1.
Asante, G., Hayfron-Acquah, J.B., & Asante, M. (2021). Evolution of Homomorphic Encryption. International Journal of Computer Applications 183(29):37-40.
2.
Kahate, A. (2013). Cryptography and network security. Tata McGraw-Hill Education.
3.
Al Badawi, A. Q. A., Polyakov, Y., Aung, K. M. M., Veeravalli, B., & Rohloff, K. (2018). Implementation and performance evaluation of RNS variants of the BFV homomorphic encryption scheme. IEEE Transactions on Emerging Topics in Computing. 2018: pp. 70-95
4.
Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University.
5.
Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010) Fully homomorphic encryption over the integers," in Advances in Cryptology {EUROCRYPT 2010, pp. 24{43, Springer, 2010.
6.
Gentry, C., & Halevi, S. (2011, May). Implementing gentry’s fully-homomorphic encryption scheme. In Annual international conference on the theory and applications of cryptographic techniques (pp. 129-148). Springer, Berlin, Heidelberg.
7.
Brakerski, Z., & Vaikuntanathan, V. (2011, August). Fully homomorphic encryption from ring-LWE and security for key-dependent messages. In Annual cryptology conference (pp. 505-524). Springer, Berlin, Heidelberg.
8.
Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) fully homomorphic encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3), 1-36.
9.
Gupta, C. P., and Sharma, I. (2013, October). A fully homomorphic encryption scheme with symmetric keys with application to private data processing in clouds. In 2013 Fourth International Conference on the Network of the Future (NoF) (pp. 1-4). IEEE.
10.
Cheon, J. H., Coron, J. S., Kim, J., Lee, M. S., Lepoint, T., Tibouchi, M., & Yun, A. (2013, May). Batch fully homomorphic encryption over the integers. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 315-335). Springer, Berlin, Heidelberg.
11.
Coron, J. S., Lepoint, T., & Tibouchi, M. (2014, March). Scale-invariant fully homomorphic encryption over the integers. In International Workshop on Public Key Cryptography (pp. 311-328). Springer, Berlin, Heidelberg.
12.
Dasgupta, S., & Pal, S. K. (2016). Design of a polynomial ring-based symmetric homomorphic encryption scheme. Perspectives in Science, 8, 692-695.
13.
Ahmed, E. Y., and Elkettani, M. D. (2019), An Efficient Fully Homomorphic Encryption Scheme, International Journal of Network Security, Vol.21, No.1, PP.91-99, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).11)
14.
Hamad, S.S & Sagheer, Ali. (2018). Design of Fully Homomorphic Encryption by Prime Modular Operation. Telfor Journal. 10. 118-122. 10.5937/telfor1802118S.
15.
Xiao, Liangliang & Bastani, Osbert & Yen, I-ling. (2012). An Efficient Homomorphic Encryption Protocol for Multi-User Systems. IACR Cryptology ePrint Archive. 2012. 193.
16.
Bellare, M., Fischlin, M., O’Neill, A., & Ristenpart, T. (2008, August). Deterministic encryption: Definitional equivalences and constructions without random oracles. In Annual International Cryptology Conference (pp. 360-378). Springer, Berlin, Heidelberg.
17.
Bali, P. (2014). Comparative study of private and public-key cryptography algorithms: A Survey. IJRET: International Journal of Research in Engineering and Technology, 2319-1163.
18.
Nurhaida, I., Ramayanti, D., & Riesaputra, R. (2017). Digital signature & encryption implementation for increasing authentication, integrity, security, and data non-repudiation. vol, 4, 4-14.
19.
Zhang, L., Zheng, Y., & Kantoa, R. (2016, June). A review of homomorphic encryption and its applications. In Proceedings of the 9th EAI International Conference on Mobile Multimedia Communications (pp. 97-106).
20.
J. Li, D. Song, S. Chen, X. Lu, “A Simple Fully Homomorphic Encryption Scheme Available in Cloud Computing”, In Proceeding of IEEE, (2012), pp. 214-217.
21.
Das A., Dutta S., Adhikari A. (2013) Indistinguishability against Chosen Ciphertext Verification Attack Revisited: The Complete Picture. In: Susilo W., Reyhanitabar R. (eds) Provable Security. ProvSec 2013. Lecture Notes in Computer Science, vol 8209. pp. 347-356Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41227-1_6.