1.
Moudni, H., Er-rouidi, M., Mouncif, H. and El Hadadi, B., 2019. Black hole attack detection using fuzzy based intrusion detection systems in MANET. Procedia Computer Science, 151, pp.1176-1181.
2.
Gurung, S. and Chauhan, S., 2020. A survey of black-hole attack mitigation techniques in MANET: merits, drawbacks, and suitability. Wireless Networks, 26(3), pp.1981-2011.
3.
Eswaran, S., Rani, V., D., D., Ramakrishnan, J., & Selvakumar, S. (2021). An enhanced network intrusion detection system for malicious crawler detection and security event correlations in ubiquitous banking infrastructure. International Journal of Pervasive Computing and Communications, 18(1), 59–78. https://doi.org/10.1108/ijpcc-04-2021-0102.
4.
Manoranjini, J., Chandrasekar, A. and Jothi, S., 2019. Improved QoS and avoidance of black hole attacks in MANET using trust detection framework. Automatika: ?asopiszaautomatiku, mjerenje, elektroniku, ra?unarstvoikomunikacije, 60(3), pp.274-284.
5.
Yasin, A. and Abu Zant, M., 2018. Detecting and isolating black-hole attacks in MANET using timer based baited technique. Wireless Communications and Mobile Computing, 2018.
6.
Sadhana, S., Sivaraman, E., & Daniel, D. (2021). Enhanced Energy-Efficient Routing for Wireless Sensor Network Using Extended Power-Efficient Gathering in Sensor Information Systems (E-PEGASIS) Protocol. Smart Systems: Innovations in Computing, 159–171. https://doi.org/10.1007/978-981-16-2877-1_16.
7.
Gurung, S. and Chauhan, S., 2018. A dynamic threshold based approach for mitigating black-hole attack in MANET. Wireless Networks, 24(8), pp.2957-2971.
8.
Thanuja, R. and Umamakeswari, A., 2019. Black hole detection using evolutionary algorithm for IDS/IPS in MANETs. Cluster computing, 22(2), pp.3131-3143.
9.
Rajendran, N., Jawahar, P.K. and Priyadarshini, R., 2019. Cross centric intrusion detection system for secure routing over black hole attacks in MANETs. Computer Communications, 148, pp.129-135.
10.
Daniel D., Preethi N., Jakka, A., & Eswaran, S. (2021). Collaborative Intrusion Detection System in Cognitive Smart City Network (CSC-Net). International Journal of Knowledge and Systems Science, 12(1), pp.60–73, https://doi.org/10.4018/ijkss.2021010105.
11.
Panda, N. and Pattanayak, B.K., 2018. Energy aware detection and prevention of black hole attack in MANET. International Journal of Engineering and Technology (UAE), 7(2.6), pp.135-140.
12.
Abood, M.S., Mahdi, H.F., Hamdi, M.M., Ibrahim, O.J., Mohammed, R.Q. and Ahmed, S.F., 2020, December. Black/Gray Holes Detection Tools in MANET: comparison and analysis. In 2020 IEEE 7th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-8). IEEE.
13.
E. Sivaraman, "Dynamic cluster broadcasting for Mobile Ad Hoc Networks," 2010 International Conference on Communication and Computational Intelligence (INCOCCI), 2010, pp. 123-127.
14.
Arul Selvan, M. and Selvakumar, S., 2019. Malicious node identification using quantitative intrusion detection techniques in MANET. Cluster computing, 22(3), pp.7069-7077.
15.
Bhuvaneswari, R. and Ramachandran, R., 2019. Denial of service attack solution in OLSR based manet by varying number of fictitious nodes. Cluster Computing, 22(5), pp.12689-12699.
16.
Prasanna, D.J.D., Aravindhar, D.J. and Sivasankar, P., 2021. Block Chain based Grey Hole Detection Q Learning based CDS Environment in Cloud-MANET. Webology, 18(SI01), pp.88-106.
17.
Hassan, Z., Mehmood, A., Maple, C., Khan, M.A. and Aldegheishem, A., 2020. Intelligent detection of black hole attacks for secure communication in autonomous and connected vehicles. IEEE Access, 8, pp.199618-199628.
18.
Rani, P., Verma, S., Rawat, D.B. and Dash, S., 2022. Mitigation of black hole attacks using firefly and artificial neural network. Neural Computing and Applications, pp.1-11.
19.
Sathyaraj, P. and Kannan, K., 2021. Host based Detection and Prevention of Black Hole attacks by AODV-ICCSO Algorithm for security in MANETs.
20.
Janakiraman, S., Deva Priya, M., Aishwaryalakshmi, G., Suganya, T., Sam Peter, S., Karthick, S. and Christy Jeba Malar, A., 2022. Improved Rider Optimization Algorithm-Based Link Aware Fault Detection (IROA-LAFD) Scheme for Securing Mobile Ad Hoc Networks (MANETs). In 3rd EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing (pp. 155-169). Springer, Cham.
21.
Rani, P., Verma, S. and Nguyen, G.N., 2020. Mitigation of black hole and gray hole attack using swarm inspired algorithm with artificial neural network. IEEE Access, 8, pp.121755-121764.
22.
Ramachandran, D., Rajeev Ratna, V., PT, V.R. and Garip, I., 2022. A Low-Latency and High-Throughput Multipath Technique to Overcome Black Hole Attack in Mobile Ad Hoc Network (MTBD). Security and Communication Networks, 2022.
23.
Srinivasan, V., 2021. Detection of Black Hole Attack Using Honeypot Agent-Based Scheme with Deep Learning Technique on MANET. Ingénierie des Systèmesd'Information, 26(6).
24.
Liu, J., Jiang, X., Nishiyama, H. and Kato, N. (2013a) ‘On the delivery probability of two-hop relay MANETs with erasure coding’, IEEE Transactions on Communications, Vol. 61, No. 4, pp.1314–1326.
25.
Huang, H. and Zhou, Q. (2012) ‘Petri-net-based modeling and resolving of black hole attack in WMN’, The IEEE 36th Annual Computer Software and Applications Conference Workshops,Izmir, Turkey, pp.409–414.
26.
Charles E. Perkins, and Elizabeth M. Royer, “Ad-hoc On-Demand Distance Vector (AODV) routing,” Internet Draft, November 2002.
27.
A. Shevtekar, K. Anantharam, and N. Ansari, “Low Rate TCP Denial-of-Service Attack Detection at Edge Routers,” IEEE Commun. Lett., vol. 9, no. 4, Apr. 2005, pp. 363–65.
28.
Mohammad Al-Shurman and Seong-Moo Yoo, Seungjin Park, “Black hole Attack in Mobile Ad Hoc Networks” Proceedings of the 42nd annual Southeast regional conference ACMSE 42, APRIL 2004, pp. 96-97.