L. Batina, and I. Armendariz, “Toward practical autoencoder-based side-channel analysis evaluations,” Comput. Networks, vol. 196, pp. 1–17, 2021, doi: 10.1016/j.comnet.2021.108230.
25.
Y.-S. Won, X. Hou, Dirmanto Jap, J. Breier, and S. Bhasin, “Back to the Basics?: Seamless Integration of Side-Channel Pre-Processing in Deep Neural Networks,” IEEE Trans. Inf. FORENSICS Secur., vol. 16, pp. 3215–3227, 2021.
26.
M. Mushtaq et al., “WHISPER: A tool for run-time detection of side-channel attacks,” IEEE Access, vol. 8, pp. 83871–83900, 2020, doi: 10.1109/ACCESS.2020.2988370.
27.
N. Mukhtar, A. P. Fournaris, T. M. Khan, C. Dimopoulos, and Y. Kong, “Improved hybrid approach for side-channel analysis using efficient convolutional neural network and dimensionality reduction,” IEEE Access, vol. 8, pp. 184298–184311, 2020, doi: 10.1109/ACCESS.2020.3029206.
28.
D. Chen et al., “MAGLeak: A Learning-Based Side-Channel Attack for Password Recognition with Multiple Sensors in IIoT Environment,” IEEE Trans. Ind. Informatics, vol. 18, no. 1, pp. 467–476, 2022, doi: 10.1109/TII.2020.3045161.
29.
H. Wang and E. Dubrova, “Tandem Deep Learning Side-Channel Attack on FPGA Implementation of AES,” SN Comput. Sci., vol. 2, no. 5, pp. 1–12, 2021, doi: 10.1007/s42979-021-00755-w.
30.
Y. S. Won, D. G. Han, D. Jap, S. Bhasin, and J. Y. Park, “Non-Profiled Side-Channel Attack Based on Deep Learning Using Picture Trace,” IEEE Access, vol. 9, pp. 22480–22492, 2021, doi: 10.1109/ACCESS.2021.3055833.