1.
Cisco Annual Internet Report (2018–2023), [Online]. Available at : [https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf]
2.
S. Smith, "IoT connections to grow 140% to hit 50 billion by 2022, as edge computing accelerates RoI," Juniper Research, 2018.
3.
D. Mendes et al., "VITASENIOR-MT: A distributed and scalable cloud-based telehealth solution," 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019, pp. 767-772, doi: 10.1109/WF-IoT.2019.8767184.
4.
K. Verma, A. Kumar, M. Salim Ul Islam, T. Kanwar, M. Bhushan, "Rank based mobility-aware scheduling in Fog computing", Informatics in Medicine Unlocked, vol. 24, 2021, 100619, doi.org/10.1016/j.imu.2021.100619.
5.
Y. Kyung, "Performance Analysis of Task Offloading With Opportunistic Fog Nodes," in IEEE Access, vol. 10, pp. 4506-4512, 2022, doi: 10.1109/ACCESS.2022.3141199.
6.
J. Kuliga, S. Massicot, R. Adhikari, M. Ruppel, N. Jux, H.-P. Steinrück and H. Marbach, "Conformation Controls Mobility: 2H-Tetranaphthylporphyrins on Cu (111)," ChemPhysChem, vol. 21, p. 423–427, 2020, doi.org/10.1002/cphc.201901135
7.
F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog computing and its role in the internet of things," in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, August 2012 , pp. 13–16, doi.org/10.1145/2342509.2342513
8.
M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research Opportunities," in IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854-864, Dec. 2016, doi: 10.1109/JIOT.2016.2584538.
9.
V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh and R. Buyya, "Chapter 4 - Fog Computing: principles, architectures, and applications," in Internet of Things, R. Buyya and A. V. Dastjerdi, Eds., Morgan Kaufmann, 2016, pp. 61-75.
10.
P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini and A. Zanni, "A survey on fog computing for the Internet of Things," Pervasive and Mobile Computing, vol. 52, pp. 71-99, 2019, doi.org/10.1016/B978-0-12-805395-9.00004-6.
11.
V. Dastjerdi and R. Buyya, "Fog Computing: Helping the Internet of Things Realize Its Potential," in Computer, vol. 49, no. 8, pp. 112-116, Aug. 2016, doi: 10.1109/MC.2016.245.
12.
F. Jalali, K. Hinton, R. Ayre, T. Alpcan and R. S. Tucker, "Fog Computing May Help to Save Energy in Cloud Computing," in IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1728-1739, May 2016, doi: 10.1109/JSAC.2016.2545559.
13.
N. Kumari, A. Yadav and P. K. Jana, "Task offloading in fog computing: A survey of algorithms and optimization techniques," Computer Networks, vol. 214, pp. 109137, 2022, doi.org/10.1016/j.comnet.2022.109137.
14.
R. Buyya,; S.Narayana Srirama, "Management and Orchestration of Network Slices in 5G, Fog, Edge, and Clouds," in Fog and Edge Computing: Principles and Paradigms , Wiley, 2019, pp.79-101, doi: 10.1002/9781119525080.ch4.
15.
Lakhan, M. Ahmad, M. Bilal, A. Jolfaei and R. M. Mehmood, "Mobility Aware Blockchain Enabled Offloading and Scheduling in Vehicular Fog Cloud Computing," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4212-4223, July 2021, doi: 10.1109/TITS.2021.3056461.
16.
H. Raouf, R. Abdallah, H. Y. M. Soliman and R. Rizk, "Mobility-Aware Task Offloading Enhancement in Fog Computing Networks," in The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022, vol 113. Springer, Cham, doi.org/10.1007/978-3-031-03918-8_47.
17.
F. Chiti, R. Fantacci and B. Picano, "A Matching Theory Framework for Tasks Offloading in Fog Computing for IoT Systems," in IEEE Internet of Things Journal, vol. 5, no. 6, pp. 5089-5096, Dec. 2018, doi: 10.1109/JIOT.2018.2871251.
18.
Z. Zhao et al., "On the Design of Computation Offloading in Fog Radio Access Networks," in IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 7136-7149, July 2019, doi: 10.1109/TVT.2019.2919915.
19.
J. Du, L. Zhao, J. Feng and X. Chu, "Computation Offloading and Resource Allocation in Mixed Fog/Cloud Computing Systems With Min-Max Fairness Guarantee," in IEEE Transactions on Communications, vol. 66, no. 4, pp. 1594-1608, April 2018, doi: 10.1109/TCOMM.2017.2787700.
20.
S. Misra and N. Saha, "Detour: Dynamic Task Offloading in Software-Defined Fog for IoT Applications," in IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1159-1166, May 2019, doi: 10.1109/JSAC.2019.2906793.
21.
L. Liu, Z. Chang, X. Guo, S. Mao and T. Ristaniemi, "Multiobjective Optimization for Computation Offloading in Fog Computing," in IEEE Internet of Things Journal, vol. 5, no. 1, pp. 283-294, Feb. 2018, doi: 10.1109/JIOT.2017.2780236.
22.
J. Yao and N. Ansari, "QoS-Aware Fog Resource Provisioning and Mobile Device Power Control in IoT Networks," in IEEE Transactions on Network and Service Management, vol. 16, no. 1, pp. 167-175, March 2019, doi: 10.1109/TNSM.2018.2888481.
23.
Yousefpour, G. Ishigaki, R. Gour and J. P. Jue, "On Reducing IoT Service Delay via Fog Offloading," in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998-1010, April 2018, doi: 10.1109/JIOT.2017.2788802.
24.
S. Jošilo and G. Dán, "Decentralized Algorithm for Randomized Task Allocation in Fog Computing Systems," in IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 85-97, Feb. 2019, doi: 10.1109/TNET.2018.2880874.
25.
S. Ghosh, A. Mukherjee, S. K. Ghosh and R. Buyya, "Mobi-IoST: Mobility-Aware Cloud-Fog-Edge-IoT Collaborative Framework for Time-Critical Applications," in IEEE Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 2271-2285, 1 Oct.-Dec. 2020, doi: 10.1109/TNSE.2019.2941754.
26.
M. M. Razaq, B. Tak, L. Peng and M. Guizani, "Privacy-Aware Collaborative Task Offloading in Fog Computing," in IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 88-96, Feb. 2022, doi: 10.1109/TCSS.2020.3047382.
27.
M. Keshavarznejad, M. H. Rezvani and S. Adabi, "Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms," Cluster Comput vol. 24, pp.1825–1853 (2021). https://doi.org/10.1007/s10586-020-03230-y.
28.
Qayyum, T., Trabelsi, Z., Waqar Malik, A. et al. Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT). Journal of Cloud Computing vol. 11, no. 72 (2022). https://doi.org/10.1186/s13677-022-00345-y
29.
Rahbari, D., Nickray, M. Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Networking and Applications, vol. 13 , pp. 104–122 (2020). https://doi.org/10.1007/s12083-019-00721-7
30.
Z. Ning et al., "Partial Computation Offloading and Adaptive Task Scheduling for 5G-Enabled Vehicular Networks," in IEEE Transactions on Mobile Computing, vol. 21, no. 4, pp. 1319-1333, 1 April 2022, doi: 10.1109/TMC.2020.3025116.
31.
ALVI, Ahmad Naseem, et al. Intelligent task offloading in fog computing based vehicular networks. Applied Sciences, 2022, vol. 12, no. 9, 4521, https://doi.org/10.3390/app12094521
32.
Hosseini, E., Nickray, M. & Ghanbari, S. Energy-efficient scheduling based on task prioritization in mobile fog computing. Computing vol. 105, pp. 187–215 (2023). https://doi.org/10.1007/s00607-022-01108-y
33.
Aisha Muhammad A. Hamdi, Farookh Khadeer Hussain, Omar K. Hussain, Task offloading in vehicular fog computing: State-of-the-art and open issues, Future Generation Computer Systems, vol. 133, 2022, pp. 201-212, https://doi.org/10.1016/j.future.2022.03.019.