1.
Al-Sodairi, S., & Ouni, R. (2018). Reliable and energy-efficient multi-hop LEACH-based clustering protocol for wireless sensor networks. Sustainable Computing: Informatics and Systems, 20, 1-13.
2.
Amutha, J., Sharma, S., & Nagar, J. (2020). WSN strategies based on sensors, deployment, sensing models, coverage and energy efficiency: Review, approaches and open issues. Wireless Personal Communications, 111(2), 1089-1115.
3.
Ay, P., &Rayanki, B. (2020). A generic algorithmic protocol approaches to improve network life time and energy efficient using combined genetic algorithm with simulated annealing in MANET. International Journal of Intelligent Unmanned Systems, 8(1), 23-42.
4.
Balasubramanian, D. L., & Govindasamy, V. (2019). Study on evolutionary approaches for improving the energy efficiency of wireless sensor networks applications. EAI Endorsed Transactions on Internet of Things, 5(20), e2-e2.
5.
Ding, Q., Zhu, R., Liu, H., & Ma, M. (2021). An overview of machine learning-based energy-efficient routing algorithms in wireless sensor networks. Electronics, 10(13), 1539.
6.
Jan, S. R. U., Khan, R., & Jan, M. A. (2020). An energy-efficient data aggregation approach for cluster-based wireless sensor networks. Annals of Telecommunications. https://doi.org/10.1007/s12243-020-00823-x
7.
Koyuncu, H., Tomar, G. S., & Sharma, D. (2020). A new energy efficient multitier deterministic energy-efficient clustering routing protocol for wireless sensor networks. Symmetry, 12(5), 837.
8.
Kumar, M., Mukherjee, P., Verma, K., Verma, S., & Rawat, D. B. (2022). Improved deep convolutional neural network based malicious node detection and energy-efficient data transmission in wireless sensor networks. IEEE Transactions on Network Science and Engineering, 9(5), 3272-3281. https://doi.org/10.1109/TNSE.2021.3098011
9.
Lata, S., &Mehfuz, S. (2019). Machine learning based energy efficient wireless sensor network. In 2019 International Conference on Power Electronics, Control and Automation (ICPECA) (pp. 1-5). New Delhi, India. https://doi.org/10.1109/ICPECA47973.2019.8975526
10.
Lin, D., Wang, Q., Min, W., Xu, J., & Zhang, Z. (2020). A survey on energy-efficient strategies in static wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 17(1), 1-48.
11.
Meenakshi, N., Ahmad, S., Prabu, A. V., Rao, J. N., Othman, N. A., Abdeljaber, H. A., ... & Nazeer, J. (2024). Efficient communication in wireless sensor networks using optimized energy efficient engroove leach clustering protocol. Tsinghua Science and Technology, 29(4), 985-1001.
12.
Mohamed, A., Saber, W., Elnahry, I., &Hassanien, A. E. (2020). Coyote optimization based on a fuzzy logic algorithm for energy-efficiency in wireless sensor networks. IEEE Access, 8, 185816-185829. https://doi.org/10.1109/ACCESS.2020.3029683
13.
Mostafaei, H. (2018). Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567-5575.
14.
Radhika, S., & Rangarajan, P. (2021). Fuzzy based sleep scheduling algorithm with machine learning techniques to enhance energy efficiency in wireless sensor networks. Wireless Personal Communications, 118(4), 3025–3044. https://doi.org/10.1007/s11277-021-08167-y
15.
Raj, V. P., &Duraipandian, M. (2024). An energy-efficient cross-layer-based opportunistic routing protocol and partially informed sparse autoencoder for data transfer in wireless sensor network. Journal of Engineering Research, 12(1), 122-132.
16.
Sachan, S., Sharma, R., & Sehgal, A. (2021). Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks. Sustainable Computing: Informatics and Systems, 30, 100504.
17.
Samara, G., Besani, G. A., Alauthman, M., &Khaldy, M. A. (2020). Energy-efficiency routing algorithms in wireless sensor networks: A survey. arXiv preprint arXiv:2002.07178.
18.
Santhosh Kumar, S. V. N., Palanichamy, Y., Selvi, M., Ganapathy, S., Kannan, A., & Perumal, S. P. (2021). Energy efficient secured K means based unequal fuzzy clustering algorithm for efficient reprogramming in wireless sensor networks. Wireless Networks, 27(6), 3873–3894. https://doi.org/10.1007/s11276-021-02660-9
19.
Singh, J., Kaur, R., & Singh, D. (2020). A Survey and Taxonomy on Energy Management Schemes in Wireless Sensor Networks. Journal of Systems Architecture, 101782. https://doi.org/10.1016/j.sysarc.2020.101782
20.
Smys, S., Bashar, A., &Haoxiang, W. (2021). Taxonomy classification and comparison of routing protocol based on energy efficient rate. Journal of ISMAC, 3(02), 96-110.
21.
Surenther, I., Sridhar, K. P., & Roberts, M. K. (2024). Enhancing data transmission efficiency in wireless sensor networks through machine learning-enabled energy optimization: A grouping model approach. Ain Shams Engineering Journal, 15(4), 102644. https://doi.org/10.1016/j.asej.2024.102644
22.
Wang, T., Zhang, G., Yang, X., &Vajdi, A. (2018). Genetic algorithm for energy-efficient clustering and routing in wireless sensor networks. Journal of Systems and Software, 146, 196-214.
23.
Wang, Z., Ding, H., Li, B., Bao, L., & Yang, Z. (2020). An energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networks. IEEE Access, 8, 133577-133596.
24.
Zagrouba, R., & Kardi, A. (2021). Comparative study of energy efficient routing techniques in wireless sensor networks. Information, 12(1), 42.
25.
Zhang, W., Liu, Y., Han, G., Feng, Y., & Zhao, Y. (2018). An energy efficient and QoS aware routing algorithm based on data classification for industrial wireless sensor networks. IEEE Access, 6, 46495-46504.
26.
Zhou, C., Ma, L., & Liu, P. (2023, April). Optimal calculation of the operation strategy of a distributed heating system combining wind, solar and electrical energy. Journal of Physics: Conference Series, 2491(1), 012023. https://doi.org/10.1088/1742-6596/2491/1/012023.