International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

Optimizing Wireless Sensor Networks: A Survey of Clustering Strategies and Algorithms

Author NameAuthor Details

Sakib Iqram Hamim, Azamuddin Bin Ab Rahman

Sakib Iqram Hamim[1]

Azamuddin Bin Ab Rahman[2]

[1]Faculty of Computing, Universiti Malaysia Pahang Al Sultan Abdullah, Pahang, Malaysia.

[2]Faculty of Computing, Universiti Malaysia Pahang Al Sultan Abdullah, Pahang, Malaysia.

Abstract

Wireless Sensor Networks (WSNs) are essential for real-time data collection and monitoring in various fields, such as environmental sensing, healthcare, industrial automation, and military surveillance. Energy management is very important to the WSNs lifetime and performance since the sensor nodes use batteries and often deployed in areas that are difficult to access. Clustering has become a vital technique in the control of energy demands with the various sensor nodes being grouped in several clusters under the supervision of a cluster head. Clustering helps in the distribution of energy evenly in the network minimizing the number of unnecessary transmissions. This study highlights clustering techniques and methods that have been developed for WSNs, together with their objectives, concepts, and consequences on the performance of networks. The clustering strategies are categorized by employing several methods; these are hierarchical, distributed, centralized, and hybrid approaches. Every clustering technique has its benefits and drawbacks. The choice of the best-fit approach determines on the actual needs of the WSNs. The discussion explains the strategies of different algorithms, advantages, and disadvantages. Moreover, the issues discussed in the study address the present-day concerns and the future research trends of enhancing clustering algorithms of WSNs. The presented work contributes to the understanding of how to choose and enhance clustering approaches to enhance WSNs effectiveness and longevity. This study serves as a helpful source of knowledge that can encourage the further development of the enhancement of clustering algorithms for WSNs in response to modern technology needs.

Index Terms

Wireless Sensor Networks

Clustering Strategies

Clustering Algorithm

Optimization Techniques

Energy Efficiency

Network Longevity

Reference

  1. 1.
    Z. Tafa, “WSNs in environmental monitoring: Data acquisition and dissemination aspects,” 2022, pp. 65–149. doi: 10.1016/bs.adcom.2021.11.010.
  2. 2.
    D. Baumann, F. Mager, U. Wetzker, L. Thiele, M. Zimmerling, and S. Trimpe, “Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges,” Proceedings of the IEEE, vol. 109, no. 4, pp. 441–467, Apr. 2021, doi: 10.1109/JPROC.2020.3032633.
  3. 3.
    M. Majid et al., “Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review,” Sensors, vol. 22, no. 6, p. 2087, Mar. 2022, doi: 10.3390/s22062087.
  4. 4.
    A. Fascista, “Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives,” Sensors, vol. 22, no. 5, p. 1824, Feb. 2022, doi: 10.3390/s22051824.
  5. 5.
    O. Vermesan et al., “Internet of things strategic research roadmap,” in Internet of things-global technological and societal trends from smart environments and spaces to green ICT, River Publishers, 2022, pp. 9–52.
  6. 6.
    U. Ashraf, A. Khwaja, J. Qadir, S. Avallone, and C. Yuen, “WiMesh: leveraging mesh networking for disaster communication in resource-constrained settings,” Wireless Networks, vol. 27, no. 4, pp. 2785–2812, May 2021, doi: 10.1007/s11276-021-02621-2.
  7. 7.
    N. Merabtine, D. Djenouri, and D.-E. Zegour, “Towards Energy Efficient Clustering in Wireless Sensor Networks: A Comprehensive Review,” IEEE Access, vol. 9, pp. 92688–92705, 2021, doi: 10.1109/ACCESS.2021.3092509.
  8. 8.
    S. Lata, S. Mehfuz, S. Urooj, and F. Alrowais, “Fuzzy Clustering Algorithm for Enhancing Reliability and Network Lifetime of Wireless Sensor Networks,” IEEE Access, vol. 8, pp. 66013–66024, 2020, doi: 10.1109/ACCESS.2020.2985495.
  9. 9.
    S. Yadawad and S. M. Joshi, “Efficient energy consumption and fault tolerant method for clustering and reliable routing in wireless sensor network,” Peer Peer Netw Appl, vol. 17, no. 3, pp. 1552–1568, May 2024, doi: 10.1007/s12083-024-01664-4.
  10. 10.
    V. Prakash and S. Pandey, “Metaheuristic algorithm for energy efficient clustering scheme in wireless sensor networks,” Microprocess Microsyst, vol. 101, p. 104898, Sep. 2023, doi: 10.1016/j.micpro.2023.104898.
  11. 11.
    V. Jha and R. Sharma, “An energy efficient weighted clustering algorithm in heterogeneous wireless sensor networks,” J Supercomput, vol. 78, no. 12, pp. 14266–14293, Aug. 2022, doi: 10.1007/s11227-022-04429-z.
  12. 12.
    P. Rawat and S. Chauhan, “Particle swarm optimization-based energy efficient clustering protocol in wireless sensor network,” Neural Comput Appl, vol. 33, no. 21, pp. 14147–14165, Nov. 2021, doi: 10.1007/s00521-021-06059-7.
  13. 13.
    P. Maheshwari, A. K. Sharma, and K. Verma, “Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization,” Ad Hoc Networks, vol. 110, p. 102317, Jan. 2021, doi: 10.1016/j.adhoc.2020.102317.
  14. 14.
    A. bin Ab Rahman, M. N. M. Kahar, and W. I. S. W. Din, “Fuzzy-logic-RSSI based approach for cluster heads selection in wireless sensor networks,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 3, pp. 1424–1431, 2020.
  15. 15.
    A. Verma, S. Kumar, P. R. Gautam, T. Rashid, and A. Kumar, “Fuzzy Logic Based Effective Clustering of Homogeneous Wireless Sensor Networks for Mobile Sink,” IEEE Sens J, vol. 20, no. 10, pp. 5615–5623, May 2020, doi: 10.1109/JSEN.2020.2969697.
  16. 16.
    G. W. Hamaali, K. A. Abduljabbar, and D. R. Sulaiman, “K-means Clustering and PSO Algorithm for Wireless Sensor Networks Optimization,” University of Thi-Qar Journal for Engineering Sciences, vol. 13, no. 1, pp. 40–50, 2023.
  17. 17.
    S. Mostafavi and V. Hakami, “A new rank?order clustering algorithm for prolonging the lifetime of wireless sensor networks,” International Journal of Communication Systems, vol. 33, no. 7, p. e4313, 2020.
  18. 18.
    S. R. Jondhale, R. Maheswar, and J. Lloret, “Fundamentals of Wireless Sensor Networks,” 2022, pp. 1–19. doi: 10.1007/978-3-030-74061-0_1.
  19. 19.
    M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman, “Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review,” IEEE Sens J, vol. 22, no. 6, pp. 5482–5494, Mar. 2022, doi: 10.1109/JSEN.2022.3148128.
  20. 20.
    D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of Wireless Sensor Networks: An Up-to-Date Survey,” Applied System Innovation, vol. 3, no. 1, p. 14, Feb. 2020, doi: 10.3390/asi3010014.
  21. 21.
    X. Chen, G. Sun, T. Wu, L. Liu, H. Yu, and M. Guizani, “RANCE: A Randomly Centralized and On-Demand Clustering Protocol for Mobile Ad Hoc Networks,” IEEE Internet Things J, vol. 9, no. 23, pp. 23639–23658, Dec. 2022, doi: 10.1109/JIOT.2022.3188679.
  22. 22.
    W. Osamy, A. Salim, A. M. Khedr, and A. A. El-Sawy, “IDCT: Intelligent Data Collection Technique for IoT-Enabled Heterogeneous Wireless Sensor Networks in Smart Environments,” IEEE Sens J, vol. 21, no. 18, pp. 21099–21112, Sep. 2021, doi: 10.1109/JSEN.2021.3100339.
  23. 23.
    A. Cohen, A. Cohen, and O. Gurewitz, “Efficient Data Collection Over Multiple Access Wireless Sensors Network,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 491–504, Apr. 2020, doi: 10.1109/TNET.2020.2964764.
  24. 24.
    N. Chandnani and C. N. Khairnar, “An analysis of architecture, framework, security and challenging aspects for data aggregation and routing techniques in IoT WSNs,” Theor Comput Sci, vol. 929, pp. 95–113, Sep. 2022, doi: 10.1016/j.tcs.2022.06.032.
  25. 25.
    T. Wei, W. Feng, Y. Chen, C.-X. Wang, N. Ge, and J. Lu, “Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges,” IEEE Internet Things J, vol. 8, no. 11, pp. 8910–8934, Jun. 2021, doi: 10.1109/JIOT.2021.3056091.
  26. 26.
    P. Singh et al., “Magnetic Induction Technology-Based Wireless Sensor Network for Underground Infrastructure, Monitoring Soil Conditions, and Environmental Observation Applications: Challenges and Future Aspects,” J Sens, vol. 2022, pp. 1–18, Jan. 2022, doi: 10.1155/2022/9332917.
  27. 27.
    M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, and S. Dmitry, “Recent Advances and Future Directions on Underwater Wireless Communications,” Archives of Computational Methods in Engineering, vol. 27, no. 5, pp. 1379–1412, Nov. 2020, doi: 10.1007/s11831-019-09354-8.
  28. 28.
    M. A. Matheen and S. Sundar, “IoT Multimedia Sensors for Energy Efficiency and Security: A Review of QoS Aware and Methods in Wireless Multimedia Sensor Networks,” Int J Wirel Inf Netw, vol. 29, no. 4, pp. 407–418, Dec. 2022, doi: 10.1007/s10776-022-00567-6.
  29. 29.
    A. Khan, S. Gupta, and S. K. Gupta, “Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques,” International Journal of Disaster Risk Reduction, vol. 47, p. 101642, Aug. 2020, doi: 10.1016/j.ijdrr.2020.101642.
  30. 30.
    O. Singh, V. Rishiwal, R. Chaudhry, and M. Yadav, “Multi-Objective Optimization in WSN: Opportunities and Challenges,” Wirel Pers Commun, vol. 121, no. 1, pp. 127–152, Nov. 2021, doi: 10.1007/s11277-021-08627-5.
  31. 31.
    K. S. Adu-Manu, F. Engmann, G. Sarfo-Kantanka, G. E. Baiden, and B. A. Dulemordzi, “WSN Protocols and Security Challenges for Environmental Monitoring Applications: A Survey,” J Sens, vol. 2022, pp. 1–21, Aug. 2022, doi: 10.1155/2022/1628537.
  32. 32.
    V. T. Vu, T. V Quyen, L. H. Truong, A. M. Le, C. V Nguyen, and M. T. Nguyen, “Energy efficient approaches in wireless sensor networks,” ICSES Transactions on Computer Networks and Communications, vol. 6, no. 1, pp. 1–10, 2020.
  33. 33.
    H. M. A. Fahmy, “Wireless Sensor Networks Essentials,” 2020, pp. 3–39. doi: 10.1007/978-3-030-29700-8_1.
  34. 34.
    S. Abbasian Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farahbakhsh, K. Sandrasegaran, and M. Abbasian Dehkordi, “A survey on data aggregation techniques in IoT sensor networks,” Wireless Networks, vol. 26, no. 2, pp. 1243–1263, Feb. 2020, doi: 10.1007/s11276-019-02142-z.
  35. 35.
    K. Eghonghon Ukhurebor, I. Odesanya, S. Soo Tyokighir, R. George Kerry, A. Samson Olayinka, and A. Oluwafemi Bobadoye, “Wireless Sensor Networks: Applications and Challenges,” in Wireless Sensor Networks - Design, Deployment and Applications, IntechOpen, 2021. doi: 10.5772/intechopen.93660.
  36. 36.
    G. K. Ijemaru, K. L.-M. Ang, and J. K. Seng, “Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges,” Int J Distrib Sens Netw, vol. 18, no. 3, p. 155014772110677, Mar. 2022, doi: 10.1177/15501477211067740.
  37. 37.
    X. Yu, K. Ergun, L. Cherkasova, and T. S. Rosing, “Optimizing Sensor Deployment and Maintenance Costs for Large-Scale Environmental Monitoring,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3918–3930, Nov. 2020, doi: 10.1109/TCAD.2020.3012232.
  38. 38.
    M. Mahamat, G. Jaber, and A. Bouabdallah, “Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challenges,” Wireless Networks, vol. 29, no. 2, pp. 787–808, Feb. 2023, doi: 10.1007/s11276-022-03170-y.
  39. 39.
    R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi, “An Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques,” Sensors, vol. 20, no. 21, p. 6076, Oct. 2020, doi: 10.3390/s20216076.
  40. 40.
    Rajashree Manjulalayam Rajendran, “Scalability and Distributed Computing in NET for Large-Scale AI Workloads,” Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, vol. 10, no. 2, pp. 136–141, Oct. 2021, [Online]. Available: https://www.eduzonejournal.com/index.php/eiprmj/article/view/513
  41. 41.
    M. Z. U. Haq et al., “An adaptive topology management scheme to maintain network connectivity in Wireless Sensor Networks,” Sensors, vol. 22, no. 8, p. 2855, 2022.
  42. 42.
    G. Sahar, K. Bin Abu Bakar, F. T. Zuhra, S. Rahim, T. Bibi, and S. H. Hussain Madni, “Data Redundancy Reduction for Energy-Efficiency in Wireless Sensor Networks: A Comprehensive Review,” IEEE Access, vol. 9, pp. 157859–157888, 2021, doi: 10.1109/ACCESS.2021.3128353.
  43. 43.
    K. Bakhshi Kiadehi, A. M. Rahmani, and A. Sabbagh Molahosseini, “Increasing fault tolerance of data plane on the internet of things using the software-defined networks,” PeerJ Comput Sci, vol. 7, p. e543, May 2021, doi: 10.7717/peerj-cs.543.
  44. 44.
    O. O. Olakanmi and A. Dada, “Wireless sensor networks (WSNs): Security and privacy issues and solutions,” Wireless mesh networks-security, architectures and protocols, vol. 13, pp. 1–16, 2020.
  45. 45.
    P. Yang, N. Xiong, and J. Ren, “Data Security and Privacy Protection for Cloud Storage: A Survey,” IEEE Access, vol. 8, pp. 131723–131740, 2020, doi: 10.1109/ACCESS.2020.3009876.
  46. 46.
    Y. Pal, R. Mohan, G. R. K. Rao, S. kumar. A, R. Rastogi, and M. A. Shah, “Underwater Wireless Sensor Networks Using Distributed Fusion of Optimally Quantized Estimations from Local Trackers,” in 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN), IEEE, Jun. 2023, pp. 916–921. doi: 10.1109/ICPCSN58827.2023.00156.
  47. 47.
    S. Rani and A. Taneja, WSN and IoT. Boca Raton: CRC Press, 2024. doi: 10.1201/9781003437079.
  48. 48.
    A. Shahraki, A. Taherkordi, Ø. Haugen, and F. Eliassen, “Clustering objectives in wireless sensor networks: A survey and research direction analysis,” Computer Networks, vol. 180, p. 107376, Oct. 2020, doi: 10.1016/j.comnet.2020.107376.
  49. 49.
    B. Seema, N. Yao, A. Carie, and S. B. H. Shah, “Efficient data transfer in clustered IoT network with cooperative member nodes,” Multimed Tools Appl, vol. 79, no. 45–46, pp. 34241–34251, Dec. 2020, doi: 10.1007/s11042-020-08775-z.
  50. 50.
    B. Han, F. Ran, J. Li, L. Yan, H. Shen, and A. Li, “A Novel Adaptive Cluster Based Routing Protocol for Energy-Harvesting Wireless Sensor Networks,” Sensors, vol. 22, no. 4, p. 1564, Feb. 2022, doi: 10.3390/s22041564.
  51. 51.
    A. Shahraki, A. Taherkordi, O. Haugen, and F. Eliassen, “A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 2242–2274, Jun. 2021, doi: 10.1109/TNSM.2020.3035315.
  52. 52.
    A. Hassan, A. Anter, and M. Kayed, “A Survey on Extending the Lifetime for Wireless Sensor Networks in Real-Time Applications,” Int J Wirel Inf Netw, vol. 28, no. 1, pp. 77–103, Mar. 2021, doi: 10.1007/s10776-020-00502-7.
  53. 53.
    Y. Tong, L. Tian, L. Lin, and Z. Wang, “Fault Tolerance Mechanism Combining Static Backup and Dynamic Timing Monitoring for Cluster Heads,” IEEE Access, vol. 8, pp. 43277–43288, 2020, doi: 10.1109/ACCESS.2020.2977759.
  54. 54.
    D. Pianini, R. Casadei, M. Viroli, and A. Natali, “Partitioned integration and coordination via the self-organising coordination regions pattern,” Future Generation Computer Systems, vol. 114, pp. 44–68, Jan. 2021, doi: 10.1016/j.future.2020.07.032.
  55. 55.
    M. Ayyub, A. Oracevic, R. Hussain, A. A. Khan, and Z. Zhang, “A comprehensive survey on clustering in vehicular networks: Current solutions and future challenges,” Ad Hoc Networks, vol. 124, p. 102729, Jan. 2022, doi: 10.1016/j.adhoc.2021.102729.
  56. 56.
    A. A.-H. Hassan, W. M. Shah, A.-H. H. Habeb, M. F. I. Othman, and M. N. Al-Mhiqani, “An Improved Energy-Efficient Clustering Protocol to Prolong the Lifetime of the WSN-Based IoT,” IEEE Access, vol. 8, pp. 200500–200517, 2020, doi: 10.1109/ACCESS.2020.3035624.
  57. 57.
    Y. Gong, J. Wang, and G. Lai, “Energy-efficient Query-Driven Clustering protocol for WSNs on 5G infrastructure,” Energy Reports, vol. 8, pp. 11446–11455, Nov. 2022, doi: 10.1016/j.egyr.2022.08.279.
  58. 58.
    T. A. Alghamdi, “Energy efficient protocol in wireless sensor network: optimized cluster head selection model,” Telecommun Syst, vol. 74, no. 3, pp. 331–345, Jul. 2020, doi: 10.1007/s11235-020-00659-9.
  59. 59.
    R. Ramya and Dr. T. Brindha, “A Comprehensive Review on Optimal Cluster Head Selection in WSN-IoT,” Advances in Engineering Software, vol. 171, p. 103170, Sep. 2022, doi: 10.1016/j.advengsoft.2022.103170.
  60. 60.
    M. F. Alomari, M. A. Mahmoud, and R. Ramli, “A Systematic Review on the Energy Efficiency of Dynamic Clustering in a Heterogeneous Environment of Wireless Sensor Networks (WSNs),” Electronics (Basel), vol. 11, no. 18, p. 2837, Sep. 2022, doi: 10.3390/electronics11182837.
  61. 61.
    I. K. Shah, T. Maity, Y. S. Dohare, D. Tyagi, D. Rathore, and D. S. Yadav, “ICIC: A Dual Mode Intra-Cluster and Inter-Cluster Energy Minimization Approach for Multihop WSN,” IEEE Access, vol. 10, pp. 70581–70594, 2022, doi: 10.1109/ACCESS.2022.3188684.
  62. 62.
    G. S. Karthick, “Energy-Aware Reliable Medium Access Control Protocol for Energy-Efficient and Reliable Data Communication in Wireless Sensor Networks,” SN Comput Sci, vol. 4, no. 5, p. 449, Jun. 2023, doi: 10.1007/s42979-023-01869-z.
  63. 63.
    M. Merluzzi, P. Di Lorenzo, and S. Barbarossa, “Wireless Edge Machine Learning: Resource Allocation and Trade-Offs,” IEEE Access, vol. 9, pp. 45377–45398, 2021, doi: 10.1109/ACCESS.2021.3066559.
  64. 64.
    J. Amutha, S. Sharma, and J. Nagar, “WSN Strategies Based on Sensors, Deployment, Sensing Models, Coverage and Energy Efficiency: Review, Approaches and Open Issues,” Wirel Pers Commun, vol. 111, no. 2, pp. 1089–1115, Mar. 2020, doi: 10.1007/s11277-019-06903-z.
  65. 65.
    D. Kanellopoulos and V. Sharma, “Dynamic Load Balancing Techniques in the IoT: A Review,” Symmetry (Basel), vol. 14, no. 12, p. 2554, Dec. 2022, doi: 10.3390/sym14122554.
  66. 66.
    N. Goyal, M. Dave, and A. K. Verma, “SAPDA: Secure Authentication with Protected Data Aggregation Scheme for Improving QoS in Scalable and Survivable UWSNs,” Wirel Pers Commun, vol. 113, no. 1, pp. 1–15, Jul. 2020, doi: 10.1007/s11277-020-07175-8.
  67. 67.
    A. Srivastava and P. K. Mishra, “Multi-attributes based energy efficient clustering for enhancing network lifetime in WSN’s,” Peer Peer Netw Appl, vol. 15, no. 6, pp. 2670–2693, Nov. 2022, doi: 10.1007/s12083-022-01357-w.
  68. 68.
    S. Umbreen, D. Shehzad, N. Shafi, B. Khan, and U. Habib, “An Energy-Efficient Mobility-Based Cluster Head Selection for Lifetime Enhancement of Wireless Sensor Networks,” IEEE Access, vol. 8, pp. 207779–207793, 2020, doi: 10.1109/ACCESS.2020.3038031.
  69. 69.
    S. El Khediri, “Wireless sensor networks: a survey, categorization, main issues, and future orientations for clustering protocols,” Computing, vol. 104, no. 8, pp. 1775–1837, Aug. 2022, doi: 10.1007/s00607-022-01071-8.
  70. 70.
    M. Ilyas et al., “Trust-based energy-efficient routing protocol for Internet of things–based sensor networks,” Int J Distrib Sens Netw, vol. 16, no. 10, p. 155014772096435, Oct. 2020, doi: 10.1177/1550147720964358.
  71. 71.
    V. Vimal et al., “Clustering Isolated Nodes to Enhance Network’s Life Time of WSNs for IoT Applications,” IEEE Syst J, vol. 15, no. 4, pp. 5654–5663, Dec. 2021, doi: 10.1109/JSYST.2021.3103696.
  72. 72.
    G. V. S. Varsa and D. Sridharan, “A performance overview of contemporary hierarchical clustering algorithms in wireless sensor networks,” International Journal of Communication Networks and Distributed Systems, vol. 27, no. 1, p. 1, 2021, doi: 10.1504/IJCNDS.2021.116462.
  73. 73.
    S. Ramalingam, S. Dhanasekaran, S. S. Sinnasamy, A. O. Salau, and M. Alagarsamy, “Performance enhancement of efficient clustering and routing protocol for wireless sensor networks using improved elephant herd optimization algorithm,” Wireless Networks, vol. 30, no. 3, pp. 1773–1789, Apr. 2024, doi: 10.1007/s11276-023-03617-w.
  74. 74.
    W. B. Nedham and A. K. M. Al Qurabat, “A comprehensive review of clustering approaches for energy efficiency in wireless sensor networks,” International Journal of Computer Applications in Technology, vol. 72, no. 2, pp. 139–160, 2023, doi: 10.1504/IJCAT.2023.133035.
  75. 75.
    X. Ran, Y. Xi, Y. Lu, X. Wang, and Z. Lu, “Comprehensive survey on hierarchical clustering algorithms and the recent developments,” Artif Intell Rev, vol. 56, no. 8, pp. 8219–8264, Aug. 2023, doi: 10.1007/s10462-022-10366-3.
  76. 76.
    A. Shukla and S. Tripathi, “A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network,” Wireless Networks, vol. 26, no. 5, pp. 3471–3493, Jul. 2020, doi: 10.1007/s11276-020-02277-4.
  77. 77.
    R. K. Dhanaraj, K. Lalitha, S. Anitha, S. Khaitan, P. Gupta, and M. K. Goyal, “Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks,” Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 10751–10765, Jun. 2021, doi: 10.3233/JIFS-201756.
  78. 78.
    S. Radhika and P. Rangarajan, “Fuzzy Based Sleep Scheduling Algorithm with Machine Learning Techniques to Enhance Energy Efficiency in Wireless Sensor Networks,” Wirel Pers Commun, vol. 118, no. 4, pp. 3025–3044, Jun. 2021, doi: 10.1007/s11277-021-08167-y.
  79. 79.
    S. E. Pour and R. Javidan, “A new energy aware cluster head selection for LEACH in wireless sensor networks,” IET Wireless Sensor Systems, vol. 11, no. 1, pp. 45–53, Feb. 2021, doi: 10.1049/wss2.12007.
  80. 80.
    W. Boudhiafi and T. Ezzedine, “Optimization of Multi-level HEED Protocol in Wireless Sensor Networks,” 2021, pp. 407–418. doi: 10.1007/978-3-030-89654-6_29.
  81. 81.
    B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT Networks by Reinforcement Learning With Sequential Model,” IEEE Internet Things J, vol. 9, no. 14, pp. 12071–12084, Jul. 2022, doi: 10.1109/JIOT.2021.3133278.
  82. 82.
    A. Javadpour, A. K. Sangaiah, H. Zaviyeh, and F. Ja’fari, “Enhancing Energy Efficiency in IoT Networks Through Fuzzy Clustering and Optimization,” Mobile Networks and Applications, Nov. 2023, doi: 10.1007/s11036-023-02273-w.
  83. 83.
    A. Panchal and R. K. Singh, “EADCR: Energy Aware Distance Based Cluster Head Selection and Routing Protocol for Wireless Sensor Networks,” Journal of Circuits, Systems and Computers, vol. 30, no. 04, p. 2150063, Mar. 2021, doi: 10.1142/S0218126621500638.
  84. 84.
    J. Amutha, S. Sharma, and S. K. Sharma, “An energy efficient cluster based hybrid optimization algorithm with static sink and mobile sink node for Wireless Sensor Networks,” Expert Syst Appl, vol. 203, p. 117334, Oct. 2022, doi: 10.1016/j.eswa.2022.117334.
  85. 85.
    R. Kaur, R. K. Ramachandran, R. Doss, and L. Pan, “The importance of selecting clustering parameters in VANETs: A survey,” Comput Sci Rev, vol. 40, p. 100392, May 2021, doi: 10.1016/j.cosrev.2021.100392.
  86. 86.
    S. A. Sharifi and S. M. Babamir, “The clustering algorithm for efficient energy management in mobile ad-hoc networks,” Computer Networks, vol. 166, p. 106983, Jan. 2020, doi: 10.1016/j.comnet.2019.106983.
  87. 87.
    E. Fazel, H. E. Najafabadi, M. Rezaei, and H. Leung, “Unlocking the power of mist computing through clustering techniques in IoT networks,” Internet of Things, vol. 22, p. 100710, Jul. 2023, doi: 10.1016/j.iot.2023.100710.
  88. 88.
    A. Ali et al., “Enhanced Fuzzy Logic Zone Stable Election Protocol for Cluster Head Election (E-FLZSEPFCH) and Multipath Routing in wireless sensor networks,” Ain Shams Engineering Journal, vol. 15, no. 2, p. 102356, Feb. 2024, doi: 10.1016/j.asej.2023.102356.
  89. 89.
    D. A. Abduljabbar, S. Z. M. Hashim, and R. Sallehuddin, “Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends,” Telecommun Syst, vol. 74, no. 2, pp. 225–252, Jun. 2020, doi: 10.1007/s11235-019-00636-x.
  90. 90.
    A. K. Loomba, V. E. Botechia, and D. J. Schiozer, “Cluster-based learning and evolution algorithm for optimization,” Geoenergy Science and Engineering, vol. 227, p. 211801, Aug. 2023, doi: 10.1016/j.geoen.2023.211801.
  91. 91.
    D. E. Boubiche, S. Athmani, S. Boubiche, and H. Toral-Cruz, “Cybersecurity Issues in Wireless Sensor Networks: Current Challenges and Solutions,” Wirel Pers Commun, vol. 117, no. 1, pp. 177–213, Mar. 2021, doi: 10.1007/s11277-020-07213-5.
  92. 92.
    L. K. Ramasamy, F. Khan K. P., A. L. Imoize, J. O. Ogbebor, S. Kadry, and S. Rho, “Blockchain-Based Wireless Sensor Networks for Malicious Node Detection: A Survey,” IEEE Access, vol. 9, pp. 128765–128785, 2021, doi: 10.1109/ACCESS.2021.3111923.
  93. 93.
    I. Daanoune, B. Abdennaceur, and A. Ballouk, “A comprehensive survey on LEACH-based clustering routing protocols in Wireless Sensor Networks,” Ad Hoc Networks, vol. 114, p. 102409, Apr. 2021, doi: 10.1016/j.adhoc.2020.102409.
  94. 94.
    Z. Ullah, “A Survey on Hybrid, Energy Efficient and Distributed (HEED) Based Energy Efficient Clustering Protocols for Wireless Sensor Networks,” Wirel Pers Commun, vol. 112, no. 4, pp. 2685–2713, Jun. 2020, doi: 10.1007/s11277-020-07170-z.
  95. 95.
    R. Mishra, R. K. Yadav, and K. Sharma, “Evaluation and analysis of clustering algorithms for heterogeneous wireless sensor networks,” in Comprehensive Guide to Heterogeneous Networks, Elsevier, 2023, pp. 179–215. doi: 10.1016/B978-0-323-90527-5.00012-5.
  96. 96.
    S. K. Chaurasiya, S. Mondal, A. Biswas, A. Nayyar, M. A. Shah, and R. Banerjee, “An Energy-Efficient Hybrid Clustering Technique (EEHCT) for IoT-Based Multilevel Heterogeneous Wireless Sensor Networks,” IEEE Access, vol. 11, pp. 25941–25958, 2023, doi: 10.1109/ACCESS.2023.3254594.
  97. 97.
    Y. El Assari, “Energy-efficient multi-hop routing with unequal clustering approach for wireless sensor networks,” International Journal of Computer Networks & Communications (IJCNC) Vol, vol. 12, 2020.
  98. 98.
    N. Karasekreter, M. A. ?ahman, F. Ba?çiftçi, and U. Fidan, “PSO-based clustering for the optimization of energy consumption in wireless sensor network,” Emerging Materials Research, vol. 9, no. 3, pp. 776–783, Sep. 2020, doi: 10.1680/jemmr.20.00107.
  99. 99.
    S. Rani, S. H. Ahmed, and R. Rastogi, “Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications,” Wireless Networks, vol. 26, no. 4, pp. 2307–2316, May 2020, doi: 10.1007/s11276-019-02083-7.
  100. 100.
    S. J. Anandh and E. Baburaj, “Energy Efficient Routing Technique for Wireless Sensor Networks Using Ant-Colony Optimization,” Wirel Pers Commun, vol. 114, no. 4, pp. 3419–3433, Oct. 2020, doi: 10.1007/s11277-020-07539-0.
  101. 101.
    M. Adnan, L. Yang, T. Ahmad, and Y. Tao, “An Unequally Clustered Multi-hop Routing Protocol Based on Fuzzy Logic for Wireless Sensor Networks,” IEEE Access, vol. 9, pp. 38531–38545, 2021, doi: 10.1109/ACCESS.2021.3063097.
  102. 102.
    B. Kumar, U. K. Tiwari, and S. Kumar, “Energy Efficient Quad Clustering based on K-means Algorithm for Wireless Sensor Network,” in 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), IEEE, Nov. 2020, pp. 73–77. doi: 10.1109/PDGC50313.2020.9315853.
  103. 103.
    B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “Improved Soft- k -Means Clustering Algorithm for Balancing Energy Consumption in Wireless Sensor Networks,” IEEE Internet Things J, vol. 8, no. 6, pp. 4868–4881, Mar. 2021, doi: 10.1109/JIOT.2020.3031272.
  104. 104.
    R. Bensaid, M. Ben Said, and H. Boujemaa, “Fuzzy C-Means based Clustering Algorithm in WSNs for IoT Applications,” in 2020 International Wireless Communications and Mobile Computing (IWCMC), IEEE, Jun. 2020, pp. 126–130. doi: 10.1109/IWCMC48107.2020.9148077.
  105. 105.
    J. Yang, J. Chen, Y. Huo, and Y. Liu, “A Novel Cluster-Based Wireless Sensor Network Reliability Model Using the Expectation Maximization Algorithm,” J Sens, vol. 2021, pp. 1–13, Mar. 2021, doi: 10.1155/2021/8869544.
  106. 106.
    H. Wang, K. Li, and W. Pedrycz, “A routing algorithm based on simulated annealing algorithm for maximising wireless sensor networks lifetime with a sink node,” International Journal of Bio-Inspired Computation, vol. 15, no. 4, p. 264, 2020, doi: 10.1504/IJBIC.2020.108596.
  107. 107.
    M. Zivkovic, N. Bacanin, E. Tuba, I. Strumberger, T. Bezdan, and M. Tuba, “Wireless Sensor Networks Life Time Optimization Based on the Improved Firefly Algorithm,” in 2020 International Wireless Communications and Mobile Computing (IWCMC), IEEE, Jun. 2020, pp. 1176–1181. doi: 10.1109/IWCMC48107.2020.9148087.
  108. 108.
    S. Alshattnawi, L. Afifi, A. M. Shatnawi, and M. M. Barhoush, “Utilizing genetic algorithm and artificial bee colony algorithm to extend the WSN lifetime,” Int. J. Comput, vol. 21, pp. 25–31, 2022.
  109. 109.
    D. Arivudainambi, R. Pavithra, and P. Kalyani, “Cuckoo search algorithm for target coverage and sensor scheduling with adjustable sensing range in wireless sensor network,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 24, no. 4, pp. 975–996, May 2021, doi: 10.1080/09720529.2020.1753301.
SCOPUS
SCImago Journal & Country Rank