International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

Energy Efficient Trustworthy Target Tracking Scheme (3TS) Based on Clustering and Task Cycle Scheduling for Wireless Sensor Networks

Author NameAuthor Details

S. Sebastian, G. Jagatheeshkumar

S. Sebastian[1]

G. Jagatheeshkumar[2]

[1]PG and Research Department of Computer Science, Karuppannan Mariappan College, Muthur, Tamil Nadu, India

[2]PG and Research Department of Computer Science, Karuppannan Mariappan College, Muthur, Tamil Nadu, India

Abstract

One of the notable uses of Wireless Sensor Networks (WSN) is target detection and tracking. The primary objectives of a target tracking system are to improve target tracking precision and network longevity. This paper presents a Trustworthy Target Tracking Scheme (3TS) for WSN. The entire network region is divided into several grids of equal size, with each grid functioning as a cluster. All the grids include the same number of nodes. A Cluster Head (CH) node is selected for each grid based on the level of trust. The CH node determines the minimum number of active nodes per grid and regulates node activity. Together with the active nodes, the CH node identifies and tracks the target. In addition, the CH node informs the surrounding clusters that the target may cross. This concept enhances the accuracy of detection. Utilizing task cycle scheduling and a clustering approach, this work significantly increases the network's lifespan. The performance of the suggested work is justified in terms of detection accuracy, energy consumption, and network lifetime. The experimental findings demonstrate the effectiveness of the proposed method.

Index Terms

WSN

Target Detection

Target Tracking

Clustering

Task Cycle Scheduling

Energy Efficiency

Reference

  1. 1.
    Qu, Z., Xu, H., Zhao, X., Tang, H., Wang, J., & Li, B. ‘A fault-tolerant sensor scheduling approach for target tracking in wireless sensor networks’. Alexandria Engineering Journal, Vol. 61, No.12, pp. 13001-13010, 2022.
  2. 2.
    Qu, Z., & Li, B. ‘An Energy-Efficient Clustering Method for Target Tracking Based on Tracking Anchors in Wireless Sensor Networks’. Sensors, Vol.22, No.15, pp.1-21, 2022.
  3. 3.
    Kumar, S. V., & Babu, P. S., ‘Energy Aware Generalized Gaussian Distributive Sammon Regularization Analysis for Target Object Tracking in WSN’, Mathematical Statistician and Engineering Applications, Vol.71, No.4, pp. 3438-3462, 2022.
  4. 4.
    Ahmadi, H., Viani, F., & Bouallegue, R., ‘An accurate prediction method for moving target localization and tracking in wireless sensor networks’, Ad Hoc Networks, Vol.70, pp.14-22, 2018.
  5. 5.
    Darabkh, K. A., & Alsaraireh, N. R. ‘A yet efficient target tracking algorithm in wireless sensor networks’. In 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 7-11). IEEE, 2018.
  6. 6.
    Hu, Y.; Niu, Y.; Lam, J.; Shu, Z. ‘An Energy-Efficient Adaptive Overlapping Clustering Method for Dynamic Continuous Monitoring in WSNs’. IEEE Sens. J. Vol.17, pp.834–847, 2017.
  7. 7.
    Qu, Z.; Xu, H.; Zhao, X.; Tang, H.; Wang, J.; Li, B. ‘An Energy-Efficient Dynamic Clustering Protocol for Event Monitoring in Large-Scale WSN’. IEEE Sens. J., Vol.21, No.20, pp.23614-23625, 2021.
  8. 8.
    Feng, J.; Zhao, H.W. ‘Dynamic Nodes Collaboration for Target Tracking in Wireless Sensor Networks’. IEEE Sens. J., Vol.21, pp. 21069–21079, 2021.
  9. 9.
    Ahmad, T.; Abbas, A.M. EEAC: An energy efficient adaptive cluster based target tracking in wireless sensor networks. J. Interdiscip. Math. 2020, 23, 379–392.
  10. 10.
    Bhagat, D.P. ‘Tracking of Moving Target inWireless Sensor Network with Improved Network Life Time Using PSO’. Wirel. Pers.Commun. vol.2021, pp.1–15, 2021.
  11. 11.
    Qu, Z.; Xu, H.; Zhao, X.; Tang, H.; Wang, J.; Li, B. ‘A fault-tolerant sensor scheduling approach for target tracking in wireless sensor networks’. Alex. Eng. J., Vol. 61, pp. 13001–13010, 2022.
  12. 12.
    Fu, C.L.; Zhou, L.; Hu, Z.T.; Jin, Y.; Bai, K.;Wang, C., ‘LEACH-MTC: A Network Energy Optimization Algorithm Constraint as Moving Target Prediction.’ Appl. Sci., Vol.11, No.19, pp. 1-15, 2021.
  13. 13.
    Zhan, M., Huang, P., Zhu, S., Liu, X., Liao, G., Sheng, J., & Li, S., ‘A modified keystone transform matched filtering method for space-moving target detection’. IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, pp.1-16, 2021.
  14. 14.
    Cui, H., Li, L., Liu, X., Su, X., & Chen, F. ‘Infrared Small Target Detection Based on Weighted Three-Layer Window Local Contrast’. IEEE Geoscience and Remote Sensing Letters, Vol.19, pp.1-5, 2021.
  15. 15.
    Wang, X., Wang, L., Wu, H., Wang, J., Sun, K., Lin, A., & Wang, Q. ‘A Double Dictionary-Based Nonlinear Representation Model for Hyperspectral Subpixel Target Detection’. IEEE Transactions on Geoscience and Remote Sensing, vol.60, pp.1-16, 2022.
  16. 16.
    Du, X., Shang, H., Wang, L., & Sun, Y., ‘Low-Altitude Target Detection Method Based on Distributed Sensor Networks’. IEEE Access, Vol.10, pp.56458-56468, 2022.
  17. 17.
    Lin, B., Yang, X., Wang, J., Wang, Y., Wang, K., & Zhang, X., ‘A Robust Space Target Detection Algorithm Based on Target Characteristics’. IEEE Geoscience and Remote Sensing Letters, Vol. 19, pp. 1-5, 2021.
  18. 18.
    Xu, X., Hou, Q., Wu, C., & Fan, Z., ‘Improved GSO Algorithms and Their Applications in Multi-Target Detection and Tracking Field’. IEEE Access, Vol. 8, pp. 119609-119623, 2020.
  19. 19.
    Xu, X., Yuan, Z., & Wang, Y., ‘Multi-target tracking and detection based on hybrid filter algorithm’. IEEE Access, Vol.8, pp.209528-209536, 2020.
  20. 20.
    Feng, Q., Huang, J., & Yang, Z., ‘Jointly optimized target detection and tracking using compressive samples’. IEEE Access, Vol. 7, pp.73675-73684, 2019.
  21. 21.
    Li, J., Wang, J., & Liu, W., ‘Moving target detection and tracking algorithm based on context information’. IEEE Access, Vol.7, pp. 70966-70974, 2019.
SCOPUS
SCImago Journal & Country Rank