International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

A Hybrid Cryptography and LogiXGBoost Model for Intelligent and Privacy Protection in Wireless Body Sensor Networks (WBSNS)

Author NameAuthor Details

Mohammed Naif Alatawi

Mohammed Naif Alatawi[1]

[1]Department of Computer Information Technology, University of Tabuk, Tabuk, Saudi Arabia

Abstract

An increasing number of healthcare applications are making use of wireless body sensor networks (WBSNs). WBSN technology provides a framework that allows for remote physiological monitoring of patients without the use of wired connections in the house. Furthermore, these systems provide real-time data transfer for medical personnel, allowing them to make timely decisions regarding patient care. Despite this, worries remain about patient data being compromised. This research presents a strategy for protecting patient-provider communications by making use of WBSNs. To solve the problem of how to securely store sensitive information on blockchains, a hybrid cryptographic architecture is proposed. The strengths of both public key and symmetric key cryptography are leveraged in my approach. In order to achieve this goal, I have developed a new algorithm by fusing the AES, RSA, and Blowfish algorithms. My experiments have shown that the proposed solution can keep private data safe without affecting its scalability. Using Logi-XGB as a prediction model for attacks, the proposed approach can successfully thwart 99.7 percent of them.

Index Terms

WBSNs

IoT

Machine Learning

Logi-XGB

XGB

DL

Blockchain

Reference

  1. 1.
    W. Xu, Wu, Daneshmand, Liu, “A data privacy protective mechanism for WBAN,” Wirel. Commun. Mob. Comput., no. February 2015, pp. 421–430, 2015, doi: 10.1002/wcm.
  2. 2.
    V. Odelu, S. Saha, R. Prasath, L. Sadineni, M. Conti, and M. Jo, “Efficient privacy preserving device authentication in WBANs for industrial e-health applications,” Comput. Secur., vol. 83, pp. 300–312, 2019, doi: 10.1016/j.cose.2019.03.002.
  3. 3.
    A. Bengag, O. Moussaoui, and M. Moussaoui, “A new IDS for detecting jamming attacks in WBAN,” 2019 3rd Int. Conf. Intell. Comput. Data Sci. ICDS 2019, pp. 1–5, 2019, doi: 10.1109/ICDS47004.2019.8942268.
  4. 4.
    H. Wang, H. Fang, L. Xing, and M. Chen, “An integrated biometric-based security framework using wavelet-domain HMM in wireless body area networks (WBAN),” IEEE Int. Conf. Commun., 2011, doi: 10.1109/icc.2011.5962757.
  5. 5.
    Z. Ullah et al., “Energy-efficient harvested-aware clustering and cooperative routing protocol for WBAN (E-HARP),” IEEE Access, vol. 7, pp. 100036–100050, 2019, doi: 10.1109/ACCESS.2019.2930652.
  6. 6.
    F. A. Khan, A. Ali, H. Abbas, and N. A. H. Haldar, “A cloud-based healthcare framework for security and patients’ data privacy using wireless body area networks,” Procedia Comput. Sci., vol. 34, pp. 511–517, 2014, doi: 10.1016/j.procs.2014.07.058.
  7. 7.
    S. Al-Janabi, I. Al-Shourbaji, M. Shojafar, and S. Shamshirband, “Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications,” Egypt. Informatics J., vol. 18, no. 2, pp. 113–122, 2017, doi: 10.1016/j.eij.2016.11.001.
  8. 8.
    P. S. Brar, B. Shah, J. Singh, F. Ali, and D. Kwak, “Using Modified Technology Acceptance Model to Evaluate the Adoption of a Proposed IoT-Based Indoor Disaster Management Software Tool by Rescue Workers,” Sensors, vol. 22, no. 5, 2022, doi: 10.3390/s22051866.
  9. 9.
    F. Li and J. Hong, “Efficient Certificateless Access Control for Wireless Body Area Networks,” IEEE Sens. J., vol. 16, no. 13, pp. 5389–5396, 2016, doi: 10.1109/JSEN.2016.2554625.
  10. 10.
    M. S. Hajar, M. O. Al-Kadri, and H. K. Kalutarage, “A survey on wireless body area networks: architecture, security challenges and research opportunities,” Comput. Secur., vol. 104, 2021, doi: 10.1016/j.cose.2021.102211.
  11. 11.
    Z. Zhengl, X. Zheng, J. Tian, and M. Shu, “A Transmission Power Control Algorithm for Wireless Body Area Networks,” Proc. 2018 IEEE 22nd Int. Conf. Comput. Support. Coop. Work Des. CSCWD 2018, vol. 3, pp. 98–103, 2018, doi: 10.1109/CSCWD.2018.8465245.
  12. 12.
    S. Jegadeesan, M. Azees, N. Ramesh Babu, U. Subramaniam, and J. D. Almakhles, “EPAW: Efficient Privacy Preserving Anonymous Mutual Authentication Scheme for Wireless Body Area Networks (WBANs),” IEEE Access, vol. 8, pp. 48576–48586, 2020, doi: 10.1109/ACCESS.2020.2977968.
  13. 13.
    M. Babar, M. S. Khan, U. Habib, B. Shah, F. Ali, and D. Song, “Scalable Edge Computing for IoT and Multimedia Applications Using Machine Learning,” Human-centric Comput. Inf. Sci., vol. 11, 2021, doi: 10.22967/HCIS.2021.11.041.
  14. 14.
    D. Thakur, Y. Kumar, A. Kumar, and P. K. Singh, Applicability of Wireless Sensor Networks in Precision Agriculture: A Review, no. 0123456789. Springer US, 2019. doi: 10.1007/s11277-019-06285-2.
  15. 15.
    Bangotra, Deep Kumar, et al. "An intelligent opportunistic routing algorithm for wireless sensor networks and its application towards e-healthcare." Sensors 20.14 (2020): 3887.
  16. 16.
    I. Kaushik and N. Sharma, Black Hole Attack and Its Security Measure in Wireless Sensors Networks, vol. 1132. 2020. doi: 10.1007/978-3-030-40305-8_20.
  17. 17.
    P. Gangwani, A. Perez-Pons, T. Bhardwaj, H. Upadhyay, S. Joshi, and L. Lagos, “Securing environmental IoT data using masked authentication messaging protocol in a DAG-based blockchain: IOTA tangle,” Futur. Internet, vol. 13, no. 12, 2021, doi: 10.3390/fi13120312.
  18. 18.
    P. Vijayakumar, M. S. Obaidat, M. Azees, S. H. Islam, and N. Kumar, “Efficient and Secure Anonymous Authentication with Location Privacy for IoT-Based WBANs,” IEEE Trans. Ind. Informatics, vol. 16, no. 4, pp. 2603–2611, 2020, doi: 10.1109/TII.2019.2925071.
  19. 19.
    M. Wazid, A. K. Das, J. J. P. C. Rodrigues, S. Shetty, and Y. Park, “IoMT Malware Detection Approaches: Analysis and Research Challenges,” IEEE Access, vol. 7, pp. 182459–182476, 2019, doi: 10.1109/ACCESS.2019.2960412.
  20. 20.
    A. M. Joshi, P. Jain, S. P. Mohanty, and N. Agrawal, “IGLU 2.0: A New Wearable for Accurate Non-Invasive Continuous Serum Glucose Measurement in IoMT Framework,” IEEE Trans. Consum. Electron., vol. 66, no. 4, pp. 327–335, 2020, doi: 10.1109/TCE.2020.3011966.
  21. 21.
    S. Manimurugan et al., “Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence,” Sensors, vol. 22, no. 2, 2022, doi: 10.3390/s22020476.
  22. 22.
    Shilan S. Hameed et al., “A Hybrid Lightweight System for Early Attack Detection in the IoMT Fog," Sensors 2021, 21(24), 8289; https://doi.org/10.3390/s21248289
  23. 23.
    S. Razdan and S. Sharma, “Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), 2021, doi: 10.1080/02564602.2021.1927863.
  24. 24.
    J. Zhou, Z. Cao, X. Dong, N. Xiong, and A. V. Vasilakos, “4S: A secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks,” Inf. Sci. (Ny)., vol. 314, no. September, pp. 255–276, 2015, doi: 10.1016/j.ins.2014.09.003.
  25. 25.
    A. H. Abdullah, R. A. Butt, M. W. Ashraf, K. N. Qureshi, and F. Ullah, “Securing Data Communication in Wireless Body Area Networks Using Digital Signatures,” Tech. J., vol. 23, no. 02, pp. 50–55, 2018.
  26. 26.
    M. Shuai, B. Liu, N. Yu, L. Xiong, and C. Wang, “Efficient and privacy-preserving authentication scheme for wireless body area networks,” J. Inf. Secur. Appl., vol. 52, p. 102499, 2020, doi: 10.1016/j.jisa.2020.102499.
  27. 27.
    K. S. Raja and U. Kiruthika, “An Energy Efficient Method for Secure and Reliable Data Transmission in Wireless Body Area Networks Using RelAODV,” Wirel. Pers. Commun., vol. 83, no. 4, pp. 2975–2997, 2015, doi: 10.1007/s11277-015-2577-x.
  28. 28.
    A. H. Sodhro, Y. Li, and M. A. Shah, “Energy-efficient adaptive transmission power control for wireless body area networks,” IET Commun., vol. 10, no. 1, pp. 81–90, 2016, doi: 10.1049/iet-com.2015.0368.
  29. 29.
    Y. Vineetha, Y. Misra, and K. Krishna Kishore, “A real time IoT based patient health monitoring system using machine learning algorithms,” Eur. J. Mol. Clin. Med., vol. 7, no. 4, pp. 2912–2925, 2020.
  30. 30.
    R. Kadel, N. Islam, K. Ahmed, and S. J. Halder, “Opportunities and Challenges for Error Correction Scheme for Wireless Body Area Network—A Survey,” J. Sens. Actuator Networks, vol. 8, no. 1, p. 1, 2018, doi: 10.3390/jsan8010001.
  31. 31.
    G. Marquez, H. Astudillo, and C. Taramasco, “Exploring security issues in telehealth systems,” Proc. - 2019 IEEE/ACM 1st Int. Work. Softw. Eng. Heal. SEH 2019, no. March, pp. 65–72, 2019, doi: 10.1109/SEH.2019.00019.
  32. 32.
    R. Latha and P. Vetrivelan, “Decision making patient assistive strategies in wireless body area networks for remote healthcare system,” Int. J. Recent Technol. Eng., vol. 8, no. 1, pp. 2199–2203, 2019.
  33. 33.
    B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on wireless body area networks,” Wirel. Networks, vol. 17, no. 1, pp. 1–18, 2011, doi: 10.1007/s11276-010-0252-4.
  34. 34.
    H. Ur Rahman, G. Wang, M. Z. A. Bhuiyan, and J. Chen, “In-network generalized trustworthy data collection for event detection in cyber-physical systems,” PeerJ Comput. Sci., vol. 7, no. May, pp. 1–25, 2021, doi: 10.7717/PEERJ-CS.504.
  35. 35.
    M. Anand Kumar and C. Vidya Raj, “On designing lightweight QoS routing protocol for delay-sensitive wireless body area networks,” 2017 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2017, vol. 2017-Janua, pp. 740–744, 2017, doi: 10.1109/ICACCI.2017.8125930.
  36. 36.
    M. Ghamari, B. Janko, R. S. Sherratt, W. Harwin, R. Piechockic, and C. Soltanpur, “A survey on wireless body area networks for ehealthcare systems in residential environments,” Sensors (Switzerland), vol. 16, no. 6, pp. 1–33, 2016, doi: 10.3390/s16060831.
  37. 37.
    R. Negra, I. Jemili, and A. Belghith, “Wireless Body Area Networks: Applications and Technologies,” Procedia Comput. Sci., vol. 83, pp. 1274–1281, 2016, doi: 10.1016/j.procs.2016.04.266.
  38. 38.
    M. Shuai, B. Liu, N. Yu, L. Xiong, and C. Wang, “Efficient and privacy-preserving authentication scheme for wireless body area networks,” J. Inf. Secur. Appl., vol. 52, p. 102499, 2020, doi: 10.1016/j.jisa.2020.102499.
  39. 39.
    A. Muthulakshmi and K. Shyamala, “Efficient Patient Care Through Wireless Body Area Networks—Enhanced Technique for Handling Emergency Situations with Better Quality of Service,” Wirel. Pers. Commun., vol. 95, no. 4, pp. 3755–3769, 2017, doi: 10.1007/s11277-017-4024-7.
  40. 40.
    M. S. Arshad Malik, M. Ahmed, T. Abdullah, N. Kousar, M. N. Shumaila, and M. Awais, “Wireless body area network security and privacy issue in E-healthcare,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 209–215, 2018, doi: 10.14569/IJACSA.2018.090433.
  41. 41.
    M. Azees, P. Vijayakumar, M. Karuppiah, and A. Nayyar, “An efficient anonymous authentication and confidentiality preservation schemes for secure communications in wireless body area networks,” Wirel. Networks, vol. 27, no. 3, pp. 2119–2130, 2021, doi: 10.1007/s11276-021-02560-y.
  42. 42.
    F. Akhtar and M. H. Rehmani, “Energy Harvesting for Self-Sustainable Wireless Body Area Networks,” IT Prof., vol. 19, no. 2, pp. 32–40, 2017, doi: 10.1109/MITP.2017.34.
  43. 43.
    J. Zhu, G. Zhang, Z. Zhu, and K. Yang, “Joint Time Switching and Transmission Scheduling for Wireless-Powered Body Area Networks,” Mob. Inf. Syst., vol. 2019, 2019, doi: 10.1155/2019/9620153.
  44. 44.
    N. Mekki, M. Hamdi, T. Aguili, and T. H. Kim, “A Privacy-Preserving Scheme Using Chaos Theory for Wireless Body Area Network,” 2018 14th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2018, pp. 774–779, 2018, doi: 10.1109/IWCMC.2018.8450293.
  45. 45.
    B. Narwal and A. K. Mohapatra, “SAMAKA: Secure and Anonymous Mutual Authentication and Key Agreement Scheme for Wireless Body Area Networks,” Arab. J. Sci. Eng., vol. 46, no. 9, pp. 9197–9219, 2021, doi: 10.1007/s13369-021-05707-3.
  46. 46.
    F.?; Khan et al., “Development of a Model for Spoofing Attacks in Internet of Things,” Math. 2022, Vol. 10, Page 3686, vol. 10, no. 19, p. 3686, Oct. 2022, doi: 10.3390/MATH10193686.
  47. 47.
    A. A. Al-Atawi, F. Khan, and C. G. Kim, “Application and Challenges of IoT Healthcare System in COVID-19,” Sensors 2022, Vol. 22, Page 7304, vol. 22, no. 19, p. 7304, Sep. 2022, doi: 10.3390/S22197304.
  48. 48.
    M. H. da Fonseca, F. Kovaleski, C. T. Picinin, B. Pedroso, and P. Rubbo, “E-Health Practices and Technologies: A Systematic Review from 2014 to 2019,” Healthc. (Basel, Switzerland), vol. 9, no. 9, Sep. 2021, doi: 10.3390/HEALTHCARE9091192.
  49. 49.
    X. Wu, J. Xu, W. Liang, and W. Jian, “Research on Authentication and Key Agreement Protocol of Smart Medical Systems Based on Blockchain Technology,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13156 LNCS, pp. 439–452, 2022, doi: 10.1007/978-3-030-95388-1_29.
  50. 50.
    L. Ma, Y. Ge, and Y. Zhu, “TinyZKP: A lightweight authentication scheme based on zero-knowledge proof for wireless body area networks,” Wirel. Pers. Commun., vol. 77, no. 2, pp. 1077–1090, 2014, doi: 10.1007/s11277-013-1555-4.
  51. 51.
    S. Saleem, S. Ullah, and K. S. Kwak, “A study of IEEE 802.15.4 security framework for wireless body area networks,” Sensors, vol. 11, no. 2, pp. 1383–1395, 2011, doi: 10.3390/s110201383.
  52. 52.
    S. J. Hussain, M. Irfan, N. Z. Jhanjhi, K. Hussain, and M. Humayun, “Performance Enhancement in Wireless Body Area Networks with Secure Communication,” Wirel. Pers. Commun., vol. 116, no. 1, pp. 1–22, 2021, doi: 10.1007/s11277-020-07702-7.
  53. 53.
    P. T. Sharavanan, D. Sridharan, and R. Kumar, “A Privacy Preservation Secure Cross Layer Protocol Design for IoT Based Wireless Body Area Networks Using ECDSA Framework,” J. Med. Syst., vol. 42, no. 10, 2018, doi: 10.1007/s10916-018-1050-2.
SCOPUS
SCImago Journal & Country Rank