1.
L. Zhang et al., “Named Data Networking (NDN) Project,” 2010. [Online]. Available: http://named-data.net/techreports.html. [Accessed: Aug. 5, 2024].
2.
R. W. L. Coutinho, A. Boukerche, and A. A. F. Loureiro, “Design Guidelines for Information-Centric Connected and Autonomous Vehicles,” IEEE Communications Magazine, vol. 56, no. 10, pp. 85–91, Oct. 2018, doi: 10.1109/MCOM.2018.1800134.
3.
R. Amici, M. Bonola, L. Bracciale, A. Rabuffi, P. Loreti, and G. Bianchi, “Performance assessment of an epidemic protocol in VANET using real traces,” in Procedia Computer Science, Elsevier B.V., 2014, pp. 92–99. Doi: 10.1016/j.procs.2014.10.035.
4.
M. Chaqfeh, A. Lakas, and I. Jawhar, “A survey on data dissemination in vehicular ad hoc networks,” Vehicular Communications, vol. 1, no. 4. Elsevier Inc., pp. 214–225, 2014. Doi: 10.1016/j.vehcom.2014.09.001.
5.
S. H. Ahmed, S. H. Bouk, and D. Kim, “RUFS: RobUst Forwarder Selection in Vehicular Content-Centric Networks,” IEEE Communications Letters, vol. 19, no. 9, pp. 1616–1619, Sep. 2015, doi: 10.1109/LCOMM.2015.2451647.
6.
C. Bian, T. Zhao, X. Li, and W. Yan, “Boosting named data networking for efficient packet forwarding in urban VANET scenarios,” in IEEE Workshop on Local and Metropolitan Area Networks, IEEE Computer Society, May 2015. Doi: 10.1109/LANMAN.2015.7114718.
7.
M. Amadeo, C. Campolo, and A. Molinaro, “CroWN: Content-Centric Networking in Vehicular Ad Hoc Networks”, IEEE Communications Letters, doi: 10.1109/LCOMM.2012.12.120282.
8.
L. Liu, C. Chen, T. Qiu, M. Zhang, S. Li, and B. Zhou, “A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs,” Vehicular Communications, vol. 13, pp. 78–88, Jul. 2018, doi: 10.1016/j.vehcom.2018.05.002.
9.
S. Dahmane and P. Lorenz, “Weighted probabilistic next-hop forwarder decision-making in VANET environments,” in 2016 IEEE Global Communications Conference, GLOBECOM 2016 – Proceedings, Institute of Electrical and Electronics Engineers Inc., 2016. doi: 10.1109/GLOCOM.2016.7842381.
10.
A. Mehmood, A. Khanan, A. H. H. M. Mohamed, S. Mahfooz, H. Song, and S. Abdullah, “ANTSC: An Intelligent Naïve Bayesian Probabilistic Estimation Practice for Traffic Flow to Form Stable Clustering in VANET,” IEEE Access, vol. 6, pp. 4452–4461, Jul. 2017, doi: 10.1109/ACCESS.2017.2732727.
11.
R. Kumar and M. Dave, “A framework for handling local broadcast storm using probabilistic data aggregation in VANET,” Wireless Personal Communications, vol. 72, no. 1, pp. 315–341, Sep. 2013, doi: 10.1007/s11277-013-1016-0.
12.
W. Huang, T. Song, Y. Yang, and Y. Zhang, “Cluster-Based Cooperative Caching With Mobility Prediction in Vehicular Named Data Networking,” IEEE Access, vol. 7, pp. 23442–23458, 2019, doi: 10.1109/ACCESS.2019.2897747.
13.
N. Kumar and J. H. Lee, “Peer-to-peer cooperative caching for data dissemination in urban vehicular communications,” IEEE Syst J, vol. 8, no. 4, pp. 1136–1144, Dec. 2014, doi: 10.1109/JSYST.2013.2285611.
14.
E. T. da Silva, A. L. D. Costa, and J. M. H. de Macedo, “On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security,” International Journal of Communication Systems, vol. 35, no. 18, Dec. 2022, doi: 10.1002/dac.5348.
15.
D. Manivannan, S. S. Moni, and S. Zeadally, “Secure authentication and privacy-preserving techniques in Vehicular Ad-hoc NETworks (VANETs),” Vehicular Communications, vol. 25. Elsevier Inc., Oct. 01, 2020. doi: 10.1016/j.vehcom.2020.100247.
16.
J. Wang, X. Jing, Z. Yan, Y. Fu, W. Pedrycz, and L. T. Yang, “A Survey on Trust Evaluation Based on Machine Learning,” ACM Computer Survey, vol. 53, no. 5, Sep. 2020, doi: 10.1145/3408292.
17.
W. Ahmed, W. Di, and D. Mukathe, “Privacy-preserving blockchain-based authentication and trust management in VANETs,” IET Networks, vol. 11, no. 3–4, pp. 89–111, May 2022, doi: 10.1049/ntw2.12036.
18.
I. A. Kapetanidou, C. A. Sarros, and V. Tsaoussidis, “Reputation-based trust approaches in Named Data Networking,” Future Internet, vol. 11, no. 11. MDPI AG, Nov. 01, 2019. doi: 10.3390/fi11110241.
19.
B. Li, R. Liang, D. Zhu, W. Chen, and Q. Lin, “Blockchain-Based Trust Management Model for Location Privacy Preserving in VANET,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3765–3775, Jun. 2021, doi: 10.1109/TITS.2020.3035869.
20.
U. Jayasinghe, G. M. Lee, T. W. Um, and Q. Shi, “Machine Learning Based Trust Computational Model for IoT Services,” IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp. 39–52, Jan. 2019, doi: 10.1109/TSUSC.2018.2839623.
21.
K. Sharshembiev, S. M. Yoo, and E. Elmahdi, “Protocol misbehaviour detection framework using machine learning classification in vehicular Ad Hoc networks,” Wireless Networks, vol. 27, no. 3, pp. 2103–2118, Apr. 2021, doi: 10.1007/s11276-021-02565-7.
22.
S. Guleng, C. Wu, X. Chen, X. Wang, T. Yoshinaga, and Y. Ji, “Decentralized Trust Evaluation in Vehicular Internet of Things,” IEEE Access, vol. 7, pp. 15980–15988, 2019, doi: 10.1109/ACCESS.2019.2893262.
23.
F. Ahmad, F. Kurugollu, C. A. Kerrache, S. Sezer, and L. Liu, “NOTRINO: A Novel Hybrid TRust Management Scheme for INternet-of-Vehicles,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9244–9257, Sep. 2021, doi: 10.1109/TVT.2021.3049189.
24.
J. Guo et al., “TROVE: A Context-Awareness Trust Model for VANETs Using Reinforcement Learning,” IEEE Internet Things J, vol. 7, no. 7, pp. 6647–6662, Jul. 2020, doi: 10.1109/JIOT.2020.2975084.