1.
Nord, J. H., Koohang, A., & Paliszkiewicz, J. (2019). The Internet of Things: Review and theoretical framework. Expert Systems with Applications, 133, 97–108. https://doi.org/10.1016/j.eswa.2019.05.014
2.
Farooq, M. J., & Zhu, Q. (2018). On the secure and reconfigurable multi-layer network design for critical information dissemination in the internet of battlefield things (IoBT). IEEE Transactions on Wireless Communications, 17(4), 2618–2632. https://doi.org/10.1109/twc.2018.2799860
3.
Sobral, J. V., Rodrigues, J. J., Rabêlo, R. A., Al-Muhtadi, J., &Korotaev, V. (2019). Routing protocols for low power and lossy networks in Internet of things applications. Sensors, 19(9), 2144. https://doi.org/10.3390/s19092144.
4.
Ekpenyong, M. E., Asuquo, D. E., Udo, I. J., Robinson, S. A., & Ijebu, F. F. (2022). IPv6 routing protocol enhancements over low-power and lossy networks for IoT applications: A systematic review. New Review of Information Networking, 27(1), 30–68. https://doi.org/10.1080/13614576.2022.2078396
5.
Kharrufa, H., Al-Kashoash, H. A. A., & Kemp, A. H. (2019). RPL-based routing protocols in IoT applications: A review. IEEE Sensors Journal, 19(15), 5952–5967. https://doi.org/10.1109/jsen.2019.2910881
6.
Simoglou, G., Violettas, G., Petridou, S., & Mamatas, L. (2021). Intrusion detection systems for RPL security: A comparative analysis. Computers & Security, 104(102219), 102219. https://doi.org/10.1016/j.cose.2021.102219.
7.
Raoof, A., Matrawy, A., & Lung, C.-H. (2019). Routing attacks and mitigation methods for RPL-based internet of things. IEEE Communications Surveys & Tutorials, 21(2), 1582–1606. https://doi.org/10.1109/comst.2018.2885894
8.
Pasikhani, A. M., Clark, J. A., Gope, P., & Alshahrani, A. (2021). Intrusion detection systems in RPL-based 6LoWPAN: A systematic literature review. IEEE Sensors Journal, 21(11), 12940–12968. https://doi.org/10.1109/jsen.2021.3068240
9.
Al-Amiedy, T. A., Anbar, M., Belaton, B., Kabla, A. H. H., Hasbullah, I. H., & Alashhab, Z. R. (2022). A systematic literature review on machine and Deep Learning approaches for detecting attacks in RPL-based 6LoWPAN of internet of things. Sensors (Basel, Switzerland), 22(9), 3400. https://doi.org/10.3390/s22093400
10.
Thakkar, A., & Lohiya, R. (2021). A review on machine learning and deep learning perspectives of IDS for IoT: Recent updates, security issues, and challenges. Archives of Computational Methods in Engineering. State of the Art Reviews, 28(4), 3211–3243. https://doi.org/10.1007/s11831-020-09496-0
11.
Zahra, F., Jhanjhi, N.Z., Brohi, S.N., Khan, N.A., Masud, M., &Alzain, M.A. (2022). Rank and Wormhole Attack Detection Model for RPL-Based Internet of Things Using Machine Learning. Sensors (Basel, Switzerland), 22(18), 6765. https://doi.org/10.3390/s22186765
12.
Zahra, F., Jhanjhi, N. Z., Khan, N. A., Brohi, S. N., Masud, M., & Aljahdali, S. (2022). Protocol-specific and sensor network-inherited attack detection in IoT using machine learning. Applied Sciences (Basel, Switzerland), 12(22), 11598. https://doi.org/10.3390/app122211598
13.
Osman, M., He, J., Mokbal, F. M. M., Zhu, N., & Qureshi, S. (2021). ML-LGBM: A machine learning model based on light gradient boosting machine for the detection of version number attacks in RPL-based networks. IEEE Access: Practical Innovations, Open Solutions, 9, 83654–83665. https://doi.org/10.1109/access.2021.3087175
14.
Raghavendra, T., Anand, M., Selvi, M., Thangaramya, K., Santhosh Kumar, S. V. N., & Kannan, A. (2022). An Intelligent RPL attack detection using Machine Learning-Based Intrusion Detection System for Internet of Things. Procedia Computer Science, 215, 61–70. https://doi.org/10.1016/j.procs.2022.12.007
15.
Verma, A., & Ranga, V. (2019). ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). " In 2019 4th International conference on Internet of Things: Smart innovation and usages (IoT-SIU), pp. 1-6. https://doi.org/10.1109/IoT-SIU.2019.8777504.
16.
Yaakoubi, Faicel, AymenYahyaoui, WadiiBoulila, and RabahAttia. "An XGBoost-Based Approach for an Efficient RPL Routing Attack Detection." In Computational Collective Intelligence: 14th International Conference, ICCCI 2022, Hammamet, Tunisia, September 28–30, 2022, Proceedings, pp. 611-623. https://doi.org/10.1007/978-3-031-16014-1_48.
17.
Bouazza, A., Debbi, H., &Lakhlef, H. (2022). Machine Learning-based Intrusion Detection System Against Routing Attacks in the Internet of Things. Proceedings http://ceur-ws. org ISSN, 1613, 0073.
18.
Cakir, S., Toklu, S., & Yalcin, N. (2020). RPL attack detection and prevention in the internet of things networks using a GRU based deep learning. IEEE Access: Practical Innovations, Open Solutions, 8, 183678–183689. https://doi.org/10.1109/access.2020.3029191.
19.
Morales-Molina, C. D., Hernandez-Suarez, A., Sanchez-Perez, G., Toscano-Medina, L. K., Perez-Meana, H., Olivares-Mercado, J., Portillo-Portillo, J., Sanchez, V., & Garcia-Villalba, L. J. (2021). A Dense Neural Network approach for detecting Clone ID attacks on the RPL protocol of the IoT. Sensors (Basel, Switzerland), 21(9), 3173. https://doi.org/10.3390/s21093173.
20.
Choukri, W., Lamaazi, H., & Benamar, N. (2020). RPL rank attack detection using Deep Learning. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), 1-6. https://doi.org/10.1109/3ICT51146.2020.9311983.
21.
Albishari, M., Li, M., Zhang, R., & Almosharea, E. (2023). Deep learning-based early stage detection (DL-ESD) for routing attacks in Internet of Things networks. The Journal of Supercomputing, 79(3), 2626–2653. https://doi.org/10.1007/s11227-022-04753-4
22.
Saba, T., Rehman, A., Sadad, T., Kolivand, H., & Bahaj, S. A. (2022). Anomaly-based intrusion detection system for IoT networks through deep learning model. Computers & Electrical Engineering: An International Journal, 99(107810), 107810. https://doi.org/10.1016/j.compeleceng.2022.107810.
23.
Shahnawaz Ahmad, M., & Mehraj Shah, S. (2022). Unsupervised ensemble based deep learning approach for attack detection in IoT network. Concurrency and Computation: Practice & Experience, 34(27). https://doi.org/10.1002/cpe.7338.
24.
Nayak, S., Ahmed, N., & Misra, S. (2021). Deep learning-based reliable routing attack detection mechanism for industrial internet of things. Ad Hoc Networks, 123(102661), 102661. https://doi.org/10.1016/j.adhoc.2021.102661
25.
Shao, S., Wang, P., & Yan, R. (2019). Generative adversarial networks for data augmentation in machine fault diagnosis. Computers in Industry, 106, 85–93. https://doi.org/10.1016/j.compind.2019.01.001.
26.
Trojovský, P., & Dehghani, M. (2022). Pelican Optimization Algorithm: A novel nature-inspired algorithm for engineering applications. Sensors (Basel, Switzerland), 22(3), 855. https://doi.org/10.3390/s22030855.