1.
L. Ecola, S. W. Popper, R. Silberglitt, and L. Fraade-Blanar, “Road to Zero: Developing A Vision for a Future with Zero Roadway Fatalities,” 2019.
2.
S. A. Elsagheer Mohamed and K. A. AlShalfan, “Intelligent Traffic Management System Based on the Internet of Vehicles (IoV),” J. Adv. Transp., vol. 2021, p. 4037533, 2021, doi: 10.1155/2021/4037533.
3.
S. A. Elsagheer Mohamed et al., “Safe Driving Distance and Speed for Collision Avoidance in Connected Vehicles,” Sensors, vol. 22, no. 18, 2022, doi: 10.3390/s22187051.
4.
S. Chen et al., “Vehicle-to-Everything (v2x) Services Supported by LTE-Based Systems and 5G,” IEEE Commun. Stand. Mag., vol. 1, no. 2, pp. 70–76, 2017, doi: 10.1109/MCOMSTD.2017.1700015.
5.
I. S. Committee and others, “IEEE standard for wireless access in vehicular environments (WAVE)-networking services,” IEEE Std, vol. 1609, pp. 3–2010, 2007.
6.
J. Kamel, M. R. Ansari, J. Petit, A. Kaiser, I. Ben Jemaa, and P. Urien, “Simulation Framework for Misbehavior Detection in Vehicular Networks,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6631–6643, Jun. 2020, doi: 10.1109/TVT.2020.2984878.
7.
B. Brecht and T. Hehn, “A Security Credential Management System for V2X Communications,” in Connected Vehicles: Intelligent Transportation Systems, R. Miucic, Ed. Cham: Springer International Publishing, 2019, pp. 83–115. doi: 10.1007/978-3-319-94785-3_4.
8.
A. Boualouache and T. Engel, “A Survey on Machine Learning-based Misbehavior Detection Systems for 5G and Beyond Vehicular Networks,” IEEE Commun. Surv. Tutorials, p. 1, 2023, doi: 10.1109/COMST.2023.3236448.
9.
T. Garg et al., A Survey on Machine Learning-based Misbehavior Detection Systems for 5G and Beyond Vehicular Networks, vol. 3, no. 5. 2022, pp. 1–14. doi: 10.1109/OJVT.2021.3138354.
10.
S. A. E. Mohamed, “Automatic traffic violation recording and reporting system to limit traffic accidents: based on vehicular Ad-hoc networks (VANET),” in 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), 2019, pp. 254–259.
11.
S. A. Elsagheer, Y. Atallah, and H. Hashem, “Enhancing Road Safety Using the Internet of Vehicles: A Machine Learning-Based Collision Detection Approach,” in 2023 11th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), 2023, pp. 68–72.
12.
S. Sharma and B. Kaushik, “A survey on internet of vehicles: Applications, security issues & solutions,” Veh. Commun., vol. 20, p. 100182, 2019, doi: https://doi.org/10.1016/j.vehcom.2019.100182.
13.
A. Sharma and A. Jaekel, “Machine Learning Based Misbehaviour Detection in VANET Using Consecutive BSM Approach,” IEEE Open Journal of Vehicular Technology, vol. 3. pp. 1–14, 2022. doi: 10.1109/OJVT.2021.3138354.
14.
J. Kamel, M. Wolf, R. W. Van Der Hei, A. Kaiser, P. Urien, and F. Kargl, VeReMi Extension: A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs, vol. 2020-June. 2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9149132.
15.
A. Sharma and A. Jaekel, “Machine Learning Approach for Detecting Location Spoofing in VANET,” in 2021 International Conference on Computer Communications and Networks (ICCCN), 2021, vol. 2021-July, pp. 1–6. doi: 10.1109/ICCCN52240.2021.9522170.
16.
P. Sharma and H. Liu, “A Machine-Learning-Based Data-Centric Misbehavior Detection Model for Internet of Vehicles,” IEEE Internet Things J., vol. 8, no. 6, pp. 4991–4999, Mar. 2021, doi: 10.1109/JIOT.2020.3035035.
17.
S. So, P. Sharma, and J. Petit, “Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET,” in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, pp. 564–571. doi: 10.1109/ICMLA.2018.00091.
18.
P. K. Singh, S. Gupta, R. Vashistha, S. K. Nandi, and S. Nandi, “Machine learning based approach to detect position falsification attack in vanets,” in Security and Privacy: Second ISEA International Conference, ISEA-ISAP 2018, Jaipur, India, January, 9--11, 2019, Revised Selected Papers 2, 2019, pp. 166–178.
19.
H. Grover, T. Alladi, V. Chamola, D. Singh, and K.-K. R. Choo, “Edge Computing and Deep Learning Enabled Secure Multitier Network for Internet of Vehicles,” IEEE Internet Things J., vol. 8, no. 19, pp. 14787–14796, Oct. 2021, doi: 10.1109/JIOT.2021.3071362.
20.
G. O. Anyanwu, C. I. Nwakanma, J. M. Lee, and D.-S. Kim, “Novel hyper-tuned ensemble Random Forest algorithm for the detection of false basic safety messages in Internet of Vehicles,” ICT Express, 2022, doi: https://doi.org/10.1016/j.icte.2022.06.003.
21.
G. O. Anyanwu, C. I. Nwakanma, J.-M. Lee, and D.-S. Kim, “Falsification Detection System for IoV Using Randomized Search Optimization Ensemble Algorithm,” IEEE Trans. Intell. Transp. Syst., pp. 1–15, 2023, doi: 10.1109/TITS.2022.3233536.
22.
S. A. Almalki and F. T. Sheldon, “Deep Learning to Improve False Data Injection Attack Detection in Cooperative Intelligent Transportation Systems,” in 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2021, pp. 1016–1021. doi: 10.1109/IEMCON53756.2021.9623153.
23.
Y. Wu, L. Wu, and H. Cai, “A deep learning approach to secure vehicle to road side unit communications in intelligent transportation system,” Comput. Electr. Eng., vol. 105, p. 108542, 2023, doi: https://doi.org/10.1016/j.compeleceng.2022.108542.
24.
T. Alladi, B. Gera, A. Agrawal, V. Chamola, and F. R. Yu, “DeepADV: A Deep Neural Network Framework for Anomaly Detection in VANETs,” IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 12013–12023, 2021, doi: 10.1109/TVT.2021.3113807.
25.
H. A. Idris, K. Ueda, B. Mokhtar, and S. A. E. Mohamed, “Novel Intelligent BSM Falsification Attack Detection System Using Trusted Neighbor Vehicle Approach in IoV,” Int. J. Comput., vol. 23, no. 1, pp. 116–125, Apr. 2024, doi: 10.47839/ijc.23.1.3443.
26.
T. Alladi, V. Kohli, V. Chamola, and F. R. Yu, “A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems,” Digit. Commun. Networks, 2022, doi: https://doi.org/10.1016/j.dcan.2022.06.018.
27.
F. Hawlader, A. Boualouache, S. Faye, and T. Engel, “Intelligent Misbehavior Detection System for Detecting False Position Attacks in Vehicular Networks,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Jun. 2021, pp. 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473606.
28.
X. Wang, Y. Zhu, S. Han, L. Yang, H. Gu, and F.-Y. Wang, “Fast and Progressive Misbehavior Detection in Internet of Vehicles Based on Broad Learning and Incremental Learning Systems,” IEEE Internet Things J., vol. 9, no. 6, pp. 4788–4798, Mar. 2022, doi: 10.1109/JIOT.2021.3109276.
29.
G. O. Anyanwu, C. I. Nwakanma, J.-H. Kim, J.-M. Lee, and D.-S. Kim, “Misbehavior Detection in Connected Vehicles using BurST-ADMA Dataset,” in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Oct. 2022, pp. 874–878. doi: 10.1109/ICTC55196.2022.9952947.
30.
T. Alladi, V. Kohli, V. Chamola, and F. R. Yu, “Securing the internet of vehicles: A deep learning-based classification framework,” IEEE Netw. Lett., vol. 3, no. 2, pp. 94–97, 2021.
31.
Y. L. Morgan, “Notes on DSRC \& WAVE standards suite: Its architecture, design, and characteristics,” IEEE Commun. Surv. \& Tutorials, vol. 12, no. 4, pp. 504–518, 2010.
32.
M. A. Amanullah, M. Baruwal Chhetri, S. W. Loke, and R. Doss, “BurST-ADMA: Towards an Australian Dataset for Misbehaviour Detection in the Internet of Vehicles,” 2022, pp. 624–629. doi: 10.1109/PerComWorkshops53856.2022.9767505.
33.
C. Sommer et al., “Veins: The open source vehicular network simulation framework,” in EAI/Springer Innovations in Communication and Computing, A. Virdis and M. Kirsche, Eds. Springer, 2019, pp. 215–252. doi: 10.1007/978-3-030-12842-5_6.
34.
C. C. Robusto, “The cosine-haversine formula,” Am. Math. Mon., vol. 64, no. 1, pp. 38–40, 1957.