1.
Amundson I, Koutsoukos XD (2009) A survey on localization for mobile wireless sensor networks. In: Fuller R, Koutsoukos XD (eds) Mobile entity localization and tracking in GPS-less environnments. Springer, Berlin, pp 235–254
2.
Al-Sultan S, Al-Doori MM, Al-Bayatti AH, Zedan H (2014) A comprehensive survey on vehicular ad hoc network. J Netw Comput Appl 37:380–392
3.
Boukerche A, Oliveira HABF, Nakamura EF, Loureiro AAF (2008) Vehicular ad hoc networks: a new challenge for localization-based systems. Comput Commun 31(12):2838–2849
4.
Savarese C, Rabaey JM, Beutel J (2001) Location in distributed ad-hoc wireless sensor networks. In: International conference on acoustics, speech, and signal processing. Proceedings. (ICASSP’01), volume 4, pp. 2037–2040. IEEE
5.
Raut SB, Malik LG (2014) Survey on vehicle collision prediction in vanet. In: 2014 IEEE International conference on computational intelligence and computing research, pp 1–5
6.
Kuutti S, Fallah S, Katsaros K, Dianati M, Mccullough F, Mouzakitis A (2018) A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J 5(2):829–846
7.
White CE, Bernstein D, Kornhauser AL (2000) Some map-matching algorithms for personal navigation assistants. Transp Res Part C: Emerg Technol 8(1):91–108
8.
Kihei B, Copeland JA, Chang Y (2014) Doppler domain localization for collision avoidance in vanets by using omnidirectional antennas. In: 2014 International conference on connected vehicles and Expo (ICC), pp 331–337
9.
Zhu W, Gao D, Foh CH, Zhao W, Zhang H (2016) A collision avoidance mechanism for emergency message broadcast in urban vanet. In: 2016 IEEE 83rd vehicular technology conference (VTC Spring), pp. 1–5
10.
Ansari AR, Saeed N, Ul Haq MI, Cho S (2018) Accurate 3d localization method for public safety applications in vehicular ad-hoc networks. IEEE Access 6:20756–20763
11.
Deshmuk M, Dinesh D (2014) Challenges in-vehicle ad hoc network (vanet). Int J Eng Technol Manag Appl Sci 2(7):76–88
12.
Parkinson BW, Enge P, Axelrad P, Spilker Jr JJ (1996) Global positioning system: theory and applications, Volume II. American Institute of Aeronautics and Astronautics
13.
Misra P, Enge P (2006) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press, Massachusetts
14.
Alkan RM, Karaman H, Sahin M (2005) Gps, galileo and GLONASS satellite navigation systems amp;amp; GPS modernization. In: Proceedings of 2nd international conference on recent advances in space technologies, 2005. RAST 2005., pp 390–394
15.
Malik Y, Khaliq KA, Abdulrazak B, Tariq MU (2011) Mobile node localization in cellular networks. CoRR, abs/1201.2102
16.
Chausse F, Laneurit J, Chapuis R (2005) Vehicle localization on a digital map using particles filtering. In: IEEE Proceedings. Intelligent vehicles symposium, pp 243–248
17.
Fogue M, Sanguesa JA, Martinez FJ, Marquez-Barja JM (2018) Improving roadside unit deployment in vehicular networks by exploiting genetic algorithms. Appl Sci 8(1):86
18.
Patwari N, Ash JN, Kyperountas S, Hero AO, Moses RL, Correal NS (2005) Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process Mag 22(4):54–69
19.
C. Sun, H. Zhao, L. Bai, J. W. Cheong, A. G. Dempster, and W. Feng, “GNSS-5G Hybrid Positioning Based on TOA/AOA Measurements,” in Lecture Notes in Electrical Engineering, vol. 652 LNEE, no. June, 2020, pp. 527–537. doi: 10.1007/978-981-15-3715-8_47.
20.
M. U. Liaquat, H. S. Munawar, A. Rahman, Z. Qadir, A. Z. Kouzani, and M. A. P. Mahmud, “Localization of Sound Sources : A Systematic Review,” 2021.
21.
M. Wang et al., “Indoor PDR Positioning Assisted by Acoustic Source Localization, and Pedestrian Movement Behavior Recognition, Using a Dual-Microphone Smartphone,” Wireless Communications and Mobile Computing, vol. 2021, pp. 1–16, Jul. 2021, doi: 10.1155/2021/9981802
22.
I. Martin-Escalona and E. Zola, “Passive round-trip-time positioning in dense ieee 802.11 networks,” Electronics (Switzerland), vol. 9, no. 8, pp. 1–19, 2020, doi: 10.3390/electronics9081193.
23.
W. Shao, H. Luo, F. Zhao, H. Tian, S. Yan, and A. Crivello, “Accurate Indoor Positioning Using Temporal-Spatial Constraints Based on Wi-Fi Fine Time Measurements,” IEEE Internet of Things Journal, vol. 7, no. 11, pp. 11006–11019, 2020, doi: 10.1109/JIOT.2020.2992069.
24.
F. Noor, M. A. Khan, A. Al-Zahrani, I. Ullah, and K. A. Al-Dhlan, “A review on communications perspective of flying AD-HOC networks: Key enabling wireless technologies, applications, challenges and open research topics,” Drones, vol. 4, no. 4, pp. 1–14, 2020, doi: 10.3390/drones4040065.
25.
I. Martin-Escalona and E. Zola, “Passive round-trip-time positioning in dense ieee 802.11 networks,” Electronics (Switzerland), vol. 9, no. 8, pp. 1–19, 2020, doi: 10.3390/electronics9081193.
26.
P. Ssekidde, O. S. Eyobu, D. S. Han, and T. J. Oyana, “Augmented cwt features for deep learning-based indoor localization using wifi rssi data,” Applied Sciences (Switzerland), vol. 11, no. 4, pp. 1–23, 2021, doi: 10.3390/app11041806.
27.
J. Wang and J. G. Park, “An enhanced indoor positioning algorithm based on fingerprint using fine-grained csi and rssi measurements of ieee 802.11n wlan,” Sensors, vol. 21, no. 8, 2021, doi: 10.3390/s21082769.
28.
Suryawanshi S, Gupta D, Gupta S, Jain S (2015) On the hybrid augmentation of inter-vehicular communication assisted localization using previous path detection. In: Advance Computing conference (IACC), 2015 IEEE International, pp 82–87. IEEE
29.
Soatti G, Nicoli M, Garcia N, Denis B, Raulefs R, Wymeersch H (2017) Implicit cooperative positioning in vehicular networks. arXiv preprint arXiv :1709.01282
30.
Rezaei S, Sengupta R (2007) Kalman filter-based integration of dgps and vehicle sensors for localization. IEEE Trans Control Syst Technol 15(6):1080–1088
31.
Drawil N, Basir O (2008) Vehicular collaborative technique for location estimate correction. In: Vehicular technology conference, 2008. VTC 2008-Fall. IEEE 68th, pp 1–5. IEEE
32.
Drawil N, Basir O (2009) Toward increasing the localization accuracy of vehicles in vanet. In: International conference on vehicular electronics and safety (ICVES), pp 13–18. IEEE
33.
Mo Y, Dexin Y, Song J, Zheng K, Guo Y (2016) Vehicle position updating strategy based on Kalman filter prediction in vanet environment. Discrete Dyn Nat Soc. https ://doi. org/10.1155/2016/14043 96
34.
Rohani M, Gingras D, Vigneron V, Gruyer D (2015) A new decentralized Bayesian approach for cooperative vehicle localization based on fusion of GPS and vanet based inter-vehicle distance measurement. IEEE Intell Transp Syst Mag 7(2):85–95
35.
Howard A, Mataric MJ, Sukhatme GS (2003) Putting the’i’in’team’: an ego-centric approach to cooperative localization. In: IEEE International conference on robotics and automation. Proceedings. ICRA’03., volume 1, pp 868–874
36.
Fox D, Burgard W, Thrun S (1999) Markov localization for mobile robots in dynamic environments. J Artif Intell Res 11:391–427
37.
Howard A, Matark MJ, Sukhatme GS (2002) Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International conference on intelligent robots and systems., volume 1, pp 434–439
38.
Ghaleb FA, Zainal A, Rassam MA, Abraham A (2017) Improved vehicle positioning algorithm using enhanced innovation- based adaptive Kalman filter. Pervasive Mob Comput 40:139–155
39.
Kulkarni PS, Labade RP (2017) Vehicle positioning using Kalman filter for dedicated short range communication. Int J Eng Technol Sci Res 4(5):608–613
40.
Najah Abu Ali and Mervat Abu-Elkheir (2015) Improving localization accuracy: successive measurements error modeling. Sensors 15(7):15540–15561
41.
Nabil Mohamed Drawil and Otman Basir (2010) Intervehiclecommunication- assisted localization. IEEE Trans Intell Transp Syst 11(3):678–691
42.
Cruz SB, Abrudan TE, Xiao Z, Trigoni N, Barros J (2017) Neighbor- aided localization in vehicular networks. IEEE Trans Intell Transp Syst 18(10):2693–2702
43.
Hoang GM, Denis B, Härri J, Slock DT (2017) Robust data fusion for cooperative vehicular localization in tunnels. In: Intelligent vehicles symposium (IV), 2017 IEEE, pp 1372–1377. IEEE
44.
Ali Ufuk Peker and Tankut Acarman (2017) Vanet-assisted cooperative vehicle mutual positioning: feasibility study. IEICE Trans Fundam Electron Commun Comput Sci 100(2):448–456
45.
Jensfelt P (2001) Approaches for mobile robot localization in indoor environments. Ph. D. thesis, Royal Institute of Technology, Stockholm, Sweden
46.
Rekleitis I (2003) Cooperative localization and multi-robot exploration. Ph. D. thesis, School of Computer Science, McGill University, Montreal, Quebec, Canada
47.
Chausse F, Laneurit J, Chapuis R (2005) Vehicle localization on a digital map using particles filtering. In: Intelligent vehicles symposium, 2005. Proceedings. IEEE, pp 243–248. IEEE
48.
Hoang GM, Denis B, Härri J , Slock DTM (2016) Cooperative localization in GNSS-aided vanets with accurate ir-uwb range measurements. In: Positioning, navigation and communications (WPNC), 2016 13th Workshop on, pp 1–6. IEEE
49.
Peker AU, Acarman T, Yaman C, Yuksel E (2014) Vehicle localization enhancement with vanets. In: Intelligent vehicles symposium proceedings, 2014 IEEE, pp 661–666. IEEE
50.
Boukerche A, Rezende C, Pazzi RW (2009) Improving neighbor localization in vehicular ad hoc networks to avoid overhead from periodic messages. In: Global telecommunications conference, 2009. GLOBECOM 2009. IEEE, pp 1–6. IEEE
51.
Montgomery J (2005) A real-time traffic and weather reporting system for motorists. In: Second IEEE consumer communications and networking conference. CCNC., pp 580–581
52.
Jiangfeng W, Feng G, Fei Y, Shaoxuan S (2009) Design of wireless positioning algorithm of intelligent vehicle based on vanet. In: Intelligent vehicles symposium, 2009 IEEE, pp 1098–1102. IEEE
53.
Reza TA, Barbeau M, Alsubaihi B (2013) Tracking an on the run vehicle in a metropolitan vanet. In: Intelligent vehicles symposium (IV), 2013 IEEE, pp 220–227. IEEE
54.
Reza TA, Barbeau M, Lamothe G, Alsubaihi B (2013) Noncooperating vehicle tracking in vanets using the conditional logit model. In: 16th International IEEE conference on intelligent transportation systems-(ITSC), pp 626–633.