International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

Dynamic Integration of Fast Furious Cheetah Optimization for Efficient and Secure Routing in Vehicular Ad Hoc Networks

Author NameAuthor Details

A. Sheela Rini, C. Meena

A. Sheela Rini[1]

C. Meena[2]

[1]Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.

[2]Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.

Abstract

This research delves into the intricate challenges of routing efficiency and data security in Vehicular Ad Hoc Networks (VANETs), characterized by the dynamic nature of Vehicle-to-Vehicle (V2V) communication. To address the former, this research proposes Route Life Time Enhanced AODV (RLE-AODV), a mechanism designed to prolong route stability by optimizing the Ad Hoc On-Demand Distance Vector (AODV) protocol. Concurrently, recognizing the paramount importance of securing transmitted data in V2V communication, Elliptic Curve Cryptography (ECC) is an encryption technique to fortify the integrity and confidentiality of exchanged information. The study then introduces Fast Furious Cheetah Optimization (FFCO) as an innovative approach aimed at a unified optimization of RLE-AODV and ECC. FFCO is a metaheuristic optimization algorithm orchestrating a harmonious integration of routing efficiency and security enhancement. The intricacies of this integration are technically expounded, elucidating how FFCO optimally adjusts parameters within RLE-AODV and ECC to achieve a synergistic and mutually reinforcing effect. Simulations are conducted meticulously to evaluate the proposed framework's technical prowess. The results underscore the superior performance and heightened security of integrating FFCO with RLE-AODV and ECC in V2V VANETs. This research contributes to advancing efficient and secure vehicular communication and offers valuable insights into the synergy of optimization techniques for multifaceted network challenges.

Index Terms

Ad Hoc On-Demand Distance Vector Routing

Particle Swarm Optimization

Machine Learning

Network Lifespan

Energy Balancing

Localization

Clustering

Routing Overhead

Throughput

End-to-End Delay

Reference

  1. 1.
    M. Azizi and S. Shokrollahi, “RTRV: An RSU-assisted trust-based routing protocol for VANETs,” Ad Hoc Networks, vol. 154, p. 103387, 2024, doi: 10.1016/j.adhoc.2023.103387.
  2. 2.
    S. Hosmani and B. Mathapati, “Efficient Vehicular Ad Hoc Network routing protocol using weighted clustering technique,” Int. J. Inf. Technol., vol. 13, no. 2, pp. 469–473, 2021, doi: 10.1007/s41870-020-00537-2.
  3. 3.
    V. K. Quy, V. H. Nam, D. M. Linh, N. T. Ban, and N. D. Han, “Communication Solutions for Vehicle Ad-hoc Network in Smart Cities Environment: A Comprehensive Survey,” Wirel. Pers. Commun., vol. 122, no. 3, pp. 2791–2815, 2022, doi: 10.1007/s11277-021-09030-w.
  4. 4.
    K. Chandramohan, A. Manikandan, S. Ramalingam, and R. Dhanapal, “Performance Evaluation of VANET using Directional Location Aided Routing (D-LAR) Protocol with Sleep Scheduling Algorithm,” Ain Shams Eng. J., vol. 15, no. 3, p. 102458, 2024, doi: 10.1016/j.asej.2023.102458.
  5. 5.
    J. K. Shahrouz and M. Analoui, “An anonymous authentication scheme with conditional privacy-preserving for Vehicular Ad hoc Networks based on zero-knowledge proof and Blockchain,” Ad Hoc Networks, vol. 154, p. 103349, 2024, doi: 10.1016/j.adhoc.2023.103349.
  6. 6.
    L. R. Gallego-Tercero, R. Menchaca-Mendez, M. E. Rivero-Angeles, and R. Menchaca-Mendez, “Efficient time-stable geocast routing in delay-tolerant vehicular ad-hoc networks,” IEEE Access, vol. 8, pp. 171034–171048, 2020, doi: 10.1109/ACCESS.2020.3024541.
  7. 7.
    Z. Zhou, A. Gaurav, B. B. Gupta, M. D. Lytras, and I. Razzak, “A Fine-Grained Access Control and Security Approach for Intelligent Vehicular Transport in 6G Communication System,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9726–9735, 2022, doi: 10.1109/TITS.2021.3106825.
  8. 8.
    K. Ahed, M. Benamar, A. A. Lahcen, and R. El Ouazzani, “Forwarding strategies in vehicular named data networks: A survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 1819–1835, 2022, doi: 10.1016/j.jksuci.2020.06.014.
  9. 9.
    N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong, and K. H. Chong, “A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions,” IEEE Access, vol. 10, pp. 86127–86180, 2022, doi: 10.1109/ACCESS.2022.3198656.
  10. 10.
    R. Agrawal et al., “Classification and comparison of ad hoc networks: A review,” Egypt. Informatics J., vol. 24, no. 1, pp. 1–25, 2023, doi: 10.1016/j.eij.2022.10.004.
  11. 11.
    E. Khoza, C. Tu, and P. A. Owolawi, “Decreasing traffic congestion in vanets using an improved hybrid ant colony optimization algorithm,” J. Commun., vol. 15, no. 9, pp. 676–686, 2020, doi: 10.12720/jcm.15.9.676-686.
  12. 12.
    J. Ramkumar, A. Senthilkumar, M. Lingaraj, R. Karthikeyan, and L. Santhi, “Optimal Approach for Minimizing Delays in Iot-Based Quantum Wireless Sensor Networks Using Nm-Leach Routing Protocol,” J. Theor. Appl. Inf. Technol., vol. 102, no. 3, pp. 1099–1111, 2024.
  13. 13.
    J. Ramkumar, R. Vadivel, B. Narasimhan, S. Boopalan, and B. Surendren, “Gallant Ant Colony Optimized Machine Learning Framework (GACO-MLF) for Quality of Service Enhancement in Internet of Things-Based Public Cloud Networking,” J. M. R. S. Tavares, J. J. P. C. Rodrigues, D. Misra, and D. Bhattacherjee, Eds., Singapore: Springer Nature Singapore, 2024, pp. 425–438. doi: 10.1007/978-981-99-5435-3_30.
  14. 14.
    J. Ramkumar and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wirel. Pers. Commun., vol. 120, no. 2, pp. 887–909, Apr. 2021, doi: 10.1007/s11277-021-08495-z.
  15. 15.
    R. Jaganathan, V. Ramasamy, L. Mani, and N. Balakrishnan, “Diligence Eagle Optimization Protocol for Secure Routing (DEOPSR) in Cloud-Based Wireless Sensor Network,” Res. Sq., 2022, doi: 10.21203/rs.3.rs-1759040/v1.
  16. 16.
    D. Xue, Y. Guo, N. Li, X. Song, and M. He, “Cross-domain cooperative route planning for edge computing-enabled multi-connected vehicles,” Comput. Electr. Eng., vol. 108, p. 108668, 2023, doi: 10.1016/j.compeleceng.2023.108668.
  17. 17.
    T. Li, F. Guo, R. Krishnan, and A. Sivakumar, “An analysis of the value of optimal routing and signal timing control strategy with connected autonomous vehicles,” J. Intell. Transp. Syst. Technol. Planning, Oper., vol. 28, no. 2, pp. 252–266, 2022, doi: 10.1080/15472450.2022.2129021.
  18. 18.
    K. Haseeb, A. Rehman, T. Saba, S. A. Bahaj, H. Wang, and H. Song, “Efficient and trusted autonomous vehicle routing protocol for 6G networks with computational intelligence,” ISA Trans., vol. 132, pp. 61–68, 2023, doi: 10.1016/j.isatra.2022.09.035.
  19. 19.
    R. Tirumalasetti and S. K. Singh, “Automatic Dynamic User Allocation with opportunistic routing over vehicles network for Intelligent Transport System,” Sustain. Energy Technol. Assessments, vol. 57, p. 103195, 2023, doi: 10.1016/j.seta.2023.103195.
  20. 20.
    Saifullah, Z. Ren, K. Hussain, and M. Faheem, “K-means online-learning routing protocol (K-MORP) for unmanned aerial vehicles (UAV) adhoc networks,” Ad Hoc Networks, vol. 154, p. 103354, 2024, doi: 10.1016/j.adhoc.2023.103354.
  21. 21.
    Parveen, S. Kumar, R. P. Singh, A. Kumar, R. Yaduwanshi, and D. P. Dora, “TS-CAGR:Traffic sensitive connectivity-aware geocast routing protocol in internet of vehicles,” Ad Hoc Networks, vol. 147, p. 103210, 2023, doi: 10.1016/j.adhoc.2023.103210.
  22. 22.
    M. V. Kadam, H. B. Mahajan, N. J. Uke, and P. R. Futane, “Cybersecurity threats mitigation in Internet of Vehicles communication system using reliable clustering and routing,” Microprocess. Microsyst., vol. 102, p. 104926, 2023, doi: 10.1016/j.micpro.2023.104926.
  23. 23.
    K. Matrouk, Y. Trabelsi, V. Gomathy, U. Arun Kumar, C. R. Rathish, and P. Parthasarathy, “Energy efficient data transmission in intelligent transportation system (ITS): Millimeter (mm wave) based routing algorithm for connected vehicles,” Optik (Stuttg)., vol. 273, p. 170374, 2023, doi: 10.1016/j.ijleo.2022.170374.
  24. 24.
    Y. A. Shah et al., “An Evolutionary Algorithm-Based Vehicular Clustering Technique for VANETs,” IEEE Access, vol. 10, pp. 14368–14385, 2022, doi: 10.1109/ACCESS.2022.3145905.
  25. 25.
    Y. Feng, Y. Huang, B. Li, H. Peng, J. Wang, and W. Zhou, “Connectivity Enhancement of E-VANET Based on QL-mRSU Self-Learning Energy-Saving Algorithm,” IEEE Access, vol. 11, pp. 3810–3825, 2023, doi: 10.1109/ACCESS.2023.3235397.
  26. 26.
    A. Salim, A. M. Khedr, B. Alwasel, W. Osamy, and A. Aziz, “SOMACA: A New Swarm Optimization-Based and Mobility-Aware Clustering Approach for the Internet of Vehicles,” IEEE Access, vol. 11, pp. 46487–46503, 2023, doi: 10.1109/ACCESS.2023.3275446.
  27. 27.
    J. Ramkumar and R. Vadivel, CSIP—cuckoo search inspired protocol for routing in cognitive radio ad hoc networks, vol. 556. 2017. doi: 10.1007/978-981-10-3874-7_14.
  28. 28.
    L. Mani, S. Arumugam, and R. Jaganathan, “Performance Enhancement of Wireless Sensor Network Using Feisty Particle Swarm Optimization Protocol,” ACM Int. Conf. Proceeding Ser., pp. 1–5, Dec. 2022, doi: 10.1145/3590837.3590907.
  29. 29.
    Z. Han, C. Xu, S. Ma, Y. Hu, G. Zhao, and S. Yu, “DTE-RR: Dynamic Topology Evolution-Based Reliable Routing in VANET,” IEEE Wirel. Commun. Lett., vol. 12, no. 6, pp. 1061–1065, 2023, doi: 10.1109/LWC.2023.3260142.
  30. 30.
    A. Sheela Rini, C. Meena, "Analysis of Machine Learning Classifiers to Detect Malicious Node in Vehicular Cloud Computing", International Journal of Computer Networks and Applications (IJCNA), 9(2), PP: 202-213, 2022, DOI: 10.22247/ijcna/2022/212336.
  31. 31.
    G. D. Singh, M. Prateek, S. Kumar, M. Verma, D. Singh, and H. N. Lee, “Hybrid Genetic Firefly Algorithm-Based Routing Protocol for VANETs,” IEEE Access, vol. 10, pp. 9142–9151, 2022, doi: 10.1109/ACCESS.2022.3142811.
SCOPUS
SCImago Journal & Country Rank