International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

Relentless Firefly Optimization-Based Routing Protocol (RFORP) for Securing Fintech Data in IoT-Based Ad-Hoc Networks

Author NameAuthor Details

J Ramkumar, K S Jeen Marseline, D R Medhunhashini

J Ramkumar[1]

K S Jeen Marseline[2]

D R Medhunhashini[3]

[1]Department of Information Technology and Cognitive Systems, Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India.

[2]Department of Information Technology and Cognitive Systems, Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India.

[3]Department of Information Technology and Cognitive Systems, Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India.

Abstract

The widespread adoption of Internet of Things (IoT) technology and the rise of fintech applications have raised concerns regarding the secure and efficient routing of data in IoT-based ad-hoc networks (IoT-AN). Challenges in this context include vulnerability to security breaches, potential malicious node presence, routing instability, and energy inefficiency. This article proposes the Relentless Firefly Optimization-based Routing Protocol (RFORP) to overcome these issues. Inspired by fireflies’ natural behaviour, RFORP incorporates relentless firefly optimization techniques to enhance packet delivery, malicious node detection, routing stability, and overall network resilience. Simulation results demonstrate RFORP’s superiority over existing protocols, achieving higher packet delivery ratios, accurate malicious node detection, improved routing stability, and significant energy efficiency. The proposed RFORP offers a promising solution for securing fintech data in IoT-AN, providing enhanced performance, reliability, and security while effectively addressing the identified challenges. This research contributes to advancing secure routing protocols in fintech applications and guides network security and protocol selection in IoT environments.

Index Terms

Fintech

Firefly

IoT

Ad-Hoc Networks

Routing

Security.

Reference

  1. 1.
    Met, A. Erkoc, and S. E. Seker, “Performance, Efficiency, and Target Setting for Bank Branches: Time Series With Automated Machine Learning,” IEEE Access, vol. 11, pp. 1000–1010, 2023, doi: 10.1109/ACCESS.2022.3233529.
  2. 2.
    N. Vikas, P. Venegas, and S. Aiyer, Role of Banks and Other Financial Institutions in Enhancing Green Digital Finance. 2022. doi: 10.1007/978-981-19-2662-4_16.
  3. 3.
    E. Avgouleas and H. Marjosola, Digital Finance in Europe: Law, Regulation, and Governance. 2021. doi: 10.1515/9783110749472.
  4. 4.
    Di. Rojas-Torres, N. Kshetri, M. M. Hanafi, and S. Kouki, “Financial Technology in Latin America,” IT Prof., vol. 23, no. 1, pp. 95–98, 2021, doi: 10.1109/MITP.2020.3028486.
  5. 5.
    E. Hernández, M. Öztürk, I. Sittón, and S. Rodríguez, “Data protection on fintech platforms,” in Communications in Computer and Information Science, 2019, vol. 1047, pp. 223–233. doi: 10.1007/978-3-030-24299-2_19.
  6. 6.
    R. Kumar, U. Venkanna, and V. Tiwari, “Opt-ACM: An Optimized load balancing based Admission Control Mechanism for Software Defined Hybrid Wireless based IoT (SDHW-IoT) network,” Comput. Networks, vol. 188, p. 107888, 2021, doi: 10.1016/j.comnet.2021.107888.
  7. 7.
    Y. Zhao, Y. Yu, Y. Li, G. Han, and X. Du, “Machine learning based privacy-preserving fair data trading in big data market,” Inf. Sci. (Ny)., vol. 478, pp. 449–460, 2019, doi: 10.1016/j.ins.2018.11.028.
  8. 8.
    Z. Z. Oo and S. Phyu, “Microclimate prediction using cloud centric model based on IoT technology for sustainable agriculture,” in 2019 IEEE 4th International Conference on Computer and Communication Systems, ICCCS 2019, 2019, pp. 660–663. doi: 10.1109/CCOMS.2019.8821706.
  9. 9.
    Y. W. Kuo, W. L. Wen, X. F. Hu, Y. T. Shen, and S. Y. Miao, “A lora-based multisensor iot platform for agriculture monitoring and submersible pump control in a water bamboo field,” Processes, vol. 9, no. 5, 2021, doi: 10.3390/pr9050813.
  10. 10.
    A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, J. Too, and P. Pillai, “Trustworthy and Efficient Routing Algorithm for IoT-FinTech Applications Using Nonlinear Lévy Brownian Generalized Normal Distribution Optimization,” IEEE Internet Things J., vol. 10, no. 3, pp. 2215–2230, 2023, doi: 10.1109/JIOT.2021.3109075.
  11. 11.
    R. Yamparala and B. Perumal, “Efficient malicious node identification method for improving packet delivery rate in mobile ad hoc networks with secured route,” J. Crit. Rev., vol. 7, no. 7, pp. 1011–1017, 2020, doi: 10.31838/jcr.07.07.185.
  12. 12.
    M. A. Ahad and R. Biswas, “PPS-ADS: A framework for privacy-preserved and secured distributed system architecture for handling big data,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 4, pp. 1333–1342, 2018, doi: 10.18517/ijaseit.8.4.5465.
  13. 13.
    P. J. Adinarayana and B. Kishore Babu, “The role of shaping fin-tech services: Social media marketing,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 10, pp. 1720–1723, 2019, doi: 10.35940/ijitee.J9045.0881019.
  14. 14.
    R. Vadivel and J. Ramkumar, “QoS-enabled improved cuckoo search-inspired protocol (ICSIP) for IoT-based healthcare applications,” Inc. Internet Things Healthc. Appl. Wearable Devices, pp. 109–121, 2019, doi: 10.4018/978-1-7998-1090-2.ch006.
  15. 15.
    R. Jaganathan and R. Vadivel, “Intelligent Fish Swarm Inspired Protocol (IFSIP) for Dynamic Ideal Routing in Cognitive Radio Ad-Hoc Networks,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 1063–1074, 2021, doi: 10.12785/ijcds/100196.
  16. 16.
    L. Mani, S. Arumugam, and R. Jaganathan, “Performance Enhancement of Wireless Sensor Network Using Feisty Particle Swarm Optimization Protocol,” ACM Int. Conf. Proceeding Ser., pp. 1–5, Dec. 2022, doi: 10.1145/3590837.3590907.
  17. 17.
    C. Li, J. Wu, Z. Zhang, and A. Lv, “Energy-harvesting Q-learning secure routing algorithm with authenticated-encryption for WSN,” ICT Express, 2023, doi: 10.1016/j.icte.2023.05.006.
  18. 18.
    K. Biswas, V. Muthukkumarasamy, M. J. M. Chowdhury, X. W. Wu, and K. Singh, “A multipath routing protocol for secure energy efficient communication in Wireless Sensor Networks,” Comput. Networks, vol. 232, p. 109842, 2023, doi: 10.1016/j.comnet.2023.109842.
  19. 19.
    V. Ramalingam, R. Saminathan, and K. M. Baalamurugan, “Fork-Hook encryption policy based secured Data Centric Routing Gateway for proactive trust ware data transmission in WBSN,” Meas. Sensors, vol. 27, p. 100760, 2023, doi: 10.1016/j.measen.2023.100760.
  20. 20.
    D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,” in Mobile Computing, T. Imielinski and H. F. Korth, Eds. Boston, MA: Springer US, 2007, pp. 153–181. doi: 10.1007/978-0-585-29603-6_5.
  21. 21.
    H. Li, D. Shi, W. Wang, D. Liao, T. R. Gadekallu, and K. Yu, “Secure routing for LEO satellite network survivability,” Comput. Networks, vol. 211, p. 109011, 2022, doi: 10.1016/j.comnet.2022.109011.
  22. 22.
    R. Zhu, A. Boukerche, L. Feng, and Q. Yang, “A trust management-based secure routing protocol with AUV-aided path repairing for Underwater Acoustic Sensor Networks,” Ad Hoc Networks, vol. 149, p. 103212, 2023, doi: 10.1016/j.adhoc.2023.103212.
  23. 23.
    B. Su and B. Zhu, “TBMOR: A lightweight trust-based model for secure routing of opportunistic networks,” Egypt. Informatics J., vol. 24, no. 2, pp. 205–214, 2023, doi: 10.1016/j.eij.2023.02.002.
  24. 24.
    A. S. Oliver, B. Ravi, R. Manikandan, A. Sharma, and B. G. Kim, “Heuristic green computing based energy management with security enhancement using hybrid greedy secure optimal routing protocol,” Energy Reports, vol. 9, pp. 2494–2505, 2023, doi: 10.1016/j.egyr.2023.01.052.
  25. 25.
    A. Roshini and K. V.D. Kiran, “Hierarchical energy efficient secure routing protocol for optimal route selection in wireless body area networks,” Int. J. Intell. Networks, vol. 4, pp. 19–28, 2023, doi: 10.1016/j.ijin.2022.11.006.
  26. 26.
    Z. Yang, L. Li, F. Gu, X. Ling, and M. Hajiee, “TADR-EAODV: A trust-aware dynamic routing algorithm based on extended AODV protocol for secure communications in wireless sensor networks,” Internet of Things (Netherlands), vol. 20, 2022, doi: 10.1016/j.iot.2022.100627.
  27. 27.
    X. Y. Li, W. Lin, W. Guo, and J. M. Chang, “A secure data transmission scheme based on multi-protection routing in datacenter networks,” J. Parallel Distrib. Comput., vol. 167, pp. 222–231, 2022, doi: 10.1016/j.jpdc.2022.05.010.
  28. 28.
    A. A. Mahamune and M. M. Chandane, “Trust-based co-operative routing for secure communication in mobile ad hoc networks,” Digit. Commun. Networks, 2023, doi: 10.1016/j.dcan.2023.01.005.
  29. 29.
    G. V. Gurram, N. C. Shariff, and R. L. Biradar, “A Secure Energy Aware Meta-Heuristic Routing Protocol (SEAMHR) for sustainable IoT-Wireless Sensor Network (WSN),” Theor. Comput. Sci., vol. 930, pp. 63–76, Sep. 2022, doi: 10.1016/j.tcs.2022.07.011.
  30. 30.
    J. Ramkumar and R. Vadivel, “Multi-Adaptive Routing Protocol for Internet of Things based Ad-hoc Networks,” Wirel. Pers. Commun., vol. 120, no. 2, pp. 887–909, Apr. 2021, doi: 10.1007/s11277-021-08495-z.
SCOPUS
SCImago Journal & Country Rank