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Abstract – Underwater Wireless Sensor Networks (UWSNs) play 

an essential role in aquatic environment monitoring, supporting 

applications such as oceanographic data collection, underwater 

resource management and disaster prevention. However, 

accurate localization in underwater remains a significant 

challenge due to the unique features of underwater 

environments, including the reliance on acoustic communication, 

mobility of sensor nodes and the complexity of three-dimensional 

topology. Traditional localization techniques, like Received 

Signal Strength Indicator (RSSI) and Angle of Arrival (AOA) 

methods, suffer from several limitations, including inaccuracies 

due to time-varying sound speeds affected by salinity, 

temperature, and pressure. Additionally, they often exhibit high 

energy consumption, slow convergence, and poor adaptability to 

dynamic underwater environment. Existing optimization-based 

localization approaches, face trade-offs between exploration and 

exploitation, limiting their effectiveness in achieving optimal 

position estimates. The primary challenge in UWSN localization 

is achieving high accuracy while minimizing energy consumption 

and computational complexity. Many existing methods struggle 

with adaptability in dynamic underwater conditions, where 

sensor nodes are mobile and environmental factors significantly 

affect signal propagation. There is a need for an advanced 

localization approach that can effectively balance accuracy, 

efficiency, and robustness in complex underwater environments. 

This paper presents a novel localization approach utilizing the 

Multi-Verse Optimization (MVO) algorithm, a physics-inspired 

metaheuristic technique. MVO enhances RSSI and AOA-based 

localization by maintaining a balance between exploration and 

exploitation, leading to improved position estimation. Through 

extensive simulations, we evaluate performance of MVO in terms 

of localization accuracy, convergence speed, energy efficiency 

and resilience to anchor node distribution variations. The results 

demonstrate that MVO significantly outperforms conventional 

methods by achieving higher localization accuracy while 

reducing computational overhead. While AOA-based 

localization is more precise under ideal conditions, RSSI-based 

methods offer lower complexity, making them suitable for 

resource-constrained deployments. By overcoming key 

limitations such as sensitivity to environmental fluctuations and 

high computational costs, this work establishes MVO as a robust 

and efficient localization solution for UWSNs operating in 

challenging underwater environments. 

Index Terms – UWSNs, Positioning, RSSI, AOA, MVO 

Algorithm, Localization Accuracy, Energy Usage, Coverage, 

Delivery Rates. 

1. INTRODUCTION 

In the present age, research on underwater environments has 

gained great importance as a means to reduce dependence on 

terrestrial resources. The sea is a vast and unused natural 

resource, and its need to detect abundant reserves. In addition, 

it is necessary to deepen understanding of the marine 

ecosystem to promote practices that contribute to the 

sustainability to achieve this, an effective monitoring of the 

underwater media is required and UWSNs play an important 

role in this field [1]. UWSNs is composed of sensory nodes or 

mobile vehicles placed in underwater media and cooperates to 

monitor various marine conditions.  

This network includes a variety of applications, considering 

marine data collection, pollution level monitoring, overseas 

tool search, strategic observation, detection and measurement 

of natural disasters [2]. If the sensor is a mobile node, the 

network is called mobile UWSNs. UWSNs has a similar point 

with ground Wireless Sensory Networks (WSNs), but it 

shows a unique problem in some main differences. For 

example, UWSN relies on sound waves for communication 

and has a longer delay, error in three -dimensional space and 
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causes additional complexity of mobile nodes. These 

differences cause important problems for the design and 

distribution of UWSNs. To effectively control the underwater 

environment, sensors or wireless nodes are strategically 

placed to collect important data for the environment. This data 

may include environmental parameters. After data is 

assembled, it is transmitted to surface shell for further 

analysis and interpretation. This process is important for 

disclosure of important information, which can help the 

management and protection of the marine ecosystem. We can 

use the technology of the wireless sensor to collect data in real 

time to improve decision making and support environmental 

protection efforts [3]. Figure 1 shows the basic architecture of 

UWSNs. 

 

Figure 1 UWSNs Sensors and Base Station 

UWSNs sensors are needed to capture actual physical 

conditions and to detect various changes in the environment, 

such as temperature fluctuations, pressure changes and sound 

strengths. The exact understanding of these changes is 

important for effective response and management strategies 

[4]. The concept of localization includes the exact position 

definition of the sensor about the environmental phenomena 

they detect. Localization plays a decisive role in ensuring 

accurate interpretation of the data collected from the sensors, 

which allows researchers and rescue teams to make 

reasonable decisions according to the exact position of 

environmental changes [5]. Localization methods provide 

accurate spatial identification of the sensory node, which is 

essential for effective observation and monitoring. Knowing 

the location of each node, the network increases accuracy of 

data, communication effect and general decision production 

opportunities.  

In addition, localization guarantees that the sensory network 

is effectively adapted to environmental changes, if the answer 

is timely and accurate. Without the exact localization, data 

collected on the loading node is meaningless to the user. 

Localization is generally achieved using methods like Time of 

Arrival (TOA), Time Difference of Arrival (TDOA), AOA, 

RSSI [6].  Localization methods of underwater WSN can 

commonly be classified into two categories. These are range-

based and range-free approaches, each with its subcategories 

depending on the specific techniques employed [7]. 

1.1. RANGE-BASED ALGORITHMS 

These algorithms depend on ranges or bearing data to estimate 

the location of sensor nodes. Range-based protocols give 

more accurate estimates of sensor node location. Additional 

hardware is needed to measure distances, thus making the 

network costlier. The receiving end needs propagation time to 

obtain the signal. Table1 summarized the range-based 

algorithms. 

• ToA: This is the simplest and most effective distance 

estimation technique compared to other techniques. The 

algorithm calculates time taken for a signal to send 

between nodes in order to find the distance that separates 

nodes. In UWSNs, accurate time synchronization between 

two nodes is required if acoustic speed is used. In this 

case, it takes more time for the signal to propagate 

between two nodes as the distance between them 

increases. Because the acoustic channels in the underwater 

environment have asymmetric properties, the ToA may 

lead to an inaccurate calculation of the propagation time. 

Considering all its disadvantages, ToA is recognized as 

the most effective method for locating underwater nodes 

[8].  
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• TDoA: This technique is mostly used to evaluate 

difference in arrival time between two packets that are 

received from two different media, such as acoustic and 

radio waves. However, radio signals are reduced 

underwater. Bent path of underwater waves is because of 

the unevenness of underwater environment. Therefore, 

localization in UWSNs by mean of TDoA becomes more 

challenging compared to ground-based networks [8-9]. 

• AOA: This algorithm computes the angle between the 

signal's propagated path and a reference direction which is 

predefined. AOA is not largely employed in underwater 

because the directional antennas are expensive and large. 

Recent research on underwater positioning shows the 

feasible nature of using AOA methods [9]. 

• RSSI: This algorithm determines sender-receiver distance 

by evaluating the signal's transmission loss. This process 

distinguishes the difference between the power sent and 

received by the signal. It then forms a correlation with a 

propagation loss model. RSSI incurs minimal overhead. In 

UWSNs, this is not considered ideal because of the loss of 

an acoustic signal with transmission is temporary. fading 

effects and Multipath also have an influence on the 

acoustic signal, which causes distance measurements to be 

inaccurate [10]. 

Table 1 Range Based Algorithms Analysis 

Localization 

Algorithm 

Selection 

Methodology 

Localization 

Accuracy 
Computational Cost Issues 

TOA [8] 

(Distance 

based) 

Ensure that 

Acoustic/target is 

synchronized 

Moderate  More Expensive  
Need of Time 

Synchronization 

TDOA [8] 

(Distance 

based) 

Transmission 

 time is known 
Good More Expensive  

High Energy consumption 

makes it costly 

AOA [9] 

(Angle based) 

 Depends on arrival 

angle 
Good More Expensive 

Complex and less accuracy 

at large scale   

RSSI [10] 

(Signal based) 

Based on the strength 

of the received signal 

and the impact of route 

failure 

Moderate 
Less  

Expensive  

Moderate accuracy and 

signal loss due to fading of 

multipath 

1.2. RANGE-FREE ALGORITHMS 

These algorithms rely on different information to infer the 

positions of nodes, other than the range and bearing data. No 

additional hardware is needed for these schemes. These 

techniques can provide a very basic approximation of the 

node's position. These algorithms are broadly classified into 

different algorithms as below: 

• Hop-count based algorithm: The square grid has beacon 

nodes at each corner.  The DV-Hop algorithm, the Robust 

Positioning method, and the DHL algorithm are the three 

main algorithms.  By tallying the number of hops and 

calculating the average hop distance, we may approximate 

the distance between the anchor nodes. This method is 

simple and does not suffer from errors in distance 

measurement. However, this algorithm is feasible only for 

isotropic networks [11]. The incorporation of an extra 

refinement phase helps to strengthen DV-Hop by using a 

robust positioning algorithm [12]. The DHL algorithm is 

used to bound the limitation of DV-Hop for the non-

uniformly distributed network. The DHL algorithm uses 

density awareness to make dynamic predictions of 

distance [13]. 

• Area-based algorithm: In UWSNs, it might be almost 

impossible or not necessary keeping track of location of 

each sensor node. Vague idea of location of sensor node is 

often sufficient to deliver overall applications. Two major 

algorithms that are based on area approaches are Area 

Localization Scheme [14] and Approximate Point in 

Triangle [15]. 

• Centroid- based algorithm: This is a proximity-based 

algorithm that does not rely on range information. In this 

case, position is determined by employing the equation (1) 

given below: 

(𝑎𝑒𝑠𝑡 , 𝑏𝑒𝑠𝑡) = (
𝑎1+𝑎2+......+𝑎𝑛

𝑛
,
𝑏1+𝑏2+......+𝑏𝑛

𝑛
)                 (1) 

Where, (𝑎𝑒𝑠𝑡 , 𝑏𝑒𝑠𝑡)  represents approximate location of 

receiver [16].  

In a typical underwater sensor network, hundreds of nodes are 

wirelessly connected to underwater gateways and affixed to 
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the bottom. Collectively, these nodes gather information and 

send it to station located on the sea surface via several 

intermediate relays. The vertical transceivers of the gateways 

connect to sensor nodes, and horizontal transceivers transmit 

data to terrestrial surface. In water with more depth, vertical 

communication is usually based on modems of acoustic and 

radio for the transfer of data over long distances [17]. The 

sensor selection method improves estimation performance by 

formulating the selection problem as an optimization task that 

minimizes Cramér-Rao Lower Bound (CRLB) while 

considering correlated measurement noise. It utilizes 

semidefinite programming (SDP) for convex relaxation, 

which allows for a more efficient solution compared to 

exhaustive search methods. To further improve the SDP 

solution and therefore the localization accuracy, a 

randomization approach is used [18].  Using measurements of 

both the received signal intensity and the angle of arrival, 3D 

cooperative wireless sensor networks are able to tackle the 

problem of real-time target localization. This approach 

overcomes the non-convexity of the maximum likelihood 

estimator by providing a quadratic closed-form solution with 

linear computational complexity relative to several 

connections. The proposed estimator achieves superior 

accuracy compared to existing methods across all evaluated 

scenarios, providing robust and efficient solution for target 

localization in complex sensor network environments [19]. 

1.3. Motivation 

The rapid proliferation of wireless sensor networks, 

particularly underwater WSN has created an urgent need for 

accurate and efficient localization techniques. The complexity 

of underwater environment presents several critical challenges 

that existing solutions struggle to address effectively. While 

various optimization-based localization schemes have been 

proposed, many fail to adequately account for node mobility, 

which is inherent in underwater deployments due to 

environmental factors such as currents. Furthermore, the 

emergence of three-dimensional UWSNs deployments has 

introduced additional complexities, while the growing 

demand for energy-efficient solutions necessitates new 

approaches that can balance localization accuracy with power 

consumption.  

These challenges motivate our research to develop an 

integrated solution that advances state-of-art in underwater 

sensor node localization. Research explores MVO algorithm, 

which has demonstrated superior performance in handling 

complex optimization problems. Unlike other optimization 

techniques like Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA), Whale Optimization Algorithm (WOA) and 

MVO provides more balanced exploration and exploitation 

mechanism, ensuring better convergence to find optimal 

solution while avoiding premature stagnation. Additionally, 

MVO’s ability to handle multi-model optimization problems 

makes it particularly well-suited for dynamic underwater 

environments. Its unique mechanisms of white, black and 

wormhole operators allow it to efficiently search solution 

space, adapting to changing underwater conditions and 

achieving higher localization accuracy with lower 

computational complexity. This work aims to create a robust, 

efficient and practical approach that can perform reliably 

across diverse deployment scenarios while minimizing both 

time consumption and computational overhead, ultimately 

achieving precise localization of sensor nodes in challenging 

underwater environments. 

1.4. Contribution 

This research paper presents several significant contributions 

to the field of UWSNs through the integration of the MVO 

algorithm with RSSI and AOA techniques. The key 

contributions are as follows: 

• By incorporating the MVO algorithm, the paper 

demonstrates a marked improvement in localization 

accuracy within UWSNs. The MVO algorithm effectively 

balances exploration and exploitation, minimizing 

localization errors in underwater environments, which are 

traditionally challenging to analyze. 

• The study provides a comparison of RSSI and AOA 

techniques in terms of various metrics such as accuracy, 

coverage, energy usage, and delay. It highlights the 

superior accuracy of AOA due to direct measurements and 

the better coverage performance of RSSI at shorter 

distances.  

• The paper lays groundwork for future research by 

proposing the incorporation of additional environmental 

parameters, like water density and salinity into the 

optimization process. It also suggests exploring hybrid 

optimization techniques to further enhance localization 

accuracy and robustness in UWSNs. 

1.5. Paper Organization 

Section 2 provides a comprehensive review of existing 

localization strategies, with a focus on optimization-based 

techniques. Section 3 explains basis of MVO algorithm. 

Section 4 introduces the proposed MVO-based localization 

method, including theoretical foundation and implementation. 

Section 5 discusses experimental setup and results, offering a 

comparative analysis of MVO with alternative localization 

approaches. Last but not least, Section 6 summarizes 

important results and suggests avenues for further study. 

2. RELATED WORK 

Several localization techniques have been proposed in 

literature to improve accuracy and efficiency of UWSN. In 

this section, we review significant contributions that leverage 
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optimization algorithms and advanced methodologies for 

localization in UWSNs. 

A 3D- localization technique for wireless sensor networks 

based on PSO is introduced in [20]. This approach utilizes 

swarm intelligence to enhance localization accuracy by 

iteratively updating particle positions based on global and 

local best positions. PSO-based algorithm demonstrates 

improved convergence speed and localization precision. 

However, its performance deteriorates in highly dynamic 

underwater environments due to the sensitivity of PSO to 

initial conditions and local optima. Improved range-based 

localization technique using WOA in UWSNs is presented in 

[21]. This method employs WOA’s bubble-net hunting 

mechanism to optimize sensor positions for enhanced 

localization accuracy. The results indicate better precision 

compared to conventional range-based techniques. A 

localization scheme based on MAP estimation and PSO for 

drifting-restricted UWSN is discussed in [22]. The MAP 

method is used to estimate the most probable sensor positions, 

while PSO further refines these estimates for reduced 

localization error. The approach effectively addresses sensor 

node drift issues and improves robustness. However, the 

dependency on prior knowledge of drift patterns limits its 

applicability in highly unpredictable underwater conditions. 

Three-dimensional localization in underwater optical wireless 

networks is analysed in [23], considering uncertain anchor 

positions. A probabilistic model is developed to address 

anchor position uncertainty, using a hybrid optimization 

framework combining Bayesian inference with convex 

optimization. Proposed work reduces localization errors. 

However, it requires high computational resources, making 

real-time implementation challenging in resource-constrained 

UWSNs. Analysis of localization and time synchronization in 

UWSNs is conducted in [24], categorizing existing 

methodologies into range-based and range-free approaches. 

Study emphasizes the need for hybrid solutions that integrate 

multiple techniques for enhanced accuracy. Various 

localization techniques and their challenges in UWSNs are 

reviewed in [25]. A comparison is made between range-based 

methods like TOA and AOA and range-free methods like 

centroid-based and DV-hop algorithms. The study identifies 

power consumption and propagation delays as major 

constraints in underwater environments. However, no novel 

solution is proposed to mitigate these issues. Performance of 

range-free localization techniques in WSNs is evaluated in 

[26], focusing on Monte Carlo-based and centroid localization 

techniques. Their accuracy is assessed under different node 

densities. The results show that Monte Carlo-based methods 

provide higher accuracy at the cost of high computational 

overhead. A major limitation of this work is the exclusion of 

real-world underwater scenarios in the evaluation process. 

Time synchronization-free localization schemes in UWSNs 

are reviewed in [27]. Algorithms such as LSE and MLE 

techniques, which do not require time synchronization 

between nodes are analysed. While these methods reduce 

synchronization overhead, they exhibit lower accuracy 

compared to time-based techniques. A hybrid approach 

combining range-based and range-free methods is suggested 

to achieve a balance between accuracy and efficiency. A 

ToA-based localization algorithm for UWSNs is proposed in 

[28], utilizing the time delay of acoustic signals to estimate 

sensor positions. Improved localization accuracy in static 

underwater is demonstrated. However, ToA techniques suffer 

from signal attenuation and multipath interference, limiting 

their effectiveness in dynamic underwater conditions. MVO-

based technique is introduced in [29]. This algorithm models 

universes competing for optimal solutions, thereby improving 

exploration and exploitation capabilities. MVO based 

technique shows superior performance in optimization 

problems compared to traditional algorithms. However, its 

computational complexity remains challenge for large-scale 

underwater deployments.  Table 2 shows summary of 

localization techniques. 

Table 2 Summary of Localization Techniques in UWSNs 

Ref Methodology Advantages Disadvantages 

[20] PSO Improved convergence speed and 

accuracy 

Sensitivity to initial conditions, local 

optima issues 

[21] Range-based localization with 

WOA 

Enhanced precision Retraction raises validity concerns 

[22] MAP estimation with PSO 

refinement 

Addresses sensor drift, improved 

robustness 

Dependency on prior knowledge of drift 

patterns 

[23] Bayesian inference with convex 

optimization 

Reduced localization error High computational resource 

requirements 

[24] Range-based and range-free 

approaches 

Highlights key challenges and 

hybrid solutions 

Lacks experimental validation 
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[25] ToA, AOA, DV-hop, centroid-based Identifies constraints like power 

and delay 

No novel mitigation strategies proposed 

[26] Monte Carlo, Centroid-based Monte Carlo provides higher 

accuracy 

Computational overhead, lacks real-

world testing 

[27] LSE, MLE Reduces synchronization overhead Lower accuracy than time-based 

methods 

[28] ToA-based Improved accuracy in static 

environments 

Affected by attenuation and multipath 

interference 

[29] MVO Superior performance in 

optimization tasks 

High computational complexity 

3. MVO ALGORITHM 

MVO draws inspiration from astronomy principles, 

specifically nature of black, white, and wormholes. 

Cosmological theory puts white holes down as sources of new 

universes, while black holes have an enormous gravitational 

attraction, pulling in objects within their vicinity. Wormholes, 

by contrast, are theoretical structures that link far-off areas of 

space, having the possibility of facilitating instant movement 

between other points [30]. 

The mechanism of search within MVO is divided into two 

phases, that are, exploration and exploitation, both of which 

are oriented towards cosmological events. Exploration is 

enabled through white holes, which inject new solutions into 

the search space, and black holes, which consume better 

solutions to provide a diverse and wide-ranging search. 

Exploitation, on the other hand, is undertaken through 

wormholes that facilitate efficient jumping from one solution 

to another, ensuring quick refinement. Every candidate 

solution is given a status as an independent universe, where 

the rate of growth in its variables is proportional to its 

performance. Instead of repetition of search patterns, the 

algorithm evolves dynamically with time, enabling solutions 

to communicate, share information, and converge to best 

results [31].  Optimization follows these basic principles: 

An inflation rate that is higher raises the chances of the 

creation of white holes, lowering the chances of the 

appearance of black holes. 

Objects tend to move out through white holes in areas with 

higher inflation rates, while objects will gravitate toward 

black holes in areas of lower inflation rates. 

Objects in various universes can travel randomly towards the 

universe with the highest rate of inflation. 

Transition happens when there's tunnel formation that allows 

transfer from white holes with higher rates of inflation to 

black holes with lower inflation rates. The process of 

exchange is very essential for optimizing overall optimization, 

allowing solutions to transfer from one universe to another 

and promoting an interactive, dynamic search process. With 

time, the mechanism causes the distribution of inflation rates 

to be more balanced across universes as outlined in equations 

(2) and (3). 

Assume that, 

𝑢 =

[
 
 
 
𝑎1
1 𝑎1

2⋯ 𝑎1
𝑑

𝑎2
1 𝑎2

2… 𝑎2
𝑑

⋮ ⋮ ⋮
𝑎𝑛
1 𝑎𝑛

2 … 𝑎𝑛
𝑑]
 
 
 

                                        (2) 

where n is universes and d is parameters. 

𝑎𝑖
𝑗
= {

𝑎𝑘
𝑗
𝑅1 < 𝑁𝐼𝑟(𝑢𝑖)

𝑎𝑖
𝑗
𝑅1 ≥ 𝑁𝐼𝑟(𝑢𝑖)

                                     (3) 

Where 𝑎𝑖
𝑗

 is jth number in ith universe, 𝑢𝑖  is ith universe, 

𝑁𝐼𝑟(𝑢𝑖)  is standardized inflation rate of ith universe R1 is 

random variable in [0, 1] and 𝑎𝑘
𝑗
indicates jth parameter of kth 

universe [32]. Reducing inflation enhances the likelihood of 

objects being moved across tunnels produced by white and 

black holes, which is essential in optimization situations 

where the rate of inflation must be positive. This positive 

approach helps in exploration by forcing universes to 

exchange objects and experience abrupt changes. To maintain 

a balance between exploring and exploiting, it is considered 

that universe has wormholes allowing for random exchange of 

objects. This introduces uncertainty to improve the variety of 

solutions. Moreover, wormholes connect a certain universe to 

the best universe found so far. This mechanism allows 

universes to seize superior solutions, improves small changes 

within the particular domain, and helps to increase overall 

growth rates by ensuring that the algorithm remains adaptive 

as well as efficient. As portrayed in equation (4). 

𝑦𝑖
𝑗
=

{
 
 

 
 
{
𝑦𝑗 + 𝑇𝐷 × ((𝑈𝑗 − 𝐿𝑗) × 𝑟𝑑 + 𝑙𝑏𝑗) 𝑟𝑎 < 0.5

𝑦𝑖 − 𝑇𝐷 × ((𝑈𝑗 − 𝐿𝑗) × 𝑟𝑑 + 𝑙𝑏𝑗) 𝑟𝑏 ≥ 0.5
    𝑟𝑎 , 𝑟𝑏 < 𝑃

𝑥𝑖
𝑗
𝑟𝑐 ≥ 𝑃

 (4) 
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Where, 𝑦𝑗is jth variable of best universe created, 𝑈𝑗and 𝐿𝑗are 

upper and lower boundaries of jth variables, 𝑦𝑖
𝑗
 is jth variable 

of ith universe and 𝑟𝑎,  𝑟𝑏, 𝑟𝑐 and 𝑟𝑑are random numbers in [0, 

1]. P is existence probability of wormholes, and 𝑇𝐷 is distance 

traveling rate, these are two aspects that cannot be negated in 

any processes optimization of the algorithm MVO. P 

represents the presence of a wormhole in universe, and 

straight-line improvement of such enhances the efficiency of 

the transfer of objects between universes much more 

frequently. Similarly, 𝑇𝐷 is a measure of the distance from an 

object that is teleportable through a wormhole compared to 

the most optimal universe so far found. The algorithm 

increases the accuracy of local searches by improving𝑇𝐷. That 

helps objects move closer to the best solutions possible. All of 

those together make a big difference in the general efficiency 

and success of the process of optimization. The formula is 

provided in equation (5). 

𝑃 = 𝑚𝑚𝑖𝑛+𝑖 × (
𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛

𝐼
)                                      (5) 

Where 𝑚𝑚𝑖𝑛  and 𝑚𝑚𝑎𝑥  represents the minimum and 

maximum values respectively.  Let 𝑖 be present iteration and 𝐼 
be maximum iterations [33]. 

4. PROPOSED MVO-BASED LOCALIZATION METHOD 

Accurate localization is crucial for efficient operation of 

UWSNs. Traditional methods such as RSSI and AOA suffer 

from significant limitations including environmental 

interference, multipath effects, and high energy consumption.  

This paper proposes an enhanced localization approach that 

leverages the MVO algorithm to improve accuracy, minimize 

localization errors, and ensure energy-efficient operation in 

dynamic underwater environments. 

4.1. Working Model of MVO-Based Localization 

This section describes the working model of the MVO-based 

localization approach in UWSNs. The proposed model 

integrates MVO with RSSI and AOA methods to enhance 

localization accuracy, minimize computational complexity 

and improve energy efficiency.  

The model consists of multiple stages including network 

deployment, signal measurement, optimization and 

localization estimation. The flowchart of working model is 

shown in Figure 2. 

 

Figure 2 Flowchart of Working Model 
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4.2. RSSI-Based Localization with MVO  

In this deployment, RSSI method is used, where location of a 

sensor node is calculated based on RSS sensed by 

surrounding anchor nodes. Every sensor node is connected to 

several anchor nodes directly and its position in the network is 

estimated based on the received signal strength from anchors, 

provided that they are in the transmission range. This 

approach relies on correlation between transmitting power of 

sensor nodes and signal strength at anchor nodes, which is the 

basis for position estimation [21]. The mathematical 

definition of RSS is given by equation (6). 

𝑅𝑆𝑆(𝑔) = 10 × ℎ × 𝑙𝑜𝑔 (
𝑔𝑜

𝑔
) + 𝑆                 (6) 

Where, S is strength of signal at  𝑔0 which signifies reference 

distance in decibels. h is path-loss exponent, constant that 

indicates rate of signal degradation, while g is actual distance 

between sensor and anchor node. Ratio among reference 

distance (𝑔0 ) and actual distance (g) is expressed using 

logarithmic term. With increase in g, log ratio decreases. 

Hence, this gives a lower RSS(g). 

A total of c nodes forms the sensor network. The network also 

comprises anchor nodes represented with t whose locations 

are known as well as sensor nodes represented with (𝑐 − 𝑡) 
whose locations are unknown. For the determination of 

positions 𝑐 − 𝑡  sensor nodes, we changed the position of a 

sensor to each (𝑐 − 𝑡) locations. These take several readings 

of the signal strength at the designated position. The distances 

are calculated among anchor nodes and the mobile sensor 

node at each of (c-t) locations using RSS data, as shown by 

equation (7) 

𝑣𝑖,𝑖=1 𝑡𝑜𝑐−𝑡                                                       (7) 

In the grid, if the absolute locations of the mobile sensor is 

(𝑎𝑖 , 𝑏𝑖) , 𝑖 = 1 𝑡𝑜(𝑐 − 𝑡) and locations of anchor nodes are 

(𝐴𝑗 , 𝐵𝑗),𝑗 = 1 𝑡𝑜 𝑡 , then Euclidean distance between sensor 

and anchor nodes is given by equation (8) 

𝑉𝑖𝑗 = √(𝐴𝑗 − 𝑎𝑖)2 + (𝐵𝑗 − 𝑏𝑖)2                    (8) 

Its aim is to reduce error between actual and estimated 

distance. Thus, objective function is represented as below by 

equation (9) 

∑ ∑ (𝑉𝑖𝑗 − 𝑣𝑖𝑗)
2𝑐−𝑡

𝑖=1
𝑡
𝑗=1                                     (9) 

MVO improves solutions by a systematic method involving 

exploration, exploitation, and wormhole-based transitions. At 

the beginning, a variety of universes is created where every 

universe corresponds to a potential solution. The algorithm 

starts with the evaluation of these universes in terms of their 

performance as solutions. If a universe is satisfactory 

according to the specified requirements and is found to be a 

good solution, it is kept. But if a universe does not meet the 

criteria, it is refined through a series of processes made 

possible by major operators: white holes, black holes, and 

wormholes. This refining process repeats itself until the most 

optimal solution based on RSS values is found, thus providing 

accurate position determination. 

1. Input: Anchor nodes, Target nodes, Universes, White holes, 

Black holes, Wormholes, Inflation Rate, Area, Dimension. 

2.Output:  Optimal sensor node position represented by    
(𝑎𝑏𝑒𝑠𝑡 , 𝑏𝑏𝑒𝑠𝑡) 

3.Objective Function: 

Minimize localization error by reducing difference among 

estimated and actual positions: 

 𝑓(𝑥) =∑∑(𝑉𝑖𝑗 − 𝑣𝑖𝑗)
2

𝑐−𝑡

𝑖=1

𝑡

𝑗=1

 

4. Population initialization 

5. For each universe u: 

Randomly assign initial positions (𝑎𝑢, 𝑏𝑢) in a defined search 

space 

6. Set up the necessary parameters, including universes and 

optimization constraints 

7. Iterative optimization: 

Compute RSSI 

Create new position (𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤) 

For each universe: 

Recompute RSSI 

Evaluate  𝑓(𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤) 

8.  Replace (𝑎𝑢, 𝑏𝑢, ) to (𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤) 

9. Enhance exploration and exploitation through MVO 

10. Return the optimal positions (𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤) that yield the 

minimum localization error𝑓(𝑥) 

Algorithm 1 MVO Based Method for RSSI Localization 

The RSSI based localization with MVO optimization method 

(as shown in Algorithm 1) is designed to optimize sensor 

node location in UWSNs by minimizing localization errors. 

The algorithm starts by taking input parameters like anchor 

nodes, sensor nodes, universes, white holes, black holes, 

wormholes, inflation rate, area and dimensions. It initializes a 

population of sensor node positions randomly within defined 

search space. Each universe represents potential solution and 

its fitness is evaluated based on the difference between 
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estimated and actual node positions. Algorithm iteratively 

improves localization accuracy by computing RSSI values, 

generating new sensor positions and evaluating their 

accuracy. The best-performing positions are retained while 

poorly performing ones are replaced using white, black, and 

wormhole mechanisms of MVO. White hole effect enhances 

solutions by sharing high-quality positions, while the black 

hole effect eliminates suboptimal solutions. The wormhole 

effect introduces random jumps, ensuring global exploration 

and preventing premature convergence. This iterative 

optimization continues until the algorithm converges on the 

best possible sensor node positions. By leveraging MVO, the 

approach enhances localization accuracy, reduces 

computational overhead and ensures robust performance in 

dynamic underwater environments. 

4.3. AOA-Based Localization with MVO 

UWSN is system consisting of anchor (M) and sensor nodes 

(N) that are deployed in a target area. They are wirelessly 

connected, and one of the sensor nodes traverses monitoring 

region at velocity less than velocity of signal propagation. 

Anchor nodes are provided with omnidirectional antennas and 

make use of carrier frequencies to send monitoring signals. 

The reflected signals from the mobile node are then received 

by sensor nodes. 

Sensor nodes quantify two significant parameters from the 

observed signals: 

Doppler Shift: It is caused by the alteration in frequency 

between the received and transmitted signals. 

AOA: This is elevation and azimuth angles at which reflected 

signal arrives at sensor nodes. 

Sensor nodes send Doppler Shift and AOA information to an 

onshore monitoring, which can analyze this data to calculate 

position of mobile node. Calculations are all done within a 

specified reference frame using signals broadcast by anchor 

nodes. 

AOA algorithm determines equation of sensor node j when 

reflected signal arrives anchor node i is represented by 

equation (10) 

𝜇𝑖,𝑗 = 𝜇𝑐 (1 +
𝜌

𝜂
(𝑐𝑜𝑠𝛾𝑖,𝜌 + 𝑐𝑜𝑠𝛾𝑗,𝜌))             (10) 

Where, 𝜇𝑐   is carrier frequency of the signal, 𝜌   is mobile 

node velocity, 𝜂 is sound speed in water, 𝛾𝑖,𝜌 is angle among 

anchor node and direction of mobile node. 𝛾𝑗,𝜌 is angle 

between ordinary node and mobile node’s movement 

direction. 

By solving the eq. (10), we get to equation (11) 

𝜇𝑖,𝑗 = 𝜇𝑐 −
𝜇𝑐

𝜂
(𝜀0

𝑖 + 𝜀0
𝑗
)                                  (11) 

Where,𝜀0
𝑖  and 𝜀0

𝑗
 are the components of Doppler frequency 

influenced by distances and relative velocities. 

Relative velocity components 𝜈𝑖 , 𝜈𝑗 among mobile node and 

anchor node 𝑖 and 𝑗 as seen in equation (12) and equation (13) 

𝜈𝑖 = (𝑘𝑜 − 𝐾𝑖)
𝑇𝑚𝑜                                                 (12) 

𝜈𝑗 = (𝑘𝑜 − 𝐾𝑗)
𝑇
𝑚𝑜                                                 (13) 

Where,𝑘𝑜 represents mobile node,  𝐾𝑖   and  𝐾𝑗  represents 

anchor node and ordinary node respectively, 𝑚𝑜  represents 

the velocity vector. 

The distances among the mobile node𝑢𝑜and anchor node 𝑠𝑖  
and also mobile node 𝑠𝑖 and the ordinary node 𝑛𝑗 is illustrated 

in equation (14) and equation (15) 

𝜔𝑜
𝑖 = √(𝑎 + 𝑎𝑖)2 + (𝑏 + 𝑏𝑖)2 + (𝑐 + 𝑐𝑖)2              (14) 

𝜔𝑜
𝑗
= √(𝑎 + 𝑎𝑗)

2
+ (𝑏 + 𝑏𝑗)

2
+ (𝑐 + 𝑐𝑗)

2
             (15) 

The angles at which the signal reaches the sensor nodes are 

determined by the AOA and is given in equation (16) and 

equation (17). 

𝜃𝑜
𝑗
= 𝑡𝑎𝑛 (

𝑏−𝑏𝑗

𝑎−𝑎𝑗
)                                                       (16) 

𝜑𝑜
𝑗
= 𝑠𝑖𝑛 (

𝑐−𝑐𝑗

𝜔𝑜
𝑗 )                                                        (17) 

Modified azimuth and elevation angles by taking into account 

the minor inaccuracies in measurements can be given by 

equation (18) and equation (19). 

𝜃𝑜
𝑗
= 𝜃𝑜

𝑗
+ 𝛥𝜃𝑗                                                           (18) 

𝜑𝑜
𝑗
= 𝜑𝑜

𝑗
+ 𝛥𝜑𝑗                                                         (19) 

Where, 𝛥𝜃𝑗  is error in azimuth and 𝛥𝜑𝑗  represents error in 

elevation. 

Focus of objective function is to minimize localization error 

for mobile node. Accurate localization requires aligning 

calculated angles with real angles as seen in equation (20). 

∑ (𝑥
^

𝑖,𝑗 − 𝑥𝑖,𝑗)
2

+ (𝜃
^

𝑖,𝑗 − 𝜃𝑗)
2

𝑖,𝑗 + (𝜑
^

𝑖,𝑗 − 𝜑𝑗)
2

      (20) 

Where, 𝑥
^

𝑖,𝑗 and 𝑥𝑖,𝑗 are estimated and measured Doppler shift 

among anchor node 𝑖 and sensor node 𝑗 respectively. 𝜃
^

𝑖,𝑗 and 

𝜃𝑗  estimated azimuth angle and measured azimuth angle 

respectively. 𝜑
^

𝑖,𝑗   and 𝜑𝑗  are estimated and measured 

elevation angle of arrival at the sensor node 𝑗.  

The error rate is represented in equation (21): 
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𝐸𝑢 = √
1

𝐺
∑ (𝑝𝑜 − 𝑝

^

𝑙)
2

𝐺
𝑔=1                             (21) 

Where, 𝑝𝑜 and  𝑝
^

𝑙 are the true position and estimated position 

of mobile node at iteration 𝑔 respectively. 𝐺 is total iterations 

[31]. 

1. Input: Number of anchor nodes, number of target nodes, 

Number universes, Number white holes, Number black holes, 

Number wormholes, inflation rate, area, dimension 

2. Output: optimal sensor node position represented by    
(𝑎𝑏𝑒𝑠𝑡 , 𝑏𝑏𝑒𝑠𝑡 , 𝑐𝑏𝑒𝑠𝑡) 

3. Objective Function: 

Minimize localization error by reducing difference between 

estimated and actual positions: 

𝑓(𝑥) =∑(𝑥
^

𝑖,𝑗 − 𝑥𝑖,𝑗)
2

+ (𝜃
^

𝑖,𝑗 − 𝜃𝑗)
2

𝑖,𝑗

+ (𝜑
^

𝑖,𝑗 − 𝜑𝑗)
2

 

4. Initialize population 

5. For each universe (u): 

Randomly assign initial positions (𝑎𝑢, 𝑏𝑢, 𝑐𝑢)  in a defined 

search space 

6. Set up the necessary parameters, including universes and 

optimization constraints 

7. Iterative optimization: 

Compute AOA 

Create new position (𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤, 𝑐𝑛𝑒𝑤) 

For each universe: 

Recompute AOA 

Evaluate  𝑓(𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤, 𝑐𝑛𝑒𝑤) 

8.  Replace (𝑎𝑢, 𝑏𝑢, 𝑐𝑢) to (𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤, 𝑐𝑛𝑒𝑤) 

9. Enhance exploration and exploitation through MVO 

10. Return the optimal positions (𝑎𝑛𝑒𝑤, 𝑏𝑛𝑒𝑤, 𝑐𝑛𝑒𝑤) that yield 

the minimum localization error 𝑓(𝑥) 

Algorithm 2 MVO for AOA Localization 

The AOA-based localization with MVO method (as shown in 

Algorithm 2) optimizes sensor node position in UWSNs by 

minimizing localization error in angle estimation. It starts 

with initializing sensor node positions within a defined search 

space and computing AOA values. Iteratively, new positions 

are generated, and AOA is recalculated to refine accuracy. 

White, black, and wormhole mechanisms of MVO enhance 

exploration and exploitation, ensuring optimal sensor 

location. Poor solutions are replaced while high performing 

ones are retained to improve accuracy. The process continues 

until the best sensor node positions are obtained with minimal 

localization error. 

5. RESULTS AND DISCUSSION 

The MATLAB 2023 software, running on an Intel Core i5 

processor with Operating System that is 64-bit Windows10, is 

utilized to check the efficiency of the algorithms RSSI and 

AOA in combination with the MVO technique. In the 

experiment, a 2D area is used for RSSI while the area for 

AOA is 3D along with 100 randomly dispersed sensor nodes. 

The MVO algorithm starts with a random solution in the 

space of search and reduces the parameter fitness function. 

The MVO performs at most 100 iterations. More detail on the 

values of parameters is given in below Table 3. 

Table 3 List of Simulation parameters 

Parameters Value 

Area of Localization (500 x 500) m2 

Depth 500 m 

Sound Speed 1500 m\s 

Anchor Node 20 

Target Node 30 

Sensor Node 100 

Transmission Power 35 W 

Received Power 0.3 W 

Universe 5 

Black Hole 3 

White Hole 2 

Worm Hole 4 

Inflation Rate 1.2 

In the context of evaluating the MVO algorithm along with 

RSSI and AOA techniques for localization in UWSNs, 

several performance criteria can be considered. Evaluation is 

conducted using essential performance matrices referenced in 

[34].  

Results indicate that integration of MVO algorithm improves 

accuracy of sensor node placement, minimizes localization 

errors, and provides reliable performance in underwater 

environments. The comparative analysis of RSSI and AOA 

techniques reveals distinct advantages and limitations for each 

method, offering valuable insights for their application in 

different underwater scenarios. 

5.1. Localization Error 

Localization error is difference among sensor’s actual position 

and estimated position by a system using equation (9) and 

equation (21). 
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Figure 3 Localization Error vs Transmission Range 

Figure 3 illustrates a comparative evaluation of localization 

error in AOA andRSSI methods over transmission distances 

from 100 to 500 meters. Both techniques have equally high 

localization errorsnearing 100% at near distances (~100m), 

which indicates that neither method has an advantage in near-

proximity applications. 

As the range of transmission goes from 200–300 meters, the 

performance of the both methods starts to drift apart. AOA 

shows greater accuracy or lower error percentages, while 

RSSI continues to produce growing error rates. But with 400–

500 meters, this trend inverts. RSSI produces more 

accuracyand AOA performs worse. When the range goes to 

500 meters, RSSI performs way better than AOA, whose error 

rate grows to about 30% in contrast to AOA's 60%. 

These performance differences can be explained by several 

factors. AOA's degradation in accuracy at farther distances is 

probably caused by greater signal reflections and multipath 

effects, wherein small angular variations result in high error 

rate as distance grows. Environmental interference also 

affects AOA measurements more significantly over longer 

distances. On the other hand, RSSI's better performance at 

longer distances could be due to the Multi-Verse Optimization 

algorithm, which efficiently utilizes signal strength 

fluctuations, making them more pronounced and reliable for 

localization at longer distances. 

Figure 4 is a comparative evaluation of percentages of 

localization errors using AOA and RSSI methods with MVO 

in Underwater WSNs with different anchor nodes. Notable 

observations from figure is uniform trend wherein RSSI has 

greater localization errors (~70%), while AOA shows 

relatively lower error rates (~60%) in all anchor node setups 

(1 to 10). This difference in performance remains fairly 

consistent with little fluctuation as anchor nodes increases. 

In underwater environment, there are key factors that affect 

performance of both localization methods. AOA exhibits 

higher accuracy due to the fact that underwater conditions 

naturally improve angle-based measurements. The greater 

density of water than air ensures more stable signal paths and 

underwater acoustic waves which are widely employed in 

UWSNs suffer less scattering than radio waves. 

Consequently, AOA provides more reliable angular 

measurements even with changing numbers of anchor nodes. 

In contrast, RSSI has greater error rates given the complicated 

nature of measuring underwater signal strength. The 

underwater communication channel impacts signal 

propagation greatly by absorbing, scattering, and causing 

multipath effects due to changes in water density, temperature 

gradients, and salinity. Such environmental factors introduce 

higher instabilities to RSSI-based localization and render 

signal strength measurements less accurate and more 

erroneous in underwater environments. 

This evaluation indicates that, in underwater conditions, the 

fundamental limitations of each localization method 

especially RSSI are more controlled by underwater channel 

properties rather than anchor nodes. Therefore, increasing 

reference points is not always going to increase accuracy of 

localization. Rather, choosing proper localization method is 

more essential to achieve better performance in underwater 

WSNs. 

 

Figure 4 Localization Error vs No. of Nodes 

5.2. Localization Coverage 

Localization Coverage Ratio (LCR) can be determined by 

quotient of localized nodes and total nodes in network as 

represented in equation (22). 

𝐿𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑠𝑒𝑛𝑠𝑜𝑟𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑒𝑛𝑠𝑜𝑟𝑛𝑜𝑑𝑒𝑠
                   (22) 

Figure 5 is a comparative overview of localization coverage 

percentages of AOA and RSSI methods over transmission 

ranges of 50 meters to 550 meters. The outcomes show a 

significant difference in performance, with AOA always 
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showing better coverage than RSSI over all distances. At 

shorter ranges of transmission (50–100m), AOA starts with 

around 20% coverage, while RSSI shows minimal coverage. 

With increasing transmission range, AOA's coverage 

increases considerably, to 55% at 200m, 85% at 300m, and 

almost 100% at 500–550m. On the other hands, RSSI shows 

gradual improvement, only starting to show significant 

coverage 15%at 300m and reaching a maximum of 40% 

coverage at 550m. 

 

Figure 5 Coverage vs Transmission Range 

The trend in performance can be attributed to the inherent 

properties of each method within an underwater channel. The 

higher performance of AOA stems from its usage of angular 

measurements, which are more immune to signal attenuation 

than RSSI. Weaker performance from RSSI is understandable 

as it uses signal strength measurements, which are sensitive to 

underwater absorption, scattering, and multipath propagation. 

This discussion emphasizes the need to consider 

environmental factors in choosing localization method in 

UWSN. Though AOA gives higher coverage, its accuracy 

could be compromised under underwater propagation 

conditions, while RSSI with lesser coverage has a more stable 

measurement mechanism over longer distances. 

Figure 6 shows comparison of localization coverage 

percentage and anchor nodes for AOA and RSSI methods in 

Underwater Wireless Sensor Networks. The outcome 

indicates a noticeable performance difference, with AOA 

consistently outperforming higher localization coverage with 

different numbers of anchor nodes.With only 2–3 anchor 

nodes, AOA is already able to provide around 70% 

coverageand this is further improved as more anchor nodes 

are added, with almost 100% coverage with 8–9 anchor 

nodes. RSSI has a relatively linear increase in coverage, 

beginning at about 10% with 2–3 anchor nodes and gradually 

improving to nearly 80% coverage with 10 anchor nodes. 

AOA’s  performance superiority is based on its angle-based 

measurement that is more stable in the environment of water 

due to the fact that acoustic waves travel more uniformly in 

the denser medium. Moreover, AOA is advantaged more with 

more anchor nodes because each node acts as a solid angular 

reference point that will increase the precision of geometric 

triangulation. On the other hand, RSSI's poor performance is 

due to the inherent difficulties of signal strength-based 

localization in water environments. Parameters like variations 

in water density, temperature gradients, salinity variations and 

underwater currents have considerable effects on signal 

strength readings.One key observation is that AOA achieves 

close-to-optimal coverage with fewer anchor nodes 

(approximately 8–9), while RSSI needs more anchor nodes to 

match the performance. This observation indicates the 

resourcesaving nature of AOA-based localization and the fact 

that it is a more efficient and scalable solution for underwater 

WSN deployments, especially in situations where deployment 

of large anchor nodes is impractical or prohibitively 

expensive. 

 

Figure 6 Coverage vs No. of Nodes 

5.3. Energy Consumption 

The amount of energy used by a node while forwarding it is 

known as its definition. Alternatively, it can be stated as the 

difference in the amount of energy between the present and 

initial state of the node. The measurement unit for 

consumption of energy is Joules(J) as represented in equation 

(23). 

Energy cons.= initial energy – current energy  (23) 

Figure 7 illustrates energy consumption by AOA and RSSI 

methods for various transmission ranges (100m to 500m) in 

UWSNs. The graph presents very similar patterns of energy 

consumption for both methods, with merely insignificant 

variations for all transmission ranges. Both AOA and RSSI 
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exhibit uniform patterns of energy consumption of about 45-

50 Joule with mere slight increases as the transmission range 

increases.This is due to various reasons in underwater 

settings. The similar energy consumption indicates that the 

fundamental power demands for signal transmission and 

reception in underwater acoustic communication are the 

driving force behind the overall energy expenditure, whether 

it is angle-basedor strength-basedmeasurements. The acoustic 

channel in the underwater environment is very power-

demanding for the propagation of the signal because of water 

resistance and high density, which seems to be the major 

energy expense instead of either localization method's specific 

processing requirements. 

 

The minor rise in energy usage with growing transmission 

distance is probably the result of stronger signal transmission 

necessary to bridge the extra distance and attenuation of the 

underwater channel. The riseis smalland it indicates that the 

baseline power demands for underwater acoustic 

communication largely surpass the excess power required for 

longer range transmission. Both methods equally demand 

comparable amounts of energy resources, suggesting energy 

efficiency might not be a driving factor in either selecting 

AOA or RSSI for underwater localizations. 

5.4. Delivery Ratio 

Packets received successfully to total packets that have been 

sent as represented in equation (24). 
 

Delivery Ratio =
No.  of Packets  recieved

No.  of Packets  transmitted
               (24) 

Figure 8 illustrates the delivery ratios of RSSI and AOA 

techniques at varying transmission distances. Both techniques 

exhibit the increase in delivery ratios with the growth in the 

transmission range, but RSSI is always better than AOA. At 

100m transmission range, RSSI delivery ratio is 

approximately 0.15, whereas a gradual increase is noticed up 

to a point where it approaches nearly 0.95 at 500m 

transmission range. In contrast, AOA starts with a delivery 

ratio of about 0.02 at 100 meters and then approximately 0.80 

at 500 meters. The principal cause RSSI performs better than 

is because it has the ability to effectively handle signal 

propagation across greater distances. It handles signal strength 

measurements to continue working properly even when 

communication is in reflection. In general, the trend is 

upwards for both methods, as increasing transmission ranges 

enhances signal coverage and allows for more reliable 

communication paths. This is likely due to the possibility of 

having alternative paths for effective packet forwarding even 

when there is signal loss or degradation in some routes. Large 

transmission ranges are very helpful in underwater wireless 

networks as they guarantee reliable data delivery with 

minimal variation over all transmission ranges. 

 

Figure 8 Delivery Ratio vs Transmission Range 

5.5. Delay 

System delay is the time required for data transmission from 

source node to target node within the network. This 

measurement is expressed in seconds(s). 

Figure 9 compares delay exhibited by RSSI and AOA 

methods for transmission distances ranging from 100m to 

500m. In all the ranges, AOA indicates increased delay of 

approximately 4.2x10^-6 seconds whereas delay in RSSI is 

approximately 2.6×10^−6 seconds. In both of these 

approaches, the delay is independent of the transmission 

range, delay appears to be highly dependent on the processing 

time of the localization techniques and not the signal distance. 

The reduced delay in RSSI can be explained by its 

dependence on simple signal strength readings that are less 

processor-intensive. Conversely, AOA involves more 

complicated calculations to achieve angles of arrival, resulting 

in increased processing time and thus greater delays. This 

inherent trade-off highlights the point that, AOA can be more 

precise in specific situations, it incurs a performance cost in 
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terms of increased delay. The uniform behavior for various 

ranges highlights that the delay is algorithm dependent and 

reasonably independent of the transmission distance. 

 

Figure 9 Delay vs Transmission Range 

6. CONCLUSION 

The incorporation of MVO algorithm with RSSI and AOA 

significantly increases the accuracy and shows reliable nature 

of sensor node placement in UWSNs. The MVO technique 

balances effective exploration and exploitation that minimizes 

localization errors within the underwater environment, a 

region that is challenging to analyze where traditional 

techniques may fail. This paper tested RSSI and AOA 

techniques about localization in UWSNs in terms of various 

metrics. The performance of AOA is better than that of RSSI 

in term of accuracy, mainly because it directly measures the 

angle of arrival. However, the RSSI-based approach 

demonstrated better coverage at shorter distances, when there 

are fewer anchor nodes. Energy consumption remains 

consistent at 45-50 Joules for both methods, while in delivery 

ratio RSSI outperforms reaching 0.95 at 500m compared to 

AOA's 0.80 and shows lower delay at 2.6×10^-6 seconds 

versus AOA's 4.2×10^-6 seconds. In term to delay, RSSI is 

found to be performing better than AOA because it has more 

complex processing requirement. This advancement is 

particularly important in UWSNs where accurate location 

helps in different applications like observation of 

environment, underwater exploration, operations of military 

and so forth. Future work may focus on improving the MVO 

algorithm by incorporating additional environmental 

parameters, such as different densities of water and salinity 

values in the optimization process. Investigating hybrid 

approaches that combine different optimization techniques 

might provide stronger and more powerful localization 

alternatives for UWSNs. Possible utilization of the MVO-

enhanced localization method in real-world scenarios is also 

taken into account, pointing to its applicability in different 

underwater conditions. 
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