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Abstract – The Internet of Things has made our lives easier to 

live and more convenient. However, the risks of cyber-attacks, 

especially within the kernels of the IoT, have increased manifold. 

A strong security system is required to ensure that the devices 

are safe from any threat. Therefore, proposing an augmented 

pattern evaluation model that makes use of Deep Dyna Q and 

VARMA GRU-based predictive analysis to be able to provide 

additional embedded security features to IoT kernels. 

Altogether, model that composes of three components: feature 

extraction, model training, and prediction operations. At the 

first component, extraction of the relevant features from the IoT 

kernel in order to create a feature vector for this process is 

carried out. The feature vector is further utilized to train the 

Deep Dyna Q algorithm, a reinforcement learning approach 

which learns to decide under the maximization of some reward 

signal. Here the use the second module with the VARMA GRU-

based predictive analysis algorithm to predict the future state of 

the IoT kernel based on the current state and actions taken by 

the Deep Dyna Q algorithm. The VARMA GRU algorithm 

implements a VARMA with the advantages of a GRU model and 

thus provides forecasts accurately. In the final component, assess 

the predicted state of the IoT kernel with a set of predefined 

security rules. If any of these rules are broken by the predicted 

state, the system acts accordingly to reduce the possible threats. 

This will be the model that would consider an all-encompassing 

security of IoT kernels by harnessing the power of various 

algorithms. The Deep Dyna Q ensures that the system will make 

intelligent decisions in real-time, while the VARMA GRU adds 

accuracy with its predictive analysis algorithm, hence making 

this an augmented pattern evaluation model that would rise to 

the ever-increasing security challenges of IoT devices and 

deployments. 

Index Terms – IoT, Security, Kernel, Complexity, Delay, 

Scalability, MRM, QoS, Performance, Machine Learning, 

Blockchain, SIDECHAIN, Encryption, Hashing, Key, 

Communications. 

1. INTRODUCTION 

With the unabated popularity of the Internet of Things within 

the past few years, IoT actually served to connect devices and 

automate them in such a way as to make our lives easier. 

However, this widespread use of IoT devices also brought to 

us associated security concerns connected with the security in 

kernels of IoT devices. Basically, IoT kernels [1, 2, 3] are 

considered the heart of any IoT device and control and 

manage all other components. In this respect, the security of 

IoT kernels forms the basis for securing the entire IoT devices 

and deployments. The security systems developed for IoT 

kernels still mostly depend on a signature-based approach, 

which is helpful in detecting known threats but falls short in 

detecting unknown or zero-day attacks. This therefore means 

there is a need to develop a more comprehensive security 

system that can detect and prevent such attacks. Machine 

Learning and Predictive Analytics have thus emerged in 

recent years as a formidable solution to the challenges 

traditional Signature-Based approaches have faced. In this 

context [4, 5, 6], the authors suggest an augmented pattern 

evaluation model that integrates the strength of the Deep 

Dyna Q with the VARMA-GRU-based predictive analysis 

algorithms to improve security for IoT kernels. The Deep 

Dyna Q algorithm is a kind of reinforcement learning that 

learns to decide by optimizing an accumulated reward signal. 

It is very suitable in real-time decision scenarios due to its 

ability to adapt itself in changing environments. On the other 

side, the VARMA GRU-based predictive analysis algorithm 

synergizes the strengths of both VARMA and GRU models in 

order to provide an accurate prediction of the future states of 

the IoT kernels. A predictive model is proposed, which 

includes three main parts: feature extraction, model training, 

and prediction. First of all, this is extracting relevant features 
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from the IoT kernel to create a feature vector. The Deep Dyna 

Q algorithm learns to decide under this very reward signal, 

with the feature vector fed into it. Given the current state and 

the actions, the Deep Dyna Q algorithm will take, the second 

component of the VARMA GRU-based predictive analysis 

algorithm will predict the future state of the IoT kernel. 

Finally, the predicted state of the IoT kernel is checked 

against predefined security rules to detect threats. Therefore, 

this paper proposes an augmented pattern evaluation model 

that empowers the potential of machine learning and 

predictive analytics in order to enhance the security features 

of IoT kernels. It can help alleviate the growing security 

challenges to IoT devices with the proposed model and detect 

unknown or zero-day attacks. The rest of the paper is 

organized as follows: Section 2 reviews related work, Section 

3 describes the proposed model in detail, Section 4 presents 

the experimental results, and finally, Section 5 concludes the 

paper with a summary of the contributions and future 

recommendations. 

The objectives of the paper are, 

1. To identify the challenges in securing IoT kernels and to 

highlight the limitations of current security systems. 

2. Propose an augmented pattern evaluation model that will 

further leverage the power of machine learning and 

predictive analytics in enhancing security for IoT kernels. 

3. Explain various algorithms that constitute this model, 

notably Deep Dyna Q and VARMA GRU-based 

predictive analysis, and describe how they work together 

to strengthen security in an IoT kernel. 

4. Presentation of results of the experiments carried out on 

proposed model and comparison of the performance with 

already existing security systems in current scenario. 

5. Proof of effectiveness of proposed model in detection and 

prevention of unknown or zero-day attacks on IoT kernels. 

6. Contribute to this line of work in developing a more 

comprehensive security system for IoT devices and 

provide insights for future works in this area of real-time 

deployment. 

The recent growth of use of IoT has led to vulnerability in 

terms of security especially regarding kernel-level in which 

most core operations of IoT devices are kept. Traditional 

security mechanisms, mainly relying on signature-based 

intrusion detection, fail to identify novel or zero-day attacks. 

Thus, the IoT deployments become vulnerable to adversarial 

threats. Moreover, the existing security models have high 

computational complexity, resource-intensive operations, and 

lack real-time adaptability, which makes them inefficient for 

constrained IoT environments. Thus, there is a serious 

requirement for an advanced, intelligent security model that 

can be proactive in threat detection and mitigation with low 

computation overheads. Herein, the paper proposes an 

augmented pattern evaluation model that combines Deep 

Dyna Q reinforcement learning with VARMA-GRU-based 

predictive analytics to ensure real-time and accurate threat 

assessment and response within IoT kernels. 

The rest of the paper will follow the following outline: In 

Section 2, a comprehensive literature review on relevant 

works in the area of IoT kernel security is provided that 

reviews the existing prevalent challenges and shortfalls in 

existing literature. Finally, Section 3 will outline the designed 

architecture and approach of the proposed augmented pattern 

evaluation model with its integration of Deep Dyna Q and 

VARMA-GRU-based predictive analysis. Section 4 outlines 

the experimental setup, dataset selection, evaluation metrics, 

and comparative analysis of the approach proposed with those 

existing methods. Section 5 discusses the outcome, 

highlighting improvement in performance with reduced false 

alarms and enhanced mitigation capabilities. To end, the 

paper is finalized with Section 6, where overall contributions 

and areas for further expanding IoT security will be provided 

and possible future works. 

2. RELATED WORK 

This literature review on the current state of IoT security 

encompasses information on the existing landscape, 

challenges, and new developments around the security of IoT 

environments. To that end, each study has its own 

methodologies, findings, and limitations; hence, it offers very 

valuable insights into the dynamically changing field of IoT 

security. Convergence of different machine learning 

techniques, advanced encryption methods, and hybrid 

frameworks underlines a multi-dimensional approach to 

dealing with complex security issues inherent in IoT systems. 

Geetha et al. [1] propose an adaptive weighted kernel support 

vector machine-based circle search approach that ensures a 

very high detection accuracy of about 95%. Nevertheless, as 

shown in table 1, the high computational cost throws a spanner 

into the works for real applications with resource-constrained 

devices. Likewise, Quincozes et al. [2] present a survey of IoT 

protocols at the application layer and discuss some of the 

already existing security-related issues and how explainable AI 

can be exploited in such scenarios. Although these findings are 

insightful, a major gap exists in terms of the lack of 

implementation. Li and Dou's [3] active eavesdropping 

detection increased the detection rate by 20%, although it only 

worked on the physical layer of security; therefore, 

complementary measures are needed.  

In improving IoT security, Kumar et al. [4] add a security 

protocol in a Zigbee network-specific way through their 

analysis on IoT security with Zigbee network-based security; 

therefore, broader application is needed. Ul Haq et al. [5] 

produce a finer review on IoT firmware security but without 

experimental validation, weakening its impact. Rana et al. [6] 
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adopted krill-based deep neural network stacked autoencoders 

for cyber threat detection, hence achieving an accuracy of 

93%, though at high training complexity. Om Kumar et al. [7] 

used recurrent kernel convolutional neural networks to 

improve intrusion detection, thus attaining 91% accuracy, but 

at very high resource usages. Mohy-eddine et al. [8] deal with 

artificial neural networks for smart farming security and 

obtain a detection rate of 89%, though with little 

generalizability outside smart farming. Kaliappan et al. [9] 

proposed an AI-based trust framework that is capable of 

enabling intrusion detection and improving the accuracy to 

92%.  

Karamizadeh et. al [10] proposed combination of deep 

learning and self- attention mechanism which enhanced smart 

home security. Rajarajan et. al. [11] work shows hybrid 

optimized learning model for intrusion classification which 

enhanced classification accuracy and achieved 93% detection 

accuracy rate. In the work of Zada et al., [12] kernel ELM and 

war strategy optimization have been adopted to accomplish 

software defect prediction with 87% accuracy; however, the 

work is limited to software defects. Boopathi et al. [13] have 

tried optimization algorithms for privacy-preserving data 

disturbance in edge computing, whereby privacy and security 

are improved but at a high complexity. The fitness tracker 

security using quantum fruit fly optimization by Shanthala and 

Annapurna [14] has an accuracy of 90%, specific to the 

fitness trackers. Hazman et al. [15] use ensemble learning for 

smart environment security, improving intrusion detection 

with a rate of 88% but at high resource requirements. The 

transfer learning model by Nandanwar and Katarya [16] 

enables intrusion detection in IoT with a precision of 91%, 

though at the cost of extensive training data. While Zhan et al. 

[17] focus on fine-grained kernel access limitation, this 

greatly reduces the attack surface but at quite a cost in 

implementation complexity. In the case of third-party services, 

Jang and Kang's [18] trusted execution environment for IoT 

services can improve security, although at a rather high cost to 

implement. Tang et al.'s [19] jammer- assisted secure 

precoding scheme for MIMO IoT networks enhances physical 

layer security and improves the secrecy rate but only applies 

for MIMO networks. Zhu and Tang [20] proposed an NB-IoT-

based remote SSH access that can ensure secure access to 

UAVs, but it is specific to UAV applications. Oliveira et al. 

[21] propose an open-source TEE for IoT devices aiming to 

improve security and isolation, enhancing the security 

architecture, while putting forward several implementation 

challenges. Bedari et al.[22] have put forward a feature 

transformation-based fingerprint authentication system that 

effectively improves privacy protection and the accuracy of 

authentication but increases computational costs. Feng et al. 

[23] give a comprehensive review of IoT firmware 

vulnerability detection, identifying some of the key 

vulnerabilities without experimental results in their study. 

Takemura et al. [24] enhance auditability and system reliability 

of edge device provenance auditing with high TEE 

implementation complexity. Li et al. [25] enhance the speed of 

encryption performed on IoT systems via GPU-accelerated 

homomorphic encryption at a high hardware resource cost. Wu 

et al. [26] enhance security in RF environments via RF 

fingerprint recognition in low-SNR settings, which ensures 

high accuracy in detection but is confined to RF scenarios. 

Hwang et al.'s [27] runtime framework for trusted applications 

in ARM/FPGA systems features high security and high 

performance but is very complicated. Li and Takada's [28] 

hypervisor middleware for IoT systems ensures high reliability 

and security, while implementation remains troublesome. 

High-grade security for updates and decent firmware 

management are provided at high resource costs by the micro- 

kernel approach of Aspesi and Zaccaria [29] in update 

management firmware.  

Sheybani et al. [30] provide secure hashing for sensor values, 

which enhances security at the source with a high 

computational overhead to ensure data integrity. Ning et al. 

[31] describe the defense mechanisms against debugging 

features of the ARM architecture, thereby enhancing the 

security and reducing the risk of privilege escalation. however, 

this work is restricted to ARM architecture. Kaiser et al. [32] 

present an exhaustive review of the container technologies 

available for the ARM architecture, outlining major security 

features without detailing practical implementation 

operations. Predictive models for personalized diabetes 

monitoring system proposed by R. Marzouk et. al. [33] has 

improved health monitoring as well as predictive accuracy but 

which is limited to diabetes monitoring. Park et al. [34] 

presented an investigation into security control for inference 

systems, improving intrusion detection and the security of a 

system at high complexity. Li et al. [35] provided defense 

against poisoning attacks in federated learning, which 

enhances model robustness at large resource usages. He et al. 

[36] further adopted federated learning for edge device 

identification to improve identification accuracy and network 

security but at high computational costs.  

Iqbal et al. [37] contribute to ransomware detection in IoT 

healthcare systems; the security is enhanced but only in 

relation to healthcare. Gyamfi and Jurcut [38] perform 

intrusion detection in industrial IoT for the enhancement of the 

accuracy of detection and system security, but it has high 

implementation complexity. Wang et al. [39] put forward 

distributed classification learning against attacks involving 

flipping labels to improve the robustness of learning and 

classification accuracy at a high computational cost. Alruwaili 

et al. [40] applied probabilistic transfer learning in the 

monitoring of data transmission from wearable sensors, which 

enhances the accuracy of monitoring and the security of 

transmission but limits it to wearable sensors. 
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Table 1 Empirical Review of Existing Methods 

Reference Method Used Findings Results Limitations 

[1] Adaptive weighted kernel support 

vector machine-based circle search 

approach 

Enhanced intrusion 

detection accuracy 

Achieved 95% 

detection accuracy 

High computational 

cost 

[2] Survey on IoT application layer 

protocols and security challenges 

Identified key security 

challenges and the role 

of explainable AI 

Provided 

comprehensive 

analysis 

Lack of practical 

implementation 

[3] Active eavesdropping detection at the 

physical layer 

Improved detection of 

eavesdropping attacks 

Increased detection 

rate by 20% 

Limited to physical 

layer security 

[4] Comprehensive analysis for Zigbee 

network-based IoT security 

Identified 

vulnerabilities in 

Zigbee networks 

Improved security 

protocols 

Specific to Zigbee 

networks 

[5] Survey on IoT firmware security Reviewed extraction 

techniques and 

vulnerability analysis 

frameworks 

Comprehensive 

survey results 

No experimental 

validation 

[6] Krill-based deep neural network stacked 

auto encoders 

Enhanced detection of 

cyber threats 

Achieved 93% 

accuracy 

High training 

complexity 

[7] Recurrent kernel convolutional neural 

network for intrusion detection 

Improved model 

accuracy and speed 

Achieved 91% 

detection accuracy 

High resource usage 

[8] Artificial neural network for smart 

farming security 

Enhanced detection of 

malicious activities in 

farming 

Achieved 89% 

detection rate 

Limited 

generalizability 

[9] AI-based trust framework for intrusion 

detection 

Improved trust and 

security in IoT systems 

Achieved 92% 

accuracy 

High implementation 

complexity 

[10] Combination of deep learning and self-

attention mechanism 

Enhanced smart home 

security 

Achieved 94% 

accuracy 

High computational 

requirements 

[11] Hybrid optimized learning model for 

intrusion classification 

Enhanced classification 

accuracy 

Achieved 93% 

detection accuracy 

High computational 

overhead 

[12] Kernel ELM and war strategy 

optimization for software defect 

prediction 

Improved defect 

prediction accuracy 

Achieved 87% 

accuracy 

Limited to software 

defects 

[13] Optimization algorithms for privacy-

preserving data disturbance 

Enhanced privacy and 

security in edge 

computing 

Achieved 

significant privacy 

gains 

High complexity 

[14] Quantum fruit fly optimization for 

fitness tracker security 

Enhanced security for 

fitness trackers 

Achieved 90% 

accuracy 

Specific to fitness 

trackers 

[15] Ensemble learning for smart 

environment security 

Improved intrusion 

detection 

Achieved 88% 

detection rate 

High resource 

requirements 

[16] Transfer learning model for intrusion 

detection in IoT 

Enhanced prediction 

accuracy 

Achieved 91% 

accuracy 

High training data 

requirements 
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[17] Fine-grained kernel access limitation Enhanced OS security 

for IoT systems 

Reduced attack 

surface 

significantly 

Implementation 

complexity 

[18] Trusted execution environment for IoT 

services 

Enhanced security for 

third-party services 

Improved service 

security 

High implementation 

cost 

[19] Jammer-assisted secure precoding for 

MIMO IoT networks 

Improved physical 

layer security 

Enhanced secrecy 

rate 

Specific to MIMO 

networks 

[20] NB-IoT-based remote SSH access Improved secure access 

to UAVs 

Enhanced security Limited to UAVs 

[21] Open-source TEE for IoT devices Enhanced security and 

isolation 

Improved security 

architecture 

Implementation 

challenges 

[22] Feature transformation-based 

fingerprint authentication 

Enhanced privacy 

protection 

Improved 

authentication 

accuracy 

High computational 

cost 

[23] Survey on vulnerability detection in IoT 

firmware 

Comprehensive review 

of firmware security 

Identified key 

vulnerabilities 

No experimental 

results 

[24] TEE for provenance auditing on edge 

devices 

Enhanced auditability 

and security 

Improved system 

reliability 

High implementation 

complexity 

[25] GPU-accelerated homomorphic 

encryption 

Enhanced encryption 

for IoT systems 

Improved 

encryption speed 

High hardware 

requirements 

[26] RF fingerprint recognition in low-SNR 

settings 

Improved security 

through RF recognition 

Enhanced detection 

accuracy 

Limited to RF 

environments 

[27] Runtime framework for trusted 

applications in ARM/FPGA systems 

Enhanced security for 

hybrid systems 

Improved security 

and performance 

High complexity 

[28] Hypervisor middleware for reliable IoT 

systems 

Improved system 

reliability 

Enhanced 

middleware 

security 

Implementation 

complexity 

[29] Micro-kernel approach for firmware 

updates 

Enhanced update 

security 

Improved firmware 

management 

High resource 

requirements 

[30] Secure hashing for sensor values Enhanced security at 

the source 

Improved data 

integrity 

High computational 

overhead 

This comprehensive review is a showcase for IoT security 

with its remarkable improvements through a variety of 

techniques or methodologies and their results. While each 

contributes to the general understanding of effective IoT 

environment protection, many have limitations that models 

proposed here address. The integration of Deep Dyna Q into 

VARMA GRU-based predictive analysis makes this model 

robust and efficient for IoT security, which is further 

evidenced by its performance in almost all metrics evaluated 

against the methods reviewed. Along this line of argument, 

the proposed model, with an overall accuracy of 97.8%, 

outperforms the highest reported accuracy of 95% by Geetha 

et al., hence better at intrusion detection. The model also 

reaches an FPR of 1.85% and an FNR of 1.35%, considerably 

improved over that of other methods in terms of FPR and 

FNR. The average response timestamp for the proposed 

model was also way faster, 120 ms, in comparison with the 

response times of 300 ms, 250 ms, and 350 ms observed for 

the other methods. Fast response capability is necessary to 

counter these threats before the exploitation of vulnerabilities 

across a variety of high-consequence scenarios. 

It is also indicated by the resource utilization metrics that the 

model is quite efficient: 25% CPU, 150 MB of memory, 

additional network overhead of 12 KB/s—each well below 

comparative methods. The high mitigation success rate of 

95% with an average mitigation timestamp of 180 ms and a 

very low user impact (on a scale of 1-10) of 2 presents a 

spotlight for the robust and user-friendly approach of the 

model toward threat mitigation. These results thus validate the 
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efficacy and efficiency of the proposed model for enhancing 

the security at the kernel level in IoT devices. In the future, 

more sophisticated machine learning algorithms and ensemble 

methods can be integrated to further reduce false positive and 

negative rates. Increasing the dataset size by including further 

diversified and complex IoT scenarios will improve its 

generalizability and robustness. Other significant 

developments in the area are real-time adaptive learning 

methodologies, blockchain technologies for securely logging 

events, and context-aware analysis. This paper is, therefore, 

also a timely move to ensure that the changing compliance of 

both regulatory as well as privacy standards would become 

practical. There is also the balance between security and 

usability, which comes through user-centered studies in order 

for implementations to get the right acceptance. Conclusion: 

The imperative need for stringent IoT security safeguards 

cannot be overemphasized, which is one important aspect as 

further supported according to the overview of the relevant 

recent literature submitted above. Although a lot has been 

done on this topic, the model proposed here offers a solution 

of high efficiency against the continuous challenges in IoT 

security. This approach ensures improved efficiency in terms 

of detection accuracy, response times, and usage of resources 

while being user-friendly. Such innovative approaches will 

have a place as the IoT landscape continues to further evolve 

in terms of preserving the integrity and security of 

interconnected systems. 

3. PROPOSED SYSTEM WORKFLOW 

3.1. Design of an augmented Cyber Attack Detection Model 

for securing IoT Kernels via Deep Dyna Q & VARMA 

GRU-based Predictive analysis 

This is a three-phase model for the IoT Kernal. The workflow 

is based on feature extraction, decision-making with 

reinforcement learning, and predictive analytics.  

3.1.1. Workflow: IoT Kernel Security and Threat Detection 

Phase 1: Feature Extraction 

Objective: Extract and pre-process relevant features from the 

IoT system. 

1. Input: Raw data from the IoT system (CPU usage, 

network traffic, sensor readings). 

2. Extract Features:  

• Collect and measure key features such as CPU usage, 

network traffic, and sensor data. 

• Ensure the extracted features reflect critical state 

information of the IoT system. 

3. Pre-process Features:  

• Normalize the extracted features (e.g., scaling, handling 

missing values). 

• Filter out noise and irrelevant data to keep only the 

necessary features. 

4. Create Feature Vector:  

• Combine the pre-processed features into a structured 

feature vector. 

• The feature vector should represent the current state of the 

IoT kernel. 

5. Feed to Model:  

• Feed the structured feature vector as input into the next 

phases of the model. 

Phase 2: Decision-Making with Deep Dyna Q (Reinforcement 

Learning) 

Objective: Use reinforcement learning to make intelligent 

security decisions. 

1. Input: Feature vector from Phase 1, current state of the 

system. 

2. Initialize Model:  

• Use the Deep Dyna Q algorithm, which combines real and 

simulated experiences. 

• Initialize Q-values and policy for security decision-

making. 

3. Decision Process:  

• Evaluate the current system state using the feature vector 

and make a decision (e.g., allow or block network traffic, 

or trigger an alert). 

• Apply a reward function that:  

▪ Rewards: States indicating secure and normal 

operations. 

▪ Penalizes: States with abnormal activity or potential 

security threats. 

4. Update Policy:  

• Continuously update the decision-making policy using the 

real-time feedback from the environment (i.e., system's 

response to actions taken). 

• Use simulated experiences to augment learning in addition 

to real-world experiences. 

5. Iterative Learning:  

• Repeat the process iteratively to refine the policy over 

time for optimal security management. 
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• The model should balance between mitigating security 

threats and ensuring system performance is not overly 

degraded. 

Phase 3: Predictive Analytics with VARMA-GRU Models 

Objective: Predict future states of the IoT kernel and trigger 

actions if a threat is detected. 

1. Input: Time-series data (from Phase 1 and Phase 2 

outputs). 

2. Build VARMA-GRU Model:  

• Use the VARMA (Vector Auto Regressive Moving 

Average) model to capture linear dependencies in the 

time-series data. 

• Use the GRU (Gated Recurrent Unit) model to capture 

non-linear trends and adapt to system dynamics. 

3. Predict Future States:  

• Use the combined VARMA-GRU model to predict the 

future state of the IoT kernel (e.g., CPU usage, network 

traffic, or sensor behaviour). 

4. Compare to Security Rules:  

• Compare the predicted future state to predefined security 

rules or thresholds. 

• If any of the predicted states violate these security rules 

(e.g., indicate a possible threat or anomaly), trigger an 

alert. 

5. Mitigation:  

• Apply appropriate mitigation actions based on the 

triggered rules (e.g., isolate suspicious devices, block 

certain network traffic, or trigger a security protocol). 

The very first phase of this algorithm involves feature 

extraction from CPU usage up to network traffic and sensor 

readings. The extracted features are therefore preprocessed, 

structured into a feature vector, and used to feed the model 

with learning inputs. The extracted features are very crucial so 

that the model covers all critical state information while 

removing only noise or unwanted data. The Deep Dyna Q 

reinforcement learning algorithm is used for making 

intelligent security decisions in the second phase. Deep Dyna 

Q, as opposed to traditional Q-learning, uses real as well as 

simulated experiences to optimize dynamic decision-making. 

The model includes a reward function that encourages secure 

states and penalizes any anomalous activities that might be 

indicative of a security threat. The reinforcement model 

improves its policy in real time through iterative learning 

processes to detect and mitigate threats without causing 

unwarranted interventions that could degrade system 

performance. Predictive analytics utilizes VARMA-GRU 

models to predict the future state of the IoT kernel in the final 

phase. The VARMA model captures linear dependencies in 

time-series data, whereas the GRU network captures the non-

linear trend, which would provide a proper adaptive 

threatening prediction. If such a predicted state violates 

predefined security rules, mitigation actions are applied by the 

appropriate rule engine for such a triggering. This architecture 

significantly improves threat detection accuracy, and the pro-

active defense mechanism can work to counter emerging 

threats in the setup of IoT. This section describes a design for 

an augmented pattern evaluation model to secure IoT kernels 

using deep Dyna Q and VARMA GRU-based predictive 

analysis, which would allow the overcoming of the low 

efficiency and high complexity issues in existing models. 

First, according to figure 1, in the context of IoT kernel 

security, this very important step in creating a good feature 

vector is feature extraction. This will lay down the basis for 

training the Deep Dyna Q algorithm from IoT kernel data. 

The process of feature extraction involves the analysis of data 

from the IoT kernel for critical attributes which capture the 

state and behavior of the system underlying it. In this process, 

statistical techniques and domain knowledge are used to 

ensure that the feature vector is complete and representative. 

Let X(t) be the state vector of the IoT kernel at timestamp t 

sets. Extracting features from it starts with gathering raw data 

D(t) from the kernel, which contains parameters such as the 

amount of CPU in use, memory consumption, network traffic, 

and sensor readings. Equation (1) processes the raw data to 

remove noise and normalize the values, returning a cleaned 

dataset, D′(t), 

𝐷′(𝑡) = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑖𝑠𝑒(𝐷(𝑡)))         (1) 

The computation of statistical features from cleaned dataset 

samples follows. Let these be the mean, μ variance, 𝜎2 , 

skewness, γ1, and kurtosis, γ2, of time-series data samples. 

Statistical moments capture succinctly an excellent summary 

of the distribution and the shape of data, capturing essential 

patterns via equations (2, 3, 4, & 5): 

𝜇𝑖 =
1

𝑇
∑ 𝐷𝑖′(𝑡)

𝑇

𝑡=1

                                                             (2) 

𝜎𝑖2 =
1

𝑇 − 1
∑(𝐷𝑖′(𝑡) − 𝜇𝑖)2                                    (3)

𝑇

𝑡=1

 

𝛾(1, 𝑖) =
1

𝑇
∑

(𝐷𝑖′(𝑡) − 𝜇𝑖)3

𝜎𝑖3

𝑇

𝑡=1

                                     (4) 

𝛾(2, 𝑖) =
1

𝑇
∑

(𝐷𝑖′(𝑡) − 𝜇𝑖)4

𝜎𝑖4

𝑇

𝑡=1

− 3                              (5) 
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The statistical features computed above form the preliminary 

feature vector F(t), which can be further enhanced by 

incorporating domain knowledge samples. This may include 

certain patterns of security breaches, for example, sudden 

spikes in network traffic or some other suspicious changes in 

sensor readings. Further features, Fd(t), capturing such 

security-relevant patterns can be introduced by domain 

experts using equation (6). 

𝐹(𝑡) = [𝜇𝑖, 𝜎𝑖2, 𝛾1, 𝑖, 𝛾2, 𝑖, 𝐹𝑑(𝑡)]                                  (6) 

This feature vector, F(t), trains the Deep Dyna Q algorithm 

process. Deep Dyna Q is a reinforcement learning approach 

that combines Q-learning with a model-based planning 

component. The objective of this algorithm is to maximize a 

reward signal R(t), designed to reflect the security state of the 

IoT kernel. The Q-learning update rule is given via equation 

(7), 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)

+ 𝛼 (𝑅(𝑡) + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎))                                          (7) 

Where s is the current state, a is the action taken, α the 

learning rate, γ the discount factor, and s′ the next state for 

this process. In the definition of the reward signal R(t), it is 

according to the security evaluation of the kernel state, giving 

higher rewards to those states that are considered secure for 

this process. Deep Dyna-Q's model-based component 

involves learning a transition model, T'(s,a), and reward 

model, R'(s,a), predicting the next state and reward 

respectively. These models are trained on the basis of feature 

vector F(t) and observed transitions, and rewards. The 

transition model is updated using supervised learning 

techniques via equations (8 & 9). 

𝑇′(𝑠, 𝑎) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇’(𝑠, 𝑎), 𝐹(𝑡), 𝑠′)              (8) 

𝑅’(𝑠, 𝑎) ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑅’(𝑠, 𝑎), 𝐹(𝑡), 𝑅(𝑡))         (9) 

These models are used by the Deep Dyna Q algorithm in 

simulating future trajectories for the refinement of its policy 

and therefore the decision-making capabilities regarding 

securing an IoT kernel. The approach was chosen for its 

ability to conflate model-free and model-based reinforcement 

learning into a trade-off between exploration and exploitation. 

Deep Dyna Q enables real-time intelligent decisions of a 

system while continuing to improve upon its performance 

through the use of simulated experiences. These feed very 

well into the VARMA-GRU-based predictive analysis that 

provides an accurate forecast of the state of the IoT kernel to 

enable proactive security measures. The above methods—

pairing this solution—offer a robust solution to dynamic and 

complex security challenges of IoT devices and deployments. 

Basically, the algorithm for predictive analysis using 

VARMA GRU foretells the future status from an IoT kernel 

device concerning the current state and actions passed through 

the Deep Dyna Q algorithm. To be specific, this predictive 

model has integrated strengths from a vector autoregressive 

moving average model with those of the gated recurrent unit 

in modeling linear dependencies and complex temporal 

dynamics on data samples. It begins by employing the 

VARMA model in modeling the linear relationships between 

the multivariate time-series data samples. Let X(t) be the state 

vector of the IoT kernel at timestamp, t sets. The VARMA 

model is defined via equation (10). 

𝑋(𝑡) = ∑ 𝐴𝑖𝑋(𝑡 − 𝑖)

𝑝

𝑖=1

+ ∑ 𝐵𝑗𝜖(𝑡 − 𝑗)
𝑞

𝑗=1
+ 𝜖(𝑡)        (10) 

Where Ai and Bj are coefficient matrices, and p and q are the 

orders of the autoregressive and moving average components 

respectively; is a white noise vector for this process. The 

VARMA model captures linear dependencies in state vector 

X(t), which can be used to provide a baseline prediction. 

Paper represent the residuals from the VARMA model via 

equation (11). 

𝑅(𝑡) = 𝑋(𝑡) − 𝑋′𝑉𝐴𝑅𝑀𝐴(𝑡)                                              (11) 

These residuals are fed into the GRU network. The GRU is a 

type of recurrent neural network that may model challenging 

time patterns and capture long-term dependencies in data 

samples very well. It has two gates: a reset gate rt and an 

update gate zt, working together to mediate the flow of 

information across the network. The reset gate is defined via 

equation (12), 

𝑟𝑡 = 𝜎(𝑊𝑟𝑅(𝑡) + 𝑈𝑟ℎ(𝑡 − 1) + 𝑏𝑟)                               (12) 

Where, Wr and Ur are weight matrices, h(t−1) is the hidden 

state from the previous time stamp, and br is a bias vector for 

this process. Equation (13) defines the update gate as, 

𝑧𝑡 = 𝜎(𝑊𝑧𝑅(𝑡) + 𝑈𝑧ℎ(𝑡 − 1) + 𝑏𝑧)                               (13) 

The candidate hidden state h~t is then computed via equation 

(14). 

ℎ~𝑡 = 𝑡𝑎𝑛 ℎ(𝑊ℎ𝑅(𝑡) + 𝑟𝑡 ⊙ 𝑈ℎℎ(𝑡 − 1) + 𝑏ℎ)       (14) 

Where, ⊙ represents the element-wise multiplication for this 

process. The final hidden state ht is obtained by combining 

the previous hidden state and the candidate hidden state, 

modulated by the update gate via equation (15). 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ(𝑡 − 1) + 𝑧𝑡 ⊙ ℎ~𝑡                   (15) 

The output of the GRU network, R’(t), represents the non-

linear residual prediction, which is then combined with the 

VARMA prediction to obtain the final forecast via equation 

(16). 
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𝑋′(𝑡) = 𝑋′𝑉𝐴𝑅𝑀𝐴(𝑡) + 𝑅′(𝑡)                                        (16) 

VARMA-GRU was selected for the predictive analysis 

algorithm since it is capable of picking up both linear and 

nonlinear dependencies in samples of IoT kernel state data. 

The linear elements will be treated by the VARMA model, 

while complicated patterns of time series trends and 

nonlinearities will be captured by the GRU network, which is 

a complementary combination to ensure the robustness and 

accuracy of the prediction for the future state of the IoT 

kernel. As explained in figure 2, the last part of the proposed 

model is the use of a rule engine to check the predicted state 

of the IoT kernel against a set of predefined security rules. 

 

Figure 1 Model Architecture of the Proposed Classification 

Process 

An evaluation process of this nature would automatically 

ensure that any deviated conditions from this expected secure 

state are detected in a very short period of time and mitigation 

actions take place to render any threats null. The rule engine 

is what comprises the core part of the system, interpreting this 

predicted state X^(t) and enforcing the response as per the 

security policies laid out. The working of the rule engine 

involves a comparison of the forecasted state vector X'(t) 

against a set of security rules, R, in the process. Any rule ri∈R 

is specified by a condition Ci and an action Ai in the process. 

The condition Ci details a predicate on the state vector, while 

the action Ai details the mitigation strategy that is to be 

executed whenever Ci is satisfied, represented via equation 

(17). 

𝑟𝑖: 𝐶𝑖(𝑋′(𝑡))    ⟹   𝐴𝑖                                                  (17) 

These conditions Ci are most often expressed as inequalities 

or thresholds on the elements ofX' (t) in the process. For 

example, a condition could check the CPU usage to see if its 

use goes above a predetermined threshold and then declare an 

event for an eventual DoS. Then the action Ai may 

correspond to instructions to throttle back the CPU usage or 

isolate the process. The assessment can be mathematically 

expressed below, let R(t) be the regulations set violated by the 

expected state at timestamp t through equation (18), where, 

𝑅(𝑡) = { 𝑟𝑖 ∈ 𝑅 ∣∣ 𝐶𝑖(𝑋′(𝑡)) = 𝑇𝑟𝑢𝑒 }                  (18) 

In the process, for every violated rule ri∈R(t), perform the 

corresponding action Ai. Now, finally, the mitigation strategy 

A(t) can be defined overall as a combination of the actions for 

all violated rules, represented via equation (19). 

𝐴(𝑡) = ⋃𝑟𝑖 ∈ 𝑅(𝑡)                                                    (19) 

The design is such that the rule engine becomes flexible and 

extensible. During the process, security administrators could 

go on to define new rules against newly emerging threats. 

This adaptability is very important in the dynamic landscape 

of IoT security, wherein at times the threat profile can change 

very fast. It is a justified interpretability and facility of 

implementation operations that support a rule-based approach. 

Very clear and understandable security policies are offered by 

rule-based systems, very important for compliance and 

auditing. Moreover, it makes the management and update of 

security rules easier in front of any new threats by separating 

the condition from the actions. To illustrate the design of the 

rule engine, consider the following sample rules presented in 

Table 2. 

Table 2 Sample Rules 

Rule Name Rule Details Impact on Predictive 

Analysis 

High CPU 

Usage 

If CPU usage 

xcpu(t)>θ , then 

throttle CPU 

Prevents denial-of-

service attacks 

Memory 

Leak 

If memory usage 

xmem(t) increases 

continuously, alert 

Detects and mitigates 

memory leaks 
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Network 

Anomaly 

If network traffic 

xnet(t) exceeds 

θnet, isolate access 

Prevents data 

exfiltration or 

network-based 

attacks 

Unauthorized 

Access 

If unauthorized 

access detected 

xauth(t), block 

access 

Prevents 

unauthorized access 

and potential 

breaches 

Sensor 

Anomaly 

If sensor reading 

xsens(t) deviates 

from normal 

ranges 

Ensures data integrity 

and accuracy of 

sensor readings 

Power Surge If power 

consumption 

xpower(t)>θpower, 

shut down 

Protects against 

potential hardware 

damage 

 

 

Figure 2 Overall Flow of the Proposed Classification Process 

The rule-engine evaluation process will thus be based on 

computing the state variable derivatives and integrals to 

observe any trends and anomalies. For example, to identify a 

memory leak, the rule engine could utilize equation 20 for the 

derivative of memory usage with respect to temporal instance-

sets. 

𝑑𝑥𝑚𝑒𝑚(𝑡)

𝑑𝑡
> 0                                                           (20) 

This rule detects a continuous increase of memory usage and 

triggers an alert. In the same way, equation 21 expresses the 

integral of network traffic over some period of time as an 

indicator of abnormal patterns, 

∫ 𝑥𝑛𝑒𝑡(𝜏) 𝑑𝜏
𝑡

𝑡0

> 𝜃(𝑛𝑒𝑡 𝑡𝑜𝑡𝑎𝑙)                               (21) 

Where, θ(net total) is threshold which denotes the total 

network traffic which can be accepted by any parameter. As 

the rule engine embeds these analysis techniques, the system 

can evolve to detect complicated patterns and respond to 

them. Another key equation would be for the analysis of 

deviation of sensor readings from the expected range. Let 

μsens and σsens be the mean and standard deviation of normal 

sensor readings. Using equation 22, a rule triggering, when a 

sensor reading xsens(t) is outside of bounds, can be defined to 

initiate an action that can be taken. 

∣ 𝑥𝑠𝑒𝑛𝑠(𝑡) − 𝜇𝑠𝑒𝑛𝑠 ∣> 𝑘𝜎𝑠𝑒𝑛𝑠                            (22) 

Here, l is a constant that defines the sensitivity of the rules. 

The information and knowledge based on these analytics 

techniques are incorporated within the foresight predicted 

state, marked as X'(t), to yield a strong framework where 

security threats and their mitigations can be evaluated. In this 

form, predictive analysis and rule-based evaluation are 

blended to provide security assurance for being able to predict 

and counteract potential security problems that might 

jeopardize the integrity and safety of IoT deployments. We 

now consider the efficiency of the model in terms of several 

metrics and compare its performance under varied scenarios. 

4. RESULTS AND DISCUSSIONS 

The testbed of the model proposed here for the augmented 

pattern evaluation model to secure IoT kernels with the help 

of Deep Dyna Q and VARMA-based predictive analysis has 

been designed by placing much emphasis on making the 

assessment of the model's performance be as comprehensive 

as possible under varying conditions. This specific experiment 

emulated a heterogeneous IoT environment against a common 

smart home scenario, comprising a mix of sensors, actuators, 

and communication devices/deployments. These devices 

included temperature and humidity sensors, smart light bulbs, 

security cameras, and smart locks—all interfaced to an IoT 

gateway. The gateway had a quad-core board based on the 

ARM Cortex-A53 processor, running 2GB RAM with a 

lightweight Linux-based IoT kernel. Each sensor was 

designed to report readings every second for data collection 

that, in the end, delivered a continuous stream of data 

samples. This dataset was further enriched with simulated 

attack scenarios such as DoS attacks against the gateway, 

unauthorized access, and sensor spoofing in testing the 
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developed SM for its robustness. Datasets used in this study 

will come from the IoT-23 dataset, a well-known repository 

managed by the Stratosphere Laboratory, which captures real-

world samples of the data traffic of IoT networks. This dataset 

includes 20 different IoT devices, for instance, smart plugs, 

security cameras, and sensors, that work under both benign 

and malicious scenarios to provide a detailed view of regular 

IoT network activity. Labeled instances of different attacks, 

like DoS, MitM, data exfiltration, etc., are available in this 

dataset, and henceforth, robust training and testing of security 

models could be ensured. The process of data collection 

continued for a long time, ensuring that the patterns and 

behaviors were rich. Every data record in the data set has 

timestamps, source-destination IP addresses, port numbers, 

types of protocols used, and payload sizes, making them quite 

a reservoir for detailed analysis and feature extraction. The 

richness and diversity of data within the IoT-23 dataset make 

it a perfect ground to test the efficacy of the proposed 

augmented pattern evaluation model in detecting and 

mitigating security threats within IoT environments. 

Hybrid reinforcement learning and predictive analytics may 

explain the superior performance of the proposed model. 

These can make real-time decisions, along with proactive 

threat detection. Other conventional security models operate 

in static, rule-based detection methods, whereas Deep Dyna Q 

adjusts evolving threats by learning the optimal security 

policies from observed and simulated experiences. Such dual 

reinforcement would ensure the system remains robust against 

novel attack patterns while being highly efficient in resource-

constrained IoT environments. It further uses the VARMA-

GRU predictive analysis, which increases the model's ability 

to identify threats before they occur, thereby providing 

considerable false positive and negative reduction. The other 

reason that makes the result this excellent is the improved 

feature extraction process with reduced computational 

overhead, which ensures that only relevant kernel parameters 

are analyzed. The model can predict future kernel states, and 

security interventions can be executed preemptively, which 

minimizes system disruptions and improves response delays. 

Comparative evaluations show that the proposed model 

achieves a much lower false positive rate of 1.85% and false 

negative rate of 1.35% as compared to other approaches while 

the overall detection accuracy is maintained at 97.8%. The 

average response time of the model is 120 ms; thus, this 

approach deals with security breaches before they grow 

further. The model has lightweight design which helps in 

optimization of resource usage. It consumes only 25% CPU 

and 150 MB of memory sets. It takes 12 KB/s in terms of 

network overheads. This means the model will be scalable 

and deployable in many IoT settings without affecting the 

performance of the devices involved in process. The rule 

engine is thus able to adapt well to new security policies, 

making the system highly resilient to emerging cybersecurity 

threats. These results collectively validate the effectiveness of 

the proposed model in securing IoT kernels with better 

accuracy, efficiency, and adaptability compared to existing 

solutions. 

The input parameters for the experimental setup were thus 

fine-tuned to reflect the running conditions most likely to be 

in effect in the real scenario. For instance, the threshold CPU 

usage rate for potential DoS attacks was setup to initiate alerts 

at 85%, with a warning of 75% capacity setup in memory 

usage thresholds while monitoring θmem\theta_{mem}θmem. 

Network traffic thresholds of 100 Mbps were setup in 

θnet\theta_{net}θnet for evidencing flows of abnormal data 

entailing an attempted exfiltration of data. We initialized the 

learning rate for the Deep Dyna Q algorithm at 0.01, the 

discount factor at 0.95, and the exploration rate from 1 down 

to 0.01 over 10,000 episodes. In the case described, the 

VARMA model was set with orders three for both 

autoregressive and moving average components, while the 

GRU network was set up with 128 hidden units. The training 

was done over 50 epochs with a batch size of 64. The samples 

within the dataset used to train and validate the model contain 

1,000 hours of normal operation data, whereas 100 hours have 

data capturing a myriad of attack scenarios. Model 

performance was thereby benchmarked by the accuracy of 

prediction of the future state of the IoT kernel and the efficacy 

of threat mitigated security threats detected; results from this 

exercise show an incremented model with regards to either of 

the two setups presented. Experimental results clearly 

demonstrate that the augmented pattern evaluation model 

proposed herein is, in fact, an effective method to secure IoT 

kernels through comprehensive assessment against multiple 

contextual datasets. The results obtained from this model are 

compared with three existing methods, represented as [3], [8], 

and [15], using different metrics. A detailed comparison of 

the results obtained from these methods is drawn in the 

following tables. 

Table 3 Detection Accuracy Comparison 

Method Normal Data 

Accuracy 

(%) 

Attack Data 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

Proposed 98.5 97.2 97.8 

Method [3] 92.3 89.5 90.9 

Method [8] 94.1 91.8 92.9 

Method 

[15] 

90.8 88.2 89.5 

The proposed model in Table 3 was found to be more accurate 

in detecting normal and attack data samples. The total 

accuracy stands at 97.8%, showing a massive improvement 

over methods [3], [8], and [15] with accuracies of 90.9%, 
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92.9%, and 89.5%, respectively. This goes on to prove that 

the given model has very high accuracy in identifying benign 

and malicious activities. Figure 3 shows graphical 

representation of Detection Accuracy Comparison of table 3. 

 

Figure 3 Detection Accuracy Comparisons 

Table 4 False Positive Rate (FPR) Comparison 

Method Normal Data 

FPR (%) 

Attack Data 

FPR (%) 

Overall 

FPR (%) 

Proposed 1.2 2.5 1.85 

Method [3] 7.6 10.4 9.0 

Method [8] 5.8 8.1 6.95 

Method 

[15] 

9.1 11.8 10.45 

Table 4 illustrates the results for various methods with respect 

to false positive rates. The proposed model gives an FPR of 

1.85%, way below methods [3] with 9.0%, methods [8] with 

6.95%, and methods [15] with 10.45%. This reduction in false 

positives portrays that the model reduces false alerts, hence 

ensuring operational efficiency and trustworthiness within IoT 

systems. Figure 4 represents graph based False positive Rate 

(FPR) Comparison. 

 

Figure 4 False Positive Rate (FPR) Comparisons 

Table 5 False Negative Rate (FNR) Comparison 

Method Normal Data 

FNR (%) 

Attack Data 

FNR (%) 

Overall 

FNR (%) 

Proposed 0.9 1.8 1.35 

Method [3] 5.3 7.2 6.25 

Method [8] 4.1 5.7 4.9 

Method 

[15] 

6.8 9.1 7.95 

It can be seen that, according to Table 5, the proposed model 

also ensures that it has the lowest FNR of 1.35% against 

methods [3], [8], and [15] with corresponding FNRs of 

6.25%, 4.9%, and 7.95%, respectively. Here, figure 5 depicts 

False Negative Rate (FNR) Comparison. A lower FNR by the 

proposed model ensures that very few security threats pass 

undetected, thereby improving the security posture of the IoT 

system. 

 

Figure 5 False Negative Rate (FNR) Comparisons 

Combining all the values and computing for the average, the 

proposed model shows a response time of 120 ms, maximum 

of 200 ms, and minimum of 90 ms, as per Table 6 in details. 

This is significantly higher compared to methods [3], [8] and 

[15] that report an average response time of 300 ms, 250 ms, 

and 350 ms, respectively. Faster security response allows 

detection and mitigation of threats in IoT timely for different 

scenarios. Figure 6 describe Response timestamp Comparison 

graphically. 

Table 6 Response Timestamp Comparison 

Method Average 

Response 

timestamp 

(ms) 

Maximum 

Response 

timestamp (ms) 

Minimum 

Response 

timestamp 

(ms) 

Proposed 120 200 90 

Method [3] 300 450 250 

Method [8] 250 400 210 

Method [15] 350 500 290 
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Figure 6 Response Timestamp Comparisons 

Table 7 Resource Utilization Comparison 

Method CPU 

Usage 

(%) 

Memory 

Usage 

(MB) 

Network 

Overhead (KB/s) 

Proposed 25 150 12 

Method [3] 45 220 25 

Method [8] 40 200 20 

Method [15] 50 240 30 

Table 7 outlines the resource utilization metrics of the 

different methods. In comparison, the proposed model 

represents a huge gain in terms of reduced CPU, memory, and 

network overhead with respect to methods [3], [8], and [15]. 

Efficient use of resources is of paramount interest to the 

scalability and sustainability of IoT security solutions, mostly 

when working in resource-constrained scenarios. 

 

Figure 7 Resource Utilization Comparisons 

Table 8 Mitigation Effectiveness Comparison 

Method Mitigation 

Success 

Rate (%) 

Average 

Mitigation 

timestamp (ms) 

User 

Impact  

(Scale 1-

10) 

Proposed 95 180 2 

Method [3] 85 300 5 

Method [8] 88 250 4 

Method [15] 80 350 6 

According to Table 8, the proposed model shows a 95% high 

mitigation success rate, with an average mitigation timestamp 

of only 180 ms and a minimal impact of 2 on the scale from 

1-10, thereby demonstrating less user impact. In the case of 

methods [3], [8], and [15], lower success rates are found to be 

85%, 88%, and 80%, respectively, at higher mitigation times 

and greater user impact.  

These results demonstrate the effectiveness of the proposed 

model in detecting security threats and mitigating them 

efficiently, without affecting the user experience level. On the 

whole, these results confirm that the proposed model is much 

better compared to the state-of-the-art methods in terms of 

detection accuracy, false positive and negative rates, response 

time, resource utilization, and mitigation effectiveness, thus 

delivering an efficient and robust solution to secure IoT 

kernels. We then discuss an elaborate practical use case for 

the proposed model to help readers further understand the 

whole process. 

4.1. Practical Use Case Scenario Analysis 

A working example with sample values and other data 

samples is built to demonstrate the effectiveness of the 

proposed model. Various sensors and devices, like 

temperature sensors, smart lights, security cameras, etc., are 

situated within the IoT environment and continuously 

generate streams of data samples. This kind of data is fed 

through feature extraction, VARMA GRU prediction, and 

rule engine evaluation to obtain validated final outputs.  

First, there is feature extraction from the raw data obtained 

from the IoT devices and deployments. The features within 

this framework include CPU usage, memory usage, network 

traffic, and sensor readings. After that, these features are used 

in training the Deep Dyna Q algorithm, and this algorithm 

will learn how to make decisions based on the maximization 

of a reward signal.  

Table 9 shows the extracted features on various parameters 

and its normalized feature vector. 
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Table 9 Feature Extraction with Deep Dyna Q Net 

Time (s) CPU Usage (%) Memory Usage 

(MB) 

Network Traffic 

(KB/s) 

Temp Sensor 

(°C) 

Feature Vector (Normalized) 

0 25 150 10 22.5 [0.25, 0.15, 0.10, 0.225] 

1 30 160 12 22.7 [0.30, 0.16, 0.12, 0.227] 

2 35 170 15 23.0 [0.35, 0.17, 0.15, 0.230] 

3 28 155 11 22.8 [0.28, 0.155, 0.11, 0.228] 

4 32 165 14 23.2 [0.32, 0.165, 0.14, 0.232] 

Then, the extracted features are normalized to provide the 

feature vector input to the deep Dyna Q network for further 

updating of final Q Values regarding the IoT environment. 

The Q values of the network are updated based on the 

experienced rewards and transitions to learn an optimal policy 

for securing the IoT environment. It cannot make an inference 

about the future with respect to the state of the IoT kernel and 

the actions that the Deep Dyna Q might take. Here, use 

VARMA GRU instead. The VARMA model picks up linear 

features, and the GRU network realizes the non-linear 

patterns. Here, Table 10 summaries VARMA GRU based 

predicted values. 

Table 10 VARMA GRU Prediction 

Time (s) Predicted CPU 

Usage (%) 

Predicted Memory 

Usage (MB) 

Predicted Network Traffic 

(KB/s) 

Predicted Temp 

Sensor(°C) 

5 30 160 13 23.0 

6 34 170 16 23.3 

7 31 165 14 23.1 

8 36 175 18 23.5 

9 33 168 15 23.2 

These predicted values present the system with an 

anticipatory view on the state of the IoT kernel to prepare 

against such potential security problems by checking these 

predictions against predefined security rules. Table 11 depicts 

Rule Engine Evaluation. The rule engine evaluates the 

predicted state against a set of security rules. Should any rules 

turn out to be violated, corresponding mitigation actions will 

be triggered to ensure security within the IoT environment. 

Table 11 Rule Engine Evaluation 

Rule Name Condition Predicted State Action 

High CPU Usage Predicted CPU Usage > 80% No None 

Memory Leak Continuous increase in Predicted Memory Usage No None 

Network Anomaly Predicted Network Traffic > 100 KB/s No None 

Unauthorized Access Unauthorized access detected No None 

Sensor Anomaly Predicted Temp Sensor reading deviates from normal 

range (20°C - 25°C) 

No None 

Power Surge Predicted Power Consumption > threshold No None 

The rule engine checks that none of the security rules are 

violated by the predicted state: the system is still secure, so no 

useless mitigations will raise false alarms. In the end, the 

validated outputs will present a complete landscape of the 

status of the system, guaranteeing that the IoT kernel is 

working securely, inclusive of actions executed based on the 

rule engine evaluation process. 

Table 12 displays Validated final output values and its action 

which show the proposed model is effective in sustaining the 
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security of the IoT environment. This is because it predicts 

and evaluates the state to make sure that mitigation of threats 

to the general security is done before their effect is felt. 

Results indicated the approach to be robust and reliable, hence 

its practical application in securing IoT kernels. 

Table 12 Validated Final Outputs 

Time (s) CPU Usage 

(%) 

Memory Usage 

(MB) 

Network Traffic 

(KB/s) 

Temp Sensor (°C) Security Status Mitigation 

Action 

5 30 160 13 23.0 Secure None 

6 34 170 16 23.3 Secure None 

7 31 165 14 23.1 Secure None 

8 36 175 18 23.5 Secure None 

9 33 168 15 23.2 Secure None 

5. CONCLUSION AND FUTURE SCOPE 

An integrated Deep Dyna Q, VARMA, and GRU-based 

predictive analysis of the proposed augmented pattern 

evaluation model is shown herein to be a very effective 

technique in securing the IoT kernels. For various metrics, the 

model had shown top effectiveness through the 

comprehensive experimental setup of heterogeneous IoT 

environments. This feature extraction process ensured very 

good normalization and condensation of the raw data into 

meaningful vectors, allowing the Deep Dyna Q network to 

optimize decision-making with very high accuracy, above 

97.8%. This is compared to other methods found in works [3, 

8, 15], which provided respective overall accuracies of 90.9%, 

92.9%, and 89.5%; therefore, better detection accuracy was 

found with this model. The VARMA GRU model provided an 

accurate prediction for the future state, which is very useful 

for proactive measures. The proposed model has an FPR = 

1.85 and FNR = 1.35, while it shows a lot of improvement 

over the methods [3], [8], and [15]. The proposed model 

achieved an average response timestamp of 120 ms, which is 

much faster compared to the methods in [3], [8], and [15] 

taking 300 ms, 250 ms, and 350 ms, respectively. Such faster 

response becomes quite critical to mitigate the threat before 

the exploitation of vulnerabilities in various scenarios. 

Resource use metrics unveiled an efficient model, with only 

25% of CPU utilized, 150 MB of memory being used, and 

network overhead being at just 12 KB/s, all way below the 

competitive methods. The mitigation success rate was 95% 

with an average mitigation timestamp of 180 ms and almost 

zero user impact, which rates 2 on a scale of 1-10, underlining 

the robustness and user-friendliness of the model in threat 

mitigation. All these results together confirm the effectiveness 

and efficiency of the model proposed for enhancing IoT 

kernel security operations. 

5.1. Future Scope 

Although the proposed model has already shown betterment 

in the security of the IoT kernel, there are several future 

research directions for improving its capability. One such 

possible next step involves the use of different classes of 

advanced ensemble-based algorithms from the machine 

learning area to further reduce the rate of false positives and 

negatives. The generalizability and robustness of the model 

can be improved by expanding the dataset to cover more 

diverse and complex IoT scenarios. It will also be so that 

future work or research includes impactful techniques for 

adaptive learning in order for the model to keep learning with 

new data and therefore keep itself ahead of the new threats. 

Another area for possible research would be the use of 

blockchain technology to offer secure and immutable logging 

of the IoT's activities, which would increase even further the 

level of transparency and traceability in the events related to 

security. This would allow for advanced insights into the 

dynamics of IoT ecosystems through developing more 

comprehensive sets of security rules while refining the rule 

engine to include context-aware and behavior-based analysis. 

The other potential area to be studied is the scalability of the 

proposed model in large-scale IoT deployments and 

interoperability with the different IoT platforms and 

standards. The practical adoption of the model needs to be in 

conformance with the standards on regulation and privacy that 

keep on evolving. Finally, user-centric studies intended to 

evaluate the impact of security measures on user experience 

and to devise strategies to balance security and usability will 

be of immense help in gaining wide acceptance and 

implementation operations. These future directions will 

enhance not only this current model but also, more 

significantly, the wider field of IoT security process. 
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