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Abstract – Recently, the Internet of Vehicles (IoV) technology 

has played a pivotal role in enhancing transportation efficiency 

and safety. In this context, high-density vehicles generate more 

sensitive heterogeneous data, increasing privacy concerns in 

secure IoV data sharing. Federated Learning (FL) and Split 

Learning (SL) are trending paradigms of collaborative learning 

that facilitate potential solutions to privacy and heterogeneous 

data concerns. Thus, developing a privacy-preserving 

collaborative learning strategy is crucial for improving 

performance. This paper introduces a novel Privacy-Preserving 

Federated and Adaptive Split Learning (PPFedSL) strategy, 

enabling secure and efficient data sharing for IoV in smart city 

environments. This model integrates adaptive SL and FL by 

establishing a dual-tier privacy-preserved data-sharing strategy. 

Exploiting lightweight and hybrid cryptographic algorithms 

across different tiers ensures security and efficiency in data 

sharing across edge and cloud infrastructures without imposing 

significant computational overhead. This approach has designed 

two phases: privacy-preserving SL-enabled vehicle-edge 

collaboration and privacy-preserving FL-enabled edge-cloud 

collaboration. The proposed strategy effectively addresses 

latency constraints by delegating emergency decision-making at 

the edge level, where data is processed close to the IoV devices. 

Edges can inspect and respond to pressing data streams in real-

time and guarantee timely interventions for latency-sensitive 

traffic management and collision avoidance scenarios. Finally, 

the experimental results demonstrate the efficiency of this 

proposed PPFedSL. The PPFedSL enhances the robustness 

efficiency by 93.2% and learning accuracy by 98.4% with high 

privacy preservation and heterogeneous data handling. 

Index Terms – Smart City, Internet of Vehicles (IoVs), Split 

Learning (SL), Federated Learning (FL), Dual-tier Security, 

Privacy Preservation, Cryptography Primitives, Secure 

Collaborative Data Sharing. 

1. INTRODUCTION 

The transformation of smart cities with technological 

breakthroughs plays a pivotal role in urban transportation 

development in which the Internet of Things (IoT) converges 

to create a more secure, efficient, and sustainable urban 

communication environment. Thus, the IoT is the key pillar of 

this transformation, enabling a promising revolution in 

transportation systems by enabling seamless communication 

and data sharing among network entities [1] [2]. However, as 

intelligent vehicles equipped with smart sensors, cameras, and 

other data-generating devices generate massive data, this 

abundance of sensitive data poses key challenges to security 

and privacy [3]. Effective collection and inspection of vehicle 

data holds immense potential in enhancing road safety and 

optimizing vehicle traffic flows, ultimately enhancing 

transportation efficiency.  

However, it remains paramount that data security with user 

information privacy, such as vehicle location, driving 

patterns, and vehicle diagnostics, are critical for successful 
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deployment [4]. Traditional secure data-sharing approaches 

often entail vehicle information in centralized cloud servers, 

leading to a single point of failure, potential security breaches, 

and privacy violations [5]. FL-based security solutions 

effectively address these challenges by contributing a 

decentralized solution that enhances data security and user 

privacy in IoV-enabled smart cities. 

A special form of privacy-preserving machine learning model, 

FL is a promising approach to enable distributed customized 

learning models at edge vehicles without sharing the raw 

information of users to the central server [6]. Aggregating 

local model updates of different edges improves FL model 

accuracy and promotes collaborative learning through a global 

model that is retrained independently across edges and 

vehicles [7]. However, the FL poses significant challenges 

while implementing it with IoV secure data sharing [8]. 

Firstly, although the FL preserves the data privacy of IoVs by 

keeping the sensitive data localized on edge devices, there is 

still a risk of privacy breaches in FL model sharing, 

particularly when malicious nodes gain access to the 

aggregated model updates. Secondly, the heterogeneous 

vehicles and edges in IoV vary in software and hardware 

capabilities, resulting in limited learning performance. The 

heterogeneous vehicles and edges have different data quality, 

quantity, and distributions, and it is challenging to address the 

model disparities in secure FL data sharing, especially in 

Non-Independent and Identically distributed (non-IID) 

environments. Finally, the edges and FL aggregator are 

frequently involved in FL model update-related 

communication, which escalates the delay and communication 

overhead, particularly in resource-constrained IoV 

environments. Preserving raw data in vehicles is an 

appropriate solution to enhance the efficiency of privacy-

preserving FL models. 

Additionally, frequent communication among edges and the 

FL aggregator for updating the model resulted in higher 

latency and escalated communication overhead, which can 

strain IoVs with resource constraints. Retaining raw data at 

the vehicle level can shrink some of these difficulties by 

ensuring privacy and diminishing unnecessary data transfers. 

An alternative solution adapts SL for collaborative learning, 

dynamically retains raw data at the vehicle according to the 

resources, and splits the model process among vehicles and 

edges. SL effectively diminishes vehicle resource demands 

and alleviates potential privacy risks by only transmitting 

intermediate model activations like gradients. Moreover, a 

cohesive SL-FL paradigm is vital for secure, privacy-

preserved, efficient data sharing in edge-enabled IoV within 

smart cities. By consolidating the privacy-preserving benefits 

of SL and the scalable distributed nature of FL, this proposed 

enhancement can effectively address the challenges of data 

heterogeneity, data security, user privacy, and limited model 

accuracy in IoV data sharing over large-scale IoV 

environments. 

Therefore, this work presents a dual-tier approach wherein 

diversified learning methods and cryptography algorithms are 

implemented in each tier. This enhanced design enables 

PPFedSL to meet stringent performance demands, 

incorporating high learning accuracy, low latency, and lower 

computation costs through distributed intelligence while 

safeguarding data security and user privacy over an IoV-

enabled smart city environment. 

1.1. Contributions 

Major contributions of the proposed PPFedSL are as follows. 

➢ The primary intention of PPFedSL is to design a dual-tier 

approach for enabling secure and privacy-preserving 

model sharing by addressing strict performance 

requirements that are model accuracy, latency, and 

computation cost of heterogeneous resource-constrained 

large-scale IoVs. 

➢ The initial phase presents privacy-preserving SL-enabled 

vehicle-edge collaboration wherein vehicles share the 

heterogeneous model parameters through the adaptive SL 

structure and lightweight differential privacy by keeping 

the data in vehicles. Dynamic split point assists in 

effectively offloading the computationally intensive layers 

to the edges and effectively handling the heterogeneous, 

resource-constrained concerns of IoV. 

➢ The proposed PPFedSL strategy effectively meets latency 

constraints. It guarantees timely responses by delegating 

emergency decision-making to the edge level where 

processed vehicle data as SL gradients close to the IoV 

layer. 

➢ The next phase enables privacy-preserving FL-enabled 

edge-cloud collaboration, where edges share only the SL 

model parameters as input to the FL, significantly 

reducing complexity and minimizing delays associated 

with raw data input while accomplishing improved model 

accuracy in demanding IoV applications. 

➢ FL aggregation shrinks the number of model transmissions 

across edges and the server during learning, diminishing 

communication overhead. Share only FL-local model 

updates with the server at a lesser communication cost 

while ensuring privacy and maintaining aggregation 

accuracy. 

1.2. Paper Organization 

The remaining part of this work is organized as follows. 

Section 2 reviews the works related to FL-based secure data 

sharing in IoV. Section 3 provides preliminary information, 

such as problem formulation and system model. Section 4 

gives the design overview of the proposed PPFedSL and 
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explains its mechanisms in detail. Section 5 illustrates the 

simulation setting and performance results of the PPFedSL 

model. Finally, section 6 concludes the paper. 

2. LITERATURE REVIEW 

Although the data-sharing process maximizes the efficacy of 

IoV, it is more susceptible to different kinds of attacks, 

particularly eavesdropping-related threats. Therefore, a lot of 

privacy-preserving strategies have been introduced to defend 

such attacks [9] [10] [11]. However, the conventional 

strategies necessitate a centralized server, resulting in they 

may suffer from a single point of failure. The FL-based 

security is an effective solution to solve the single point of 

failure issues through its distributed learning nature while 

maintaining the sensitive information locally [12]. Instead of 

sharing raw information with the centralized server, the FL 

instructs the nodes to only share the model parameter updates 

to the server and assures a required level of privacy [13]. The 

work in [14] proposes an FL-enabled vehicular approach that 

preserves the privacy of sensitive information in the vehicular 

cyber-physical system. Unlike fundamental FL-based 

methods, the scheme abolishes the need for centralized 

managers. Further, it achieves the model update 

asynchronously according to the random sub-gossip update 

mechanism. Thus, it guarantees model training efficiency and 

rectifies the single point of failure problem. Also, it adds 

Laplace noise to distort model parameters against inference 

attacks. Meanwhile, the FL-enabled vehicular scheme trains a 

detection approach for collaborative data leakage.  

The work in [15] introduces an FL-based collaborative 

authentication scheme for shared information. It provides 

anonymous authentication among the vehicles, RSUs, and 

servers and protects privacy by encrypting the model 

parameters. However, it aggregates the model parameters at 

the centralized server, which may lead to single-point-of-

failure issues, especially in large-scale environments. Another 

work in [16] improves the communication performance 

between the vehicle and server by including a federated 

bidirectional connection broad learning method over the 

training of local datasets. Since the server gathers only the 

model parameters based on the federated broad learning 

mechanism and maximizes the model aggregation capability, 

it can enhance the data sharing efficiency and ensure shared 

data credibility. However, this scheme fails to consider the 

inferential attack possibilities on model parameters and incurs 

high latency and overhead in the network. To shrink the 

latency in privacy-preserved data sharing, the work in [17] 

includes a deep Q-network and FL in an intelligent 

collaborative information-sharing approach. It includes 

asymmetric encryption methods to protect the privacy of 

shared data. However, it still needs the assistance of a 

centralized cloud server to aggregate the global models, which 

might suffer from a high burden and server failure problems. 

The work in [18] introduces a secured data-sharing model 

incorporating a two-tier authenticated consortium blockchain 

strategy with machine learning. It accomplishes reliability in 

the data-sharing process through a one-time password-based 

reputation mechanism. Further, it chooses optimal data 

providers using metaheuristics such as the particle swarm 

optimization (PSO) algorithm and ensures shared data quality. 

Although it exploits a normal main storage authority to store 

the public-private keypairs of vehicles with high 

authentication, it results in private key disclosure that leads to 

high attack activities. 

Albeit the FL is most popular due to its distributed learning 

structure, it has to learn sub-optimal strategies over 

heterogeneously distributed data, which is a key hallmark in 

many applications. To effectively address this problem, a 

novel variant of personalized FL has been proposed in [19]. It 

specializes in robust robot learning models on distinct 

distributions of users. Similarly, the work in [20] proposes the 

DFL with diversified Data Sources algorithm (DFL-DDS) to 

diversify the vehicle data resources. Particularly, each vehicle 

maintains a state vector in which the contribution model 

weight of each data source is recorded. The work in [21] 

presents a novel strategy that addresses the data diversity 

problem in FL by employing hypernetworks, referred to as 

pFedHN, for personalized Federated Hyper Networks. This 

model trains a central hypernetwork to produce a set of 

models in which each client consists of one model. Through 

this architecture, such work enables effective parameter 

sharing among various clients while keeping the capacity to 

produce unique and different personal models. However, this 

model is unable to transmit the hypernetwork parameters and 

decouples the communication cost from the trainable model 

size. The work in [22] adopts a privacy-preserving FL-based 

approach across a federation of independent DaaS providers 

in IoV applications, such as traffic prediction and car park 

occupancy management. However, this model gathers the 

trajectory information from vehicles in a centralized way, and 

it may escalate the transmission delay and cause privacy 

leakage issues at the driver level. The work in [23] presents an 

FL framework for Traffic state estimation (TSE), named 

FedTSE, that jointly considers the privacy preservation, 

accuracy, model computation ability, and transmission cost 

over the vehicular network. Further, it includes a deep 

reinforcement learning strategy to upload and download the 

model parameters and improve the accuracy of the local 

model estimation. Thus, it also balances the tradeoff between 

computation and communication costs. 

The work in [24] proposed a heterogeneous FL strategy, 

FedVPS, that follows a distributed architecture among the 

three entities, such as vehicle terminals, edges, and a cloud in 

the IoV network. This work also designs a privacy protection 

strategy with the assistance of Secure Multi-Party 

Computation (SMPC). Thus, it assures that the terminals 
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participating in FL can get precise calculation results without 

revealing useful information, resulting in local dataset privacy 

preservation. This model not only protects the vehicle privacy 

but also enhances the communication efficiency. It enables an 

accurate and efficient distributed learning approach across the 

IoV structure. However, sending raw data to the edges incurs 

high complexity and latency in model construction. A semi-

synchronous federated learning (Semi-SynFed) protocol in 

[25] enhances the learning performance efficiency at IoVs. It 

chooses appropriate nodes for aggregation by considering the 

computing capacity, network capacity, and learning value of 

training samples. Meanwhile, it includes a dynamic waiting 

time strategy that dynamically adjusts the server waiting time 

at each round, which makes the FL process more rapid and 

precise. The work in [26] presents an enabled privacy-

preserving data-sharing model by participant collaboration 

that can resist gradient leakage and poisoning attacks. 

The work in [27] and [28] employs a homomorphic 

encryption scheme to preserve the privacy of the FL model. 

The work in [29] preserves the privacy of FL without 

additional computation requirements by incorporating the 

concept of gradient encryption. It utilizes the computational 

power of edges to finetune the FL model and encrypt the data 

for privacy preservation while keeping the performance. The 

work in [30] includes the split learning concept to construct a 

privacy-preserving intrusion detection system while keeping 

the raw data at local devices. Thus, it improves the learning 

speed and preserves user privacy over resource-limited IoV 

environments. However, no global knowledge about the 

environment decreases the efficiency of IoV. The work in 

[31] incorporates FSL that separates the deep learning model 

into two sub-models and trains the models in the vehicles and 

the roadside units, respectively. It effectively handles the 

complexity caused by raw and massive heterogeneous data 

collection. The work in [32] also includes the concept of split 

and federated learning to classify the traffic in a 5G-enabled 

autonomous vehicle environment. However, it fails to 

consider the massive data generation characteristics, which 

highly impact the strict IoV performances. The research in 

[33] presents a federated split learning strategy where training 

is performed in the vehicles and the roadside infrastructures. 

The vehicles securely share the intermediate models as local 

gradients to the roadside infrastructure using differential 

privacy. The works in [34] and [35] handle the heterogeneous 

massive data generation by introducing adaptive and parallel 

split learning for edge learning. Albeit these methods attempt 

to ensure user privacy, they are not effective against robust 

privacy attacks. Table 1 compares the existing works using 

different factors. 

Table 1 Comparative Analysis of Existing Works 
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The review shows that most FL and SL-enabled privacy-

preserving data-sharing paradigms only address isolated 

concerns, such as single points of failure, overhead, latency, 

communication costs, and privacy. However, these paradigms 

often ignore the inherent non-IID nature of vehicle data. They 

lack focus on stringent performance benchmarks, including 

higher accuracy, low latency, and lower computation costs, 

which are crucial for large-scale, heterogeneous IoVs. This 

gap underscores the need for a novel approach that guarantees 

security and efficiency in distributed intelligence sharing 

across end-edge-cloud structures. Such a solution should 

support robust privacy protections while shrinking latency to 

facilitate seamless, widespread IoV deployments. 

3. PRELIMINARIES 

This section provides the preliminary information on the 

problem statement and system architecture of the proposed 

PPFedSL. The symbols and descriptions used by PPFedSL 

are described in Table 2. 

Table 2 Symbols and Descriptions Used in PPFedSL 

Symbols Descriptions 

V Number of smart vehicles 

E Number of edges 

C Cloud server 

Vi ith vehicle 

Ej jth Edge 

Di Local dataset of Vi 

SLm local SL-model parameters 

G Gradients 

ɷ Privacy Loss of lightweight differential privacy 

L Loss 

₱ Privacy Parameter 
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α Tradeoff Parameter for privacy and model accuracy 

DSPt Dynamic split point at time t 

Rv Resource capacity of vehicle 

Re Resource capacity of Edge 

Cx Computation cost of ath layer 

N Total number of CNN layers 

RC Resource constraints 

∑Cx

a

x=1

≤ Rv(t) 
Resource constraint of the vehicle at time t 

∑ Cx

N

x=a+1

≤ Rv(t) 
Resource constraint of Edge at time t 

SLvehicle Vehicle side model of SL 

 SLEdge Edge side model of SL 

fvehicle(Di, CNNinitial) SL function performed at the vehicle side 

CNNinitial CNN initial layers 

η Laplace Noise 

SLVehicle
′ Noise appending Vehicle side model of SL 

ESLVehicle Encrypted Vehicle side model of SL 

Ek Encryption Key lightweight differential privacy 

Dk Decryption key of lightweight differential privacy 

DSLVehicle
′ Decrypted Vehicle side model of SL 

SLEdge(Ej) SL edge model construction at the jth edge device 

fedge (
1

V
∑SLvehicle(Vi)

V

i=1

) 

SL function performed at the Edge side 

SLClient(Vi) i numbers of vehicle models constructed using SL 

Xi
(l) and Yi

(l)  The input layer and output layer of the vision transformer 

h Hidden layer of vision transformer 

MHSAhi
l−1

 Multi Head Self-Attention layer of vision transformer 

AF(hi
l−1) Activation function of vision transformer 
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3.1. Problem Definition 

Most of the conventional FL-enabled privacy-preserving 

strategies utilize cryptography methods, such as 

homomorphic encryption and differential privacy, to preserve 

the privacy level of IoVs. However, these models fail to 

accomplish a better tradeoff between privacy and model 

accuracy. Notably, fulfilling the privacy requirements without 

causing high delay and complexity in a heterogeneous 

resource-limited edge-enabled IoV environment is crucial. 

The privacy and model accuracy tradeoff involves balancing 

to protect sensitive IoV information while maintaining the 

efficiency of learning strategies that exploit the heterogeneous 

IoV information. Lightweight differential privacy-enabled 

FSL is a highly suitable paradigm to rectify the outlined 

problem in a resource-constrained IoV environment. This 

paradigm facilitates effective distributed model training on 

IoV devices while keeping sensitive data and large-scale 

information secure on vehicles, protecting privacy without 

imposing overhead. This FSL-enabled proposed solution 

enhances user privacy without compromising data security 

and performance efficiency, even in resource-limited IoV 

environments. Consider an IoV system comprising V number 

of smart vehicles, E number of edge devices, and a cloud 

aggregation server C. This system can be referred to as a set 

N, where N∈ {V= {V1, V2,…, Vi}, E={E1, E2,…, Ej}, C}. 

Each vehicle Vi has a local dataset Di, built from information 

gathered by distinct sensing devices such as cameras, sensors, 

and monitoring systems. Utilizing this dataset Di, each vehicle 

Vi generates its local SL model parameters (SLm). Instead of 

transmitting the raw dataset Di to associated Edge Ej, the 

vehicle only forwards intermediate model outputs such as 

gradients (G), safeguarding data privacy while offering 

effective collaborative learning. 

The local gradients are transferred by adding the noise for the 

lightweight differential privacy algorithm. Accordingly, the 

major Objective Function denoted as OF  of the proposed 

PPFedSL is formulated using Equation (1). 

OF = minL∑SLmi

V

i=1

+ α ∗ ɷ(L, Di, ₱)                     (1) 

In this, the term L is loss, and the term ₱ refers to the privacy 

parameter. The function, min𝐿 ∑ SLmi
V
i=1  shrinks the loss L 

for the client and edge model construction of SL, aiming to 

enhance accuracy. The next term α ∗ ɷ(L, Di, ₱)  represents 

the privacy-preserving function applied to gradients generated 

from dataset Di that mainly depends on the information 

sensitivity and the privacy parameter. The tradeoff parameter 

α ensures the tradeoff between privacy and model accuracy. 

Moreover, this formulation shrinks the cumulative learning 

cost while guaranteeing user privacy using lightweight 

differential privacy algorithms, accomplishing an optimal 

balance between security and performance. 

3.2. System Architecture 

The FL and SL integrated IoV architecture within a smart city 

consists of three key layers: the IoV, edge, and cloud. The 

dual-tier structure is implemented for vehicle-to-edge and 

edge-to-cloud, respectively. Figure 1 illustrates the SL and 

FL-enabled, privacy-preserved, secured IoV data-sharing 

architecture tailored for a smart city environment. In this 

structure, multiple vehicles connect with a central cloud 

aggregation server through edges, as shown in Figure 1. Each 

vehicle constructs its local model locally during network 

initialization according to the real-time data. Hence, the 

model is inaugurated by the cloud aggregation server, 

guaranteeing that no local vehicle dataset is uploaded to either 

the edge or the cloud. Following a predefined number of 

epochs, the cloud server aggregates model parameters from 

the edge averages. It subsequently updates the global model 

reversely to the edges for model relearning. After completion 

of the initialization process, the time-critical decisions are 

taken at the edges, effectively reducing the latency impacts. 

3.2.1. IoV or Data Layer 

This layer comprises many smart individual vehicles 

equipped with intelligent onboard sensors, processors, and 

cameras. Vehicles are equipped with constrained 

computational power, memory, and energy resources. Each 

vehicle can gather information from its surroundings, like 

road conditions, parking availability, traffic density, and other 

safety and comfort parameters. Hence, vehicles are always 

connected with the corresponding Edge securely by exploiting 

a lightweight differential privacy algorithm that preserves data 

privacy. SL assures that only the intermediate models, rather 

than raw data, are shared with the edge layer. The IoV layer 

balances data usage and privacy in this SL-enabled setup. It 

enables vehicles to contribute valuable, real-time information 

across a wider network without sacrificing individual data 

privacy or overwhelming resources and achieving strict delay 

requirements. 

3.2.2. Edge Layer 

This layer comprises edge devices like road roadside units or 

towers. The edges are intermediate processing devices that 

take the cloud services closer to the vehicles. Edges have 

moderate processing and storage capabilities. It can perform 

computation tasks while shrinking latency and reducing 

bandwidth exploitation. Edge servers construct an FL model 

locally using SL parameters constructed with vehicle 

intermediate models. For this, each vehicle shares its SL 

intermediate model parameters as gradients to the Edge, 

which is used to build SLm and integrates the SLm into the 

construction of the FL model using a ViT for enhanced 

feature extraction and local learning. Further, it transfers the 
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aggregated SL models of different vehicles as Local Model 

(LM) to the cloud server through the hybrid cryptographic 

algorithm-based privacy-preserving strategy. Moreover, by 

bringing computation services close to vehicles, the edge 

layer significantly handles latency constraints of critical data 

examinations and bandwidth load while enabling secure, 

privacy-preserved, efficient, timely data-sharing and model 

training across IoV devices. 

3.2.3. Cloud Layer 

This layer comprises a centralized cloud server responsible 

for storing and managing the massive heterogeneous IoV 

information. Cloud aggregation servers have high processing 

power, enabling them to handle complex computations and 

process large-scale data. It aggregates local models generated 

by the edges using Federated Stochastic Gradient Descent 

(FedSGD) and updates the global model by redistributing the 

global model to the corresponding edges. The global model is 

securely shared by using the hybrid cryptography algorithm to 

the edges without revealing the sensitive information of 

vehicle users.  

3.2.4. Privacy Preservation for SL and FL 

In the PPFedSL architecture, privacy-preserved SL and FL 

models are implemented through lightweight differential 

privacy and hybrid cryptography. This enhancement 

guarantees that raw data remains on vehicles and that unique 

data is shared as model parameters during SL and FL 

processes. SL model parameters are exchanged through a 

lightweight differential privacy algorithm, while FL model 

parameters are shared through hybrid cryptography. This 

intentional exploitation of SL and FL among IoV entities 

effectively manages the risk of exposing sensitive IoV data, 

fortifying data privacy at each tier without impacting 

efficiency. Moreover, integrating lightweight differential 

privacy and hybrid cryptography in vehicle-to-edge and edge-

to-cloud collaborations can form a robust defense against 

privacy and security threats while ensuring stringent accuracy 

and meeting latency requirements across large-scale, 

heterogeneous IoV environments. 

 
Figure 1 Architecture of the Proposed Model 
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4. PROPOSED WORK OVERVIEW 

 

Figure 2 Design Overview of Proposed Work 

FL enables co-learning among entities without necessitating 

raw data. By deploying FL environments in IoVs, the 

intelligent services of vehicles, such as traffic management 

and route planning, are enhanced. However, the distributed 

storage of local datasets at edges or in the cloud makes 

traditional FL distributed learning systems more challenging. 

In an environment where the privacy of sensitive information 

is easily threatened, whether the local data of the vehicles is 

straightly gathered by the Edge or uploaded to the cloud, there 

is a risk of privacy leakages. Keeping raw data locally is the 

SL concept's optimal solution to reduce exposure.  

The vehicles can adapt the SL model's initial layers based on 

the unique characteristics of the local dataset, which is a 

property crucial for non-IID handling. Therefore, the 

proposed paradigm incorporates the strengths of both SL and 

FL in its design for handling non-IID with high privacy and 

ensuring IoV performance requirements in distributed 

learning environments, respectively. 

The design process of the proposed work is explained in 

Figure 2. The proposed PPFedSL comprises two phases.  

• Tier 1 

In this tier, the privacy-preserved SL model is implemented 

among vehicles and edges to keep the raw data on vehicles by 

only sharing the vehicle client models of SL constructed using 

Convolutional Neural Network (CNN) initial layers. This 

approach diminishes the risk of sensitive data exposure and 

follows privacy guidelines. This paradigm processes data near 

the vehicles by limiting the time-critical data examination at 

the edge level. It reduces any delay in critical decision-

making, such as collision avoidance and traffic management 

of real-time applications. Shrinking latency in decision-

making guarantees timely intervention in IoV safety-critical 

situations. Utilizing a lightweight differential privacy 

algorithm for model sharing at this tier enhances security and 

ensures privacy without imposing excessive computational 

overhead, which is vital for resource-constrained IoV devices. 

Notably, the lightweight differential privacy algorithm 

appends Laplace noise before vehicle client SL model 

parameter encryption and preserves privacy. Dynamic split 

point in this SL paradigm effectively offloads complex 
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computational tasks of the CNN layers to edges and maintains 

fair resource handlings at IoV.  

• Tier 2 

In tier 2, the proposed model extends the capabilities of FL to 

facilitate secure collaboration among edges and the cloud 

aggregation server. By inputting SLm constructed using a split 

model, the edges generated FL local models through the 

vision transformer. Implementing FL ensures aggregated 

model updates are shared between the edge and cloud, 

preserving the privacy of model parameters through a hybrid 

cryptography algorithm even at higher levels of collaboration. 
By leveraging FL, the cloud aggregation server refines the 

global model according to the local model contributions from 

multiple edges, guaranteeing that the system benefits from 

shared knowledge while ensuring privacy at each level of 

interaction. Thus, it enhances the privacy and security in both 

local and global model updates by safeguarding sensitive 

information while ensuring high-performance efficiency. By 

adopting a FedSGD-based secure model aggregation strategy 

in global model generation, the proposed work preserves the 

privacy level during global model aggregation and improves 

efficiency. Further, reversely shares the global models 

according to the principle of hybrid cryptography to the 

edges. By exploiting the globally shared parameters in the 

relearning process, the edges in the proposed work enhance 

the distributed learning efficiency and provide timely 

distributed knowledge about the driving environment across 

vehicles, thereby satisfying the strict performance 

requirements of IoV.  

Moreover, administering emergency decisions at the edge 

meets latency requirements with non-IID handling. In 

contrast, managing more complex learning tasks in the cloud 

promises the performance efficiency of a large-scale 

heterogeneous IoV-enabled smart city environment. 

4.1. Privacy Preserving SL-enabled Vehicle-Edge 

Collaboration 

PPFedSL implements this approach among vehicles and 

edges to efficiently manage the heterogeneous, massive non-

IID data produced by IoV systems while ensuring minimum 

latency. It incorporates adaptive privacy-preserving SL 

collaboration at the vehicle-edge level. Unlike FL and vertical 

FL, which process entire model updates across distributed 

nodes, the adaptive SL optimally splits learning tasks based 

on the dynamic splitting point, shrinking computational 

overhead in model construction.  

Dynamic adoption of split point based on network conditions 

and vehicle resource availability, SL ensures seamless 

learning without high computation cost even in highly 

dynamic IoV environments. By retaining raw data locally on 

vehicles and sharing only the client-side SL model parameters 

with edges through lightweight differential privacy, this 

approach notably assures privacy and security without 

impacting data utility. This selective data-sharing paradigm 

shrinks communication overhead and diminishes latency in 

real-time critical IoV applications. Additionally, each SL 

vehicle model is perturbed with varied noise values, offering 

an added layer of privacy without impeding processing speed. 

This approach is essential for the responsiveness needed in 

large-scale IoVs. Therefore, it includes lightweight 

differential privacy to minimize distributed learning latency 

and burden at edges without sacrificing the model's accuracy 

and privacy. 

 
Figure 3 Construction of Splitting Among Vehicle and Edge 
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The proposed work retains raw information on local vehicles 

through an adaptive SL strategy, minimizing the 

computational burden and latency at the edges. The SL 

training process is strategically partitioned according to the 

dynamic splitting point decided based on vehicle resource 

level, as shown in Figure 3, where lightweight layers, 

specifically CNN layers 1 and 2, are processed on vehicles, 

while more computationally intensive layers, such as 

convolutional layers 3 and 4, are offloaded to the Edge. This 

dynamic split point-based partitioning effectively minimizes 

latency and ensures faster and more efficient data handling in 

IoV environments, which is crucial for time-critical decision-

making. The dynamic split point is decided based on Equation 

(2). 

DSP𝑡 = arg min
𝑎∈[1,𝑁]

(
∑ 𝐶𝑥
𝑎
𝑥=1

𝑅𝑣
+ 𝛿

∑ 𝐶𝑥
𝑁
𝑥=𝑎+1

𝑅𝑒
)              (2) 

Where the term DSP𝑡  is the dynamic split point at time t. 

Terms 𝑅𝑣 and 𝑅𝑒 are the resource capacity of the vehicle and 

edge, respectively. The term 𝐶𝑥 refers to the computation cost 

of the ath layer, and N denotes the total number of CNN 

layers. 

RC =  

{
 
 

 
 ∑Cx

a

x=1

≤ Rv(t)

∑ Cx

N

x=a+1

≤ Rv(t)

 

                                               (3) 

In Equation (3), RC is the resource constraint considered for 

dynamic split point construction. Where the vehicle and edge 

resource constraints should satisfy the functions ∑ Cx
a
x=1 ≤

 Rv(t)  and ∑ Cx
N
x=a+1 ≤ Rv(t)  at time t respectively. In 

PPFedSL, the selection of dynamic split points assists in 

addressing issues like synchronization, model freshness, 

efficiency, and privacy-preserved learning in large-scale IoV 

environments. Conventional SL exploits synchronized 

updates. However, the dynamic split point selection in the 

proposed SL model permits mitigating vehicle-level network 

delays by offloading critical computations to the edge with 

adequate resources for vehicles to enable asynchronous 

learning. This dynamic split point estimation prevents stale 

updates, guaranteeing that recent and relevant data is 

exploited for learning while optimizing network and 

computational resources.  

The main intention is to collaboratively train the vehicles and 

edges without sharing raw data and determine optimal SL 

local model parameters (SL𝑚)  through the cooperation of 

vehicle clients and edges, fulfilling the minimization of the 

loss function as shown in Equation (1). The terms 

SLvehicle and SLEdge  of equation (4), refer to the vehicle side 

and edge side models of the SL algorithm, respectively, and 

the terms W1 and W2 are the weighting factors, with 

W1+W2=1. 

SLm = W1 ∗ SLvehicle +W2 ∗ SLEdge                      (4) 

The process is divided into three main steps: SL-client model 

construction using CNN, vehicle model encryption and 

decryption using lightweight differential privacy, and SL-

edge model construction using CNN. 

4.1.1. SL-Client Model Construction Using CNN 

 

Figure 4 SL Vehicle Model Construction 

CNN has powerful feature extraction capability with large-

scale IoV datasets. The fully connected layers automatically 

learn unique features from the data and reduce manual feature 

extractions. It makes CNN especially effective for complex, 

high-dimensional dataset environments. Therefore, the 

PPFedSL includes the CNN algorithm and lightweight 
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differential privacy to construct the SL-client model and share 

it with the edges in a privacy-preserving manner. SL prevents 

the edges from directly obtaining the vehicle's local data, 

protects the privacy of vehicles, and tries to ensure that the 

results of Edge local learning are close to the real-time 

environment. In other words, the SL model can 

collaboratively train the models across vehicles and edges 

without obtaining the raw data from the vehicle client. The SL 

training process is commonly divided into two segments: 

Vehicle-side model SLVehicle and the Edge-side model SLEdge. 

In this part, the SLVehicle model is constructed based on the 

initial layers of CNN, as shown in Figure 4, and the 

intermediate representations are transferred to the edges using 

lightweight differential privacy. The vehicles offload heavy 

computational tasks to the edges through lightweight 

differential privacy-enabled intermediate representations to 

effectively accommodate the requirements for SL model 

training of resource-constrained vehicles. Implementation of 

SL among vehicles and clients neglects the necessity of 

sensitive data, consequently lowering the risk of data 

exposure in vehicles. Let us consider an edge-enabled IoV 

network in which each vehicle i has its private dataset, 

referred to as local dataset (Di), with several features. Each 

vehicle generates the SLVehicle using the following Equation 

(5). 

SLvehicle = fvehicle(Di, CNNinitial)                               (5) 

In Equation (5), SLvehicle  denotes the model output of the 

vehicle clients. the term fvehicle(Di, CNNinitial) is the function 

performed at the vehicle side, and the terms Di and  CNNinitial 
represents the local dataset of the ith vehicle and CNN initial 

layer model parameters, respectively. This phase dynamically 

decides a splitting point according to the vehicle resources, 

which separates the layers of CNN to the vehicle and edge 

sides, handling the resource scarcity. Further, the vehicles 

start to send the SLVehicle  parameters as intermediate 

representations to the edges. 

4.1.2. Lightweight Differential Privacy for SL 

Lightweight differential privacy is a powerful privacy-

preserving technique that introduces noise to SL-vehicle 

client models before encryption, ensuring privacy protection. 

The FL applies lightweight differential privacy to the vehicle 

client model-sharing process among vehicles and edges, and it 

enables collaborative CNN model training without revealing 

sensitive information. Lightweight differential privacy is a 

variant of conventional differential privacy [36] and is highly 

adaptable to the resource-limited IoV environment. The steps 

of lightweight differential privacy used to share the SL client 

model from vehicles to edges are explained as follows. 

 

Figure 5 SL Vehicle Model Encryption and Decryption Process 

Model Partitioning: The SL dynamically partitions the CNN 

layers according to vehicle resource availability, expressed as 

follows. 

Client or Vehicle Side Model: Responsible for the initial, 

convolutional, and pooling layers. For l=1,2,…, L, the output 

of each layer can be represented as: 

Zl = |f(Xl−1 ∗ Kl + bl)|
𝑅
                                           (6) 

Where, Xl−1 is the input layer. Further, it adds Laplace noise 

with the Zl. 

Laplace Noise Addition: According to the lightweight 

differential privacy principle [36], the Laplace noise η is 

added to vehicle model parameters (SLvehicle) before 

encryption to accomplish differential privacy. This approach 

drowns the noise independently according to the Laplace 

distribution with appropriate scale parameter value b. 

Moreover, the amount of noise is appended with each SLvehicle 
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based on the desired privacy level of the vehicle clients and 

the sensitivity of the client model parameters. 

η = Lap(0, b)                                                               (7) 

SLVehicle
′ = SLvehicle ∗ η                                           (8) 

SLvehicle Encryption and Decryption: After adding noise η, the 

lightweight differential privacy encrypts the perturbed 

parameters by exploiting encrypted keys Ek. The encryption 

and decryption of the perturbed gradients of the SLvehicle is 

defined as follows. 

ESLVehicle = Ek(SLVehicle
′)                                      (9) 

DSLVehicle
′ = Dk(ESLVehicle)                                   (10) 

In Equation (9) and (10), the terms Ek and Dk are encryption 

and decryption keys used by the lightweight differential 

privacy, respectively. The decryption is the reverse process of 

encryption. Vehicles perform the encryption process at the 

IoV layer, and noise is added to the SL vehicle model 

parameters. Edges perform the decryption process at the edge 

layer, removing the noise. Moreover, the SL vehicle model 

parameters are more precisely transferred to the edges in a 

privacy-preserved manner. This LDP fails to include formally 

defined parameters like privacy budget (ε), sensitivity (Δf), 

and noise scale (b) in its design, which is crucial for robust 

privacy guarantees. However, the LDP-enabled SL parameter 

sharing accomplishes privacy through Laplace noise addition 

(η) and encryption by exploiting keys (Ek). Perturbed model 

parameters are encrypted by vehicles at the IoV layer, 

guaranteeing security and privacy in transmission. At the edge 

layer, the process is reversed by decryption using a key (Dk), 

removing noise and retaining the original parameters. This 

method is more precise and enables privacy-preserved data 

transfer among vehicles and edges. While it is not formally 

parameterized, this method efficiently safeguards sensitive 

parameters in IoV scenarios. 

4.1.3. SL-Edge Model Construction Using CNN 

This part is executed on the edges where intermediate 

representations from the vehicle-side model are obtained to 

perform further processing with CNN later layers, as shown in 

Figure 3. Moreover, this process generates the final output of 

SLm by retrieving the CNN edge model, SLEdge with model 

parameters. 

SLEdge(Ej) = fedge (
1

V
∑SLvehicle(Vi)

V

i=1

) ∗ ɷ            (11) 

\\ Lightweight Differential Privacy Preservation \\ 

Input: Non IID Local dataset of vehicles, CNN, and 

lightweight differential privacy; 

Operations: SL-Vehicle model generation and sharing; 

Output: SL model parameter, SLm; 

Initializes the network; 

Each vehicle do { 

Constructs its local dataset Di using the sensed information; 

Inputs the raw dataset to the CNN; 

CNN do { 

Generates the SLVehicle model parameters; 

SLvehicle = fvehicle(Di, CNNinitial)                (5) 

 } 

Transfers the SLvehicleusing lightweight differential privacy; 

Lightweight differential privacy algorithm do  

{ 

Computes Laplace noise using equation (7); 

Adds the η with SLvehicle using equation (8); 

SLVehicle
′ = SLvehicle ∗ η 

Performs encryption on SLvehicle
′using equation (9); 

Consider SLvehicle
′ as intermediate representation of SL; 

Shares the SLvehicle
′ to the corresponding edge; 

} 

}; 

Edge do { 

Performs decryption on SLvehicle
′using equation (10); 

Obtains the original SLvehicle by removing the η; 

Computes the final SL model parameters SLm by computing 

SLEdge; 

}; 

Algorithm 1 Lightweight Differential Privacy Preservation of 

SL 

In Equation (11), the term SLEdge(Ej) represents the SL edge 

model construction at the jth edge device with the V number 

of SLClient(Vi), where the terms Vi. refer to the SLVehicle output 

model parameters of the ith vehicle at the IoV layer. The term 

ɷ  is the privacy loss of lightweight differential privacy. 

Instead of collecting raw data from vehicles in the IoV layer, 

the PPFedSL model only collects model parameters while 

ensuring privacy. It efficiently addresses the non-IID data 

heterogeneity of IoV data by leveraging the strengths of SL 

and lightweight differential privacy. Upon completion of this 

step, the edges initiate the construction and sharing of the FL 

model. The Edge should inspect the collected model 
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parameters before model retraining through interaction with 

the cloud aggregation server. If the examined vehicle 

information is time-critical, the Edge promptly decides to 

handle the time-sensitive scenarios. This step is very crucial 

for real-time emergency scenarios. 

4.2. Privacy-Preserving FL-enabled Edge-Cloud 

Collaboration 

Though critical data decisions are made at edges, processing 

non-critical data at the cloud level globally enhances the 

learning ability of edges. Hence, the global parameters are 

generated based on the FL local parameters of different edges 

aggregated distributively to construct a unified model that 

upgrades the entire IoV performance while preserving data 

privacy. This section outlines the detailed FL local model 

construction processes, global model generation, and sharing 

within the proposed model. Figure 6 depicts the working 

process. The PPFedSL includes Vision Transformer (VT) and 

FedSGD at the edge and server levels to construct the local 

and global models. VT-enabled local model construction in 

FL over CNN-based alternatives delivers the superior 

capability to model and capture global dependencies, which is 

a unique demand for IoV scenarios. In contrast to CNNs 

relying on local receptive fields, VT exploits a self-attention 

mechanism to process entire feature maps, making it highly fit 

for handling heterogeneous FL model parameters across 

distributed edges. Also, the VT-based learning architecture 

scales better than CNNs when model complexity escalates, 

making it more suitable for IoV sensor data with high-

resolution. Therefore, the proposed model selects VT instead 

of CNN models. This section is divided into three parts: LM 

construction using VT, GM Aggregation using FedSGD, and 

FL Model Sharing using hybrid cryptography. 

 

Figure 6 Process of Hybrid Cryptography Privacy Preservation 

4.2.1. Local Model Construction using Vision Transformer 

Vision Transformer (VT) has emerged as a powerful strategy 

to analyze image datasets and has numerous attributes that fit 

the IoV environment. The self-attention mechanism offers 

robust understanding capabilities and captures long-range 

dependencies, which are very prominent for the dynamic and 

complex nature of IoV. Therefore, the proposed PPFedSL 

utilizes VT in LM construction. This phase involves learning 

the edges with different SL model parameters of distributed 

vehicles while keeping the data more private in vehicles. 

Hence, the CNN model parameters are reshaped according to 

the input requirements of VT. The VT architecture includes 

self-attention layers, activation function neural networks, and 
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positional encodings. The proposed model modifies the vision 

transformer architecture to accommodate the FL setting. 

The mathematical form of local model construction using a 

VT is expressed as follows. 

Xi
(l) =∑(SLVehicle)i

V

i=1

                                                             (12) 

Yi
(l) = Xi

(l) (LN(hi
l−1) + (MHSAhi

l−1) + AF(hi
l−1))   (13) 

In Equation (12) and (13), the terms Xi
(l) and Yi

(l) refer to the 

input layer and output layer of the vision transformer. The 

term h represents the hidden layer of VT. Incorporating the 

vision transformer in FL can offer a collaborative, 

decentralized learning structure, preserve privacy, and 

improve model efficiency. It also captures long-range 

dependencies in images of non-IID datasets more effectively 

and enhances the IoV data-sharing performance. After 

constructing the local models, each Edge transfers the LMs of 

non-critical data through hybrid cryptography to the server for 

global model generation. 

 

Figure 7 VT Architecture in Proposed Work 

4.2.2. GM Aggregation using FedSGD 

After receiving the LMs from different edges, the cloud server 

initially decrypts the LMs using decryption keys generated 

using hybrid cryptography. Further, it starts aggregation using 

the FedSGD algorithm.  

GM =
∑ Wj ∗ Ej
E
j=1

∑ Wj
E
j=1

                                            (14) 

In Equation (14), GM represents the global model, and the Ej 

refer to the jth Edge. The term Wj is the weighting factor value 

that is equal to 1. Thus, the FedSDG utilizes weighted 

averages to aggregate the LM updates of different edge 

devices. After completing the aggregation steps, the cloud 

server returns the GM to the edges for retraining. By 

retraining the VT model using the updated GM, the edges can 

enhance its learning efficiency without compromising security 

and privacy, resulting in high IoV data-sharing performance. 

4.2.3. FL Model Sharing Using Hybrid Cryptography 

Hybrid cryptography securely shares model updates between 

edge and server while preserving privacy against disclosure 

attacks. Hybrid cryptography consolidates the strengths of 

both symmetric and asymmetric key cryptography to 

accomplish efficiency and security across edge and server. 

The proposed hybrid cryptography ingeniously amalgamates 

the AES robustness with the ECC agility. The design of 

hybrid cryptography symmetrically encrypts original FL 

model parameters like LM of edges with AES while utilizing 

the ECC for asymmetric encryption of the initial AES key 

[37]. Initially, the hybrid cryptography generates a 128-bit 

random number as the AES initial key.  

Further, it derives the AES full key through subsequent key 

expansion, alignment, and other key retrieve-related 

operations. Thus, it neglects the complexities of AES key 

management and enhances privacy and security without 

sacrificing the IoV performance. The ECC public key 

encrypts the AES initial key, resulting in high security. 

Encrypting the AES initial key is the only choice for attack 

activities. Moreover, the Edge produces the final encrypted 

LM update by amalgamating the encrypted AES key and the 

ciphertext, which are then dispatched to the server. Upon 

receiving the encrypted LM updates from the edge devices, 

the server can extract the ciphertext and the encrypted AES 

key. This way, the LM update is securely shared among edges 

and servers. This process is reversed from the server to the 

edges during the GM update. 
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\\ Hybrid Cryptography Privacy Preservation \\ 

Input: SL vehicle models and LMs; 

Operations: Privacy-preserving model sharing and GM 

generation; 

Output: GM; 

Initializes the FL model construction and sharing process; 

Each edge do 

{ 

Inputs the SLvehicle to the VT; 

VT do  

{ 

Generates the FL model parameters using equation (12) and 

(13); 

Constructs the LMs based on SL-Vehicle model of different 

vehicles; 

} 

Transfers the LMs using hybrid cryptography; 

hybrid cryptography do  

{ 

Performs encryption on LM using hybrid cryptography keys; 

Shares the LMs to the cloud server; 

} 

}; 

Server do  

{ 

Performs decryption on LM using hybrid cryptography keys; 

Obtains the original LMs; 

Starts the LM aggregation using FedSGD; 

Generates the global model GM; 

Sends the GM reversely to the edges; 

}; 

Algorithm 2 Hybrid Cryptography Enabled Privacy Preserved 

FL 

4.3. Computation Cost Analysis 

Computation costs of LDP and HCA exploited for the 

vehicle-to-edge and edge-to-cloud communication in 

PPFedSL are comparatively analyzed in table 3. LDP proves 

high efficiency, with encryption and O(n) decryption costs, 

where n refers to the data size. This scenario is accomplished 

through lightweight symmetric encryption and the addition of 

noise, which also acquires a linear cost of O(n). It is very 

simple to manage keys in LDP as it relies solely on symmetric 

keys, resulting in the total computation cost for LDP 

remaining low at O(n). Thus, it is more suitable for resource-

constrained vehicles in IoV environments. 

On the other hand, HCA incorporates both symmetric AES 

and asymmetric ECC-based encryption, leading to higher 

encryption and decryption costs of O(n)+O(k3), 

where O(n)+O(k3) reflects the ECC operation’s polynomial 

cost depend on the key size k. Like LDP, the HCA does not 

integrate noise addition, as it exploits strong cryptographic 

techniques for preserving privacy. Albeit the key management 

of HCA is complex owing to the combination of AES and 

ECC keys, it provides stronger security, and its computational 

overhead is not a significant concern in the context of edge-

to-cloud collaboration where high resources are available, and 

advanced security is prioritized over efficiency. 

Table 3 Computation Cost Analysis 

Aspect LDP HCA 

Encryption Cost Low (O(n)) High (O(n)+O(k3)) 

Decryption Cost Low (O(n)) High (O(n)+O(k3)) 

Total Cost  Low (O(n)) High (O(n)+O(k3)) 

Noise Addition Yes (O(n)) No 

Key 

Management 

Simple 

(symmetric key) 

Complex (AES + 

ECC keys) 

5. EXPERIMENTAL EVALUATION 

This section evaluates the performance of the proposed 

PPFedSL through Python libraries. The experimental setup 

consists of hardware and software configurations utilized in 

the experiments and a dataset description.  

The environment setup is configured with the Intel i5 2.5GHZ 

CPU and a 16 GB memory server hosted by the Ubuntu 20.04 

LTS operating system. Parameter settings are shown in Table 

4. The PPFedSL implements the FSL within two levels. 

Consequently, it analyzes the effectiveness of the PPFedSL in 

terms of different performance metrics.  

The results show that the proposed model outperforms various 

baseline deep learning strategies and existing works. For 

comparison, the works FedVPS [24], Traffic Sign 

Classification using Federated Split Learning (TS-FSL) [32], 

Privacy Preserving IDS using Split Learning (PP-ISL) [30], 

and Adaptive and Parallel Split Federated Learning in 

Vehicular Edge Computing (ASFV) [35] are exploited as 

shown in table 5. 
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Table 4 Parameter Settings 

Components Parameter Value/Setting 

MobileNetV2 IMG_SIZE (224, 224, 3)  
Output_layer ‘block_13_expand’ 

Edge_Model 

(VT) 

optimizer 'adam' 

 
loss 'categorical_crossentropy'  

metrics ['accuracy']  
IMG_SIZE (14, 14, 64) (from MobileNetV2)  
patch_size 8  

num_patches (IMG_SIZE[0] // patch_size) * (IMG_SIZE[1] // 

patch_size  
num_classes 6  

d_model 23  
num_heads 1  

ff_dim 4 * d_model  
num_layers 3  

dropout 0.1 

Global_Model 

(FedSGD) 

IMG_SIZE (14, 14, 64) (from MobileNetV2) 

 
patch_size 8  

num_patches (IMG_SIZE[0] // patch_size) * (IMG_SIZE[1] // 

patch_size  
num_classes 6  

d_model 23  
num_heads 1  

ff_dim 4 * d_model  
num_layers 3  

dropout 0.1 

FL num_clients 3  
num_epochs_per_round 5  

num_rounds 5 

Table 5 Comparison of Proposed PPFedSL with Comparison Works 

Works FedVPS [24] TS-FSL [32] PP-ISL [30] ASFV [35] Proposed 

PPFedSL 

Major 

Contribution 

Heterogeneity and 

non-IID handling 

and privacy 

preservation 

Minimize the 

computation 

cost with high 

accuracy 

Construct a 

privacy-

preserved IDS 

Adaptive model 

splitting with 

parallelized  

training process 

Satisfy strict 

IoV 

performance 

requirements 

Dataset Used BITvehicle GTSRB CAN and 

CICIDS2017 

MNIST, Fashion 

MNIST, CIFAR-

10 

BITvehcile 

Privacy 

preservation 

SMPC No privacy SL based SL based lightweight 

differential 

privacy and 

hybrid 

cryptography 

Decentralized 

Structure 

FL FL and SL  SL FL FL and SL 

Learning 

Algorithm 

MLP CNN CNN, LSTM, 

and GRU 

RESNet18 CNN and VT 
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Aggregation 

model 

Proto-type based FedAvg No aggregation Not Defined FedSGD 

Non-IID 

handling 

Yes No No Yes Yes 

Latency High High High High Low 

Model Accuracy Medium High Medium High Very high 

Computation 

Cost 

High Low Low High Low 

Complexity High High Medium High Low 

5.1. Dataset Description 

The proposed PPFedSL utilizes the BITvehicle dataset [38] 

for experiments due to its widespread exploitation in existing 

research and the different sets of images that assist in better 

feature extraction and vehicle identification. The BITVehicle 

is a challenging dataset comprising 9,850 vehicle images with 

high-resolution pixel values like1600×1200 px and 1920 × 

1080 px. The images comprise a wide range of changes in 

their illumination, scale, surface color, and location. The 

images do not comprise the top or bottom parts of some 

vehicles owing to the capturing delay and the vehicle size. 

Each image may consist of more than one vehicle, and the 

same vehicle may present multiple times in different images, 

so every vehicle location is pre-annotated. Moreover, there is 

a large number of images capturing vehicles from various 

viewpoints and under different environmental conditions. The 

size of the dataset and vehicle diversity enable robust learning 

and evaluation of different vehicle detection models. The 

benchmark dataset is divided into subsets with balanced class 

labels to model the non-IID distributions. Table 6 lists the 

samples of the BITvehicle dataset and the accuracy results of 

PPFedSL. 

Table 6 Samples of BITvehicle Dataset and Results of PPFedSL 

Classes of 

Vehicles 

Sample 

Count 

Training  Testing  SL Accuracy FL Accuracy Aggregation 

Accuracy 

Car 6000 5000 1000 97.8632 97.4358 97.8647 

Truck 3000 2500 500 97.0085 98.4330 99.1452 

Bus 1800 1500 300 96.1538 98.4330 99.0028 

Van 2400 2000 400 96.0113 96.0113 97.4358 

Motorcycle 1200 1000 200 95.7264 97.2934 98.2905 

Bicycle 600 500 100 99.2877 98.7179 99.7150 

5.2. Performance Metrics 

The performance metrics used to evaluate the efficiency of 

PPFEdSL are described as follows.  

Feature Representation Accuracy: It is the accuracy of feature 

extraction from the BITvehicle Image dataset using CNN.  

Privacy Loss: It refers to the loss of privacy during the SL-

vehicle client model sharing among vehicles and edges.  

Computation Cost: It is the total amount of computation 

resources vehicles need to execute the Initial layers of the 

CNN and lightweight differential privacy process. 

Robustness Accuracy: It refers to the heterogeneous data 

handling efficiency of PPFedSL over large-scale IoV non-IID 

datasets. 

Learning Accuracy: It is the ratio of the number of correct 

predictions during learning and testing to the total number of 

correct predictions. 

Aggregation Accuracy: It is the accuracy of global model 

aggregation while ensuring the privacy and security in the 

network.   

Convergence Rate: The global model takes the rate to 

converge over specific FL communication rounds. 

Communication Efficiency: It measures the efficiency of 

communication between end-edge-cloud during the SL and 

FL model-sharing process. 

5.3. Experimental Results 

The comparison of experimental results in Table 7 for 

computation overhead, latency, and accuracy justifies why SL 

is preferable over FL, VFL, and SMPC in an IoV-enabled 

smart city environment. 

The results demonstrate that SL outperforms FL, VFL, and 

SMPC in terms of computational efficiency and latency while 

accomplishing the highest accuracy at 93.1%. The lower 
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overhead of SL is 45.8%, and the reduced learning time per 

batch is 4.23s, making it an ideal solution for real-time IoV 

applications, guaranteeing timely decision-making. Although 

other strategies like FL and SMPC obtain competitive 

accuracy, they incur significantly higher computational costs 

and latency, which may be inappropriate for resource-

constrained IoV environments. On the other hand, VFL shows 

better performance in terms of computation cost, but it needs 

higher learning time, hindering its scalability in a dynamic 

IoV environment. Moreover, layer-wise partitioning of SL 

shrinks both computational and communication overhead at 

the vehicle level, assuring effective learning on resource-

limited devices. Its early unique feature extraction at the edge 

facilitates low-latency decision-making in real-time IoV 

applications. 

Table 7 SL Empirical Evaluation Results over FL, VFL, and SMPC 

Method Computation Overhead (%) Latency (s) Total Learning Time per Batch (s) Model Accuracy (%) 

FL 80.5% 1.35 5.92 92.4% 

VFL 65.2% 1.12 6.45 90.8% 

SMPC 92.7% 2.81 9.74 91.2% 

SL 45.8% 0.78 4.23 93.1% 

Table 8 Dynamic Split Point Validation Under Different IoV Resource Scenarios 

Scenario (Vehicle 

Resource Level (Rv)) 

DSPt 

Position 

CPU 

Usage 

(%) 

Memory 

Usage (MB) 

Processing Time (s) Total Training 

Time (s) 

Model 

Accuracy (%) 

Low Rv (Limited 

Resources) 

Early Split 

(CNN-1) 

38.7% 250 MB 0.59 4.01 92.5% 

Moderate Rv (Balanced 

Resources) 

Mid Split 

(CNN-2) 

45.8% 310 MB 0.78 4.23 93.1% 

High Rv (Sufficient 

Resources) 

Late Split 

(CNN-3) 

68.2% 420 MB 1.15 5.42 91.8% 

Results of table 8 empirically validate the selection of 

dynamic split point, DSPt, under varying vehicle resource Rv 

conditions, demonstrating its effectiveness in shrinking 

latency, optimizing resource exploitation, and keeping high 

learning performance for time-sensitive IoV-enabled smart 

city application scenarios. Using DSPt, vehicles offload 

complex CNN layers according to their resource level to the 

edge, shrinking the burden while maintaining high accuracy. 

Table 9 depicts the resource constraint formulation scenario 

and its results, demonstrating that the selection of DSPt 

effectively meets the real-world computational constraints in 

IoV. The proposed PPFedSL ensures efficient allocation of 

resources, low latency, and good model performance, which 

are essential for real-time collaboration across vehicles and 

edges. 

The experimental results of table 10 depict that DSPt-based 

SL significantly minimizes computational overhead by 45.8% 

and latency by 0.78s compared to pretrained models that are 

ResNet-based edge learning with 72.4% of overhead and 

1.42s of latency and transformer-driven FL with 85.6% of 

overhead and 1.75s of latency. Although the transformer-FL 

accomplishes a high level of accuracy by 95.1%, the proposed 

SL model also maintains a competitive accuracy of 93.1% 

with a 45.8% lower overhead, making it more efficient for 

IoV applications. Additionally, SL obtains the fastest training 

time of 4.23s, ensuring real-time, timely decision-making in 

latency-sensitive IoV environments. Moreover, these findings 

efficiently validate the effectiveness of dynamic split point, 

which enabled SL to optimize resource utilization while 

obtaining high model performance. 

Table 9 Resource Constraint Formulation of Vehicle and Edge 

Scenario (Rv, 

Re) 

DSPt 

Position 

Vehicle CPU 

Usage (%) 

Edge CPU 

Usage (%) 

Memory Usage 

(MB) 

Edge 

Processing 

Time (s) 

Total Training 

Time (s) 

Model 

Accuracy (%) 

Low Rv, High 

Re 

Early Split 

(CNN-1) 

22.4% 68.7% 250 MB 0.59 4.01 92.5% 

Moderate Rv, 

Moderate Re 

Mid Split 

(CNN-2) 

35.1% 45.8% 310 MB 0.78 4.23 93.1% 

High Rv, Low 

Re 

Late Split 

(CNN-3) 

61.3% 27.5% 420 MB 1.15 5.42 91.8% 
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Table 10 Comparison of Proposed SL with Pre-Trained Models 

Method Model Type Computational 

Overhead (%) 

Latency (s) Total Training 

Time (s) 

Model Accuracy 

(%) 

ResNet-based Edge 

Learning 

Deep CNN 72.4% 1.42 6.15 94.3% 

Transformer-driven FL Self-Attention 85.6% 1.75 7.89 95.1% 

Proposed DSPt-based 

SL 

Adaptive CNN 45.8% 0.78 4.23 93.1% 

 

 

Figure 10 Feature Representation Accuracy 

Figure 10 depicts the accuracy of the feature representation of 

the proposed PPFedSL using CNN and existing models. The 

results are obtained by varying the number of non-IID 

distributions from 1 to 5. By partially running the CNN at 

vehicles and edges, the proposed model effectively handles 

the heterogeneity of large-scale massive IoV information and 

its resource-constrained nature. Therefore, the proposed 

model improves the feature representation accuracy by 100 

for one number of non-IID. After point 1, the feature 

representation accuracy decreases in the proposed model, as 

the high number of non-IID makes the model more complex, 

and there is some loss in split learning accuracy.  

For example, the CNN attains 98.4% and 93.2% feature 

representation accuracy for non-IID distributions 2 and 5, 

respectively. However, the PPFedSL outperforms existing 

TS-FSL, PP-ISL, and ASFV by effectively implementing the 

SL across vehicles and edges. Although the ASFV utilizes 

adaptive model splitting to execute the training process 

parallelly, it fails to handle the non-IID distribution more 

effectively than PPFedSL. For instance, the CNN in the 

proposed model enhances the feature representation accuracy 

by 21.6%, 14.3%, and 11.2% when compared with TS-FSL, 

PP-ISL, and ASFV, respectively, for non-IID scenarios. 

 

 

Figure 11 Epochs Vs Privacy Loss 

Figure 11 obtains the results of privacy loss of PPFedSL by 

comparing it with existing TS-FSL, PP-ISL, and ASFV 

protocols. The results are obtained by adjusting the epochs 

from 10 to 50. At the point of 10 epochs, all algorithms obtain 

no privacy loss. After point 10, each escalates the privacy loss 

gradually with increasing the number of epochs. For example, 

the proposed PPFedSL accomplishes 0.3 and 1.3 privacy loss 

for 20 and 50 epochs, respectively. The proposed model 

leverages a lightweight differential privacy algorithm to 

safeguard the intermediate data as gradients from leakage 

transferred among vehicles and edges. Careful injection of 

Laplace noise into the gradients during training enhances 

robust privacy while maintaining model utility. Consequently, 

it shrinks the privacy loss and mitigates the privacy risks. By 

keeping the privacy loss to a minimum, the SL model shrinks 

the impact of Laplace noise addition on model accuracy and 

convergence stability. In other words, reducing loss of privacy 

assists in maintaining high accuracy in model sharing. 

However, increasing the number of epochs in learning makes 

the proposed PPFedSL more complex, resulting in some 

privacy loss. However, the proposed model minimizes 

privacy loss more than the existing solutions, as shown in 

Figure 10. For instance, the proposed model minimizes the 

privacy loss by 0.9, 1.1, and 1 compared to TS-FSL, PP-ISL, 

and ASFV, respectively, for 50 epochs. 
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Figure 12 Epochs Vs Computation Cost 

Figure 12 compares the communication cost results of 

proposed PPFedSL, TS-FSL, PP-ISL, and ASFV under 

different epochs. All models increase the computation cost by 

varying the epochs from 10 to 50. For instance, the PPFedSL 

accomplishes 0.0006 and 0.0018 for 10 and 50 epochs, 

respectively. The reason is that increasing the number of 

epochs typically leads to more parameter updates and 

increases the computation cost, particularly for larger SL 

models with a high number of CNN parameters. However, the 

dynamic split point estimation according to vehicle resources 

effectively adjusts the number of layers. Also, it handles 

computationally intensive CNN layers at the edges, 

significantly minimizing the computation cost of PPFedSL 

compared to existing strategies. This process enhances the 

proposed model's efficiency without imposing high costs. For 

example, the PPFedSL decreases the computation cost value 

by 0.0238, 0.0196, and 0.0166 than the existing TS-FSL, PP-

ISL, and ASFV, respectively, for 50 numbers of epochs. 

Figure 13 illustrates the robustness accuracy comparison 

results of proposed TS-FSL, PP-ISL, and ASFV protocols 

obtained by adjusting the non-IID distribution from 1 to 5. 

The robustness accuracy gradually decreases by varying the 

non-IID from low to high. For instance, the proposed model 

decreases the robustness accuracy by 5.9% when varying the 

non-IID distribution from 1 to 5. Generally, the high number 

of non-IID distributions affects the resource utilization 

capability of vehicles, resulting in unbalanced data. 

Efficiently partitioning the BITVehicle dataset into balanced 

sub-models and processing them locally at the vehicles, the 

proposed PPFedSL enables effective handling of non-IID data 

distribution. In contrast, conventional methods fail to 

integrate such dataset partitioning, shrinking robustness and 

degrading accuracy in their performance. Moreover, the 

proposed model improves the robustness and accuracy 

compared to the existing algorithms, as shown in Figure 13. 

For example, the proposed model improves robustness 

accuracy by 19.6%, 31.8 %, and 8% compared with TS-FSL, 

PP-ISL, and ASFV for non-IID scenarios. 

 

Figure 13 Non-IID Distribution Vs Robustness Accuracy 

Figure 14 Number of Patches Vs Learning Accuracy 

Figure 14 compares the proposed PPFedSL, FedVPS, TS-

FSL, ASFV, and baseline CNN. The results are compared for 

different numbers of learning patches. From points 5 to 15, 

the proposed model increases the learning accuracy and 

decreases after point 15. The reason is that a significant 

number of patches, like 15, can improve the performance of 

vision transformers. Increasing the patches after 15 can 

impact the learning efficiency of the vision transformer, 

resulting in some loss. For example, the PPFedSL attains 

95.3% and 98.4% learning accuracy for 5 and 15 patches 
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scenarios, respectively. However, it decreases the value by 

3.6% at point 25 compared to the result at point 15. However, 

the proposed model improves the learning accuracy than the 

other model in existing and based line works owing to 

utilizing FL. Implementing effective edge and cloud 

collaborative learning improves the learning accuracy of 

PPFed SL. Unlike that, the existing works contribute to 

improving the accuracy using global parameters provided by 

the cloud. Thus, it increases the proposed model's accuracy 

than existing works. For example, the PPFedSL improves 

learning accuracy by 9.4%, 8.8%, 2.9, and 1.1% compared to 

the FedVPS, TS-FSL, ASFV, and CNN, respectively, at the 

point of 15 number of patches. 

 

Figure 15 Number of Rounds Vs Aggregation Accuracy 

Figure 15 compares the aggregation accuracy results of 

proposed PPFedSL, FedVPS, TS-FSL, FedAvg, FedAdam, 

and FedProx under different communication rounds. Figure 

15 shows that all models slightly increase the aggregation 

accuracy by varying the number of communication rounds 

from 10 to 50. The reason is that increasing the number of 

rounds provides more local model parameters for FL 

aggregation, which improves accuracy considerably. For 

example, the PPFedSL escalates the aggregation accuracy by 

9.1% when increasing the number of rounds from 10 to 50. 

However, the proposed model accomplishes high aggregation 

accuracy despite minimal rounds due to the advantage of 

FedSGD in aggregation. Unlike that, the existing models use 

FedAvg algorithms in which a simple weighted average is 

taken among the received local model, resulting in poor 

aggregation accuracy. Moreover, the proposed model 

outperforms the existing models. For instance, the proposed 

PPFedSL improves the aggregation accuracy by 1.1%, 29.5%, 

32.6%, 6.1%, and 7.1% compared to the FedVPS, TS-FSL, 

FedAvg, FedAdam, and FedProx, respectively, for 50 

numbers of communication rounds. 

 

Figure 16 Number of Rounds vs. convergence Rate 

Figure 16 demonstrates the convergence rate results of the 

proposed PPFedSL, FedVPS, and TS-FSL for the different 

number of communication rounds. Each FL strategy 

necessitates the optimal number of communication rounds for 

model convergence. For example, the proposed PFedSL 

requires 40 communication rounds to accomplish a model 

convergence rate of 100, as the proposed model minimizes the 

number of communication rounds in model convergence by 

effectively implementing the SL and FL among IoV entities 

within tiers. The SL-enabled collaborative learning among 

vehicles and edges effectively handles the massive 

heterogeneous data generation and resource-constrained 

issues of large-scale IoVs. In contrast, the FL among edge and 

cloud can improve the FL learning and aggregation accuracy 

by effectively inputting the unique features without raw input. 

The existing TS-FSL model needs 50 communication rounds 

for model convergence, and the FedVPS needs more than 50. 

Figure 17 shows the communication efficiency of PPFedSL, 

FedVPS, and TS-FSL compared under different numbers of 

IoV vehicle scenarios. The communication efficiency is 

increased by varying the number of vehicles from 20 to 100. 

This is because many vehicles provide more accurate 

information about the driving environment, improving IoV 

data-sharing performance. For example, the proposed 

PPFedSL accomplishes 92.3% and 99.1% of communication 

efficiency for 20 and 100 vehicles, respectively. Unlike 

existing models, the PPFedSL improves communication 

efficiency by keeping the raw information at local vehicles 

and making critical decisions at edges without sacrificing 

security and privacy. Thus, unlike other strategies, it enhances 
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communication efficiency and IoV data-sharing performance 

without imposing significant latency. For example, the 

PPFedSL improves communication efficiency by 1.8% and 

2.2% compared to the FedVPS and TS-FSL, respectively, 

when 100 vehicles are presented in the network. 

 

Figure 17 Number of Vehicles Vs Communication Efficiency 

6. CONCLUSION 

In this paper, PPFedSL has been proposed over heterogeneous 

large-scale IoV in a smart city environment. By leveraging the 

SL with lightweight cryptography primitives and FL with 

hybrid cryptography, the PPFedSL enables a distributed 

collaborative learning model among vehicle-edge-cloud while 

keeping the privacy of sensitive data. Thus, this proposed 

strategy effectively handles the heterogeneity of non-IID data 

distribution and massive dataset generation of IoV without 

compromising privacy. By running the computational 

extensive layers of CNN decided using the dynamic split 

point at edges, the PPFedSL manages the resource deficiency 

concerns of vehicles, and the critical decision-making at the 

edge level also effectively meets the latency constraints. 

Consequently, the PPFedSL model integrates an adaptive 

deep learning strategy, VT, to improve the FL learning 

accuracy over heterogeneous models. Moreover, the PPFedSL 

enables the smart city infrastructure for seamless data 

exchange with a higher level of privacy and enhanced 

performance efficiency. Finally, the experimental results 

show the superiority of the proposed PPFedSL in terms of 

different performance metrics. The results demonstrate that 

the proposed PPFedSL enhances the heterogeneous 

robustness efficiency by 19.6% and learning accuracy by 

8.8% when compared with existing TS-FSL, whereas it incurs 

a higher convergence rate with 40 FL communication rounds 

due to the privacy-preserving heterogeneous handling 

structure using both SL and FL. 

REFERENCES 

[1] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, 

“Survey on the internet of vehicles: Network architectures and 

applications,” IEEE Commun. Standards Mag., vol. 4, no. 1, pp. 34–

41, 2020. 

[2] W. Duan, J. Gu, M. Wen, G. Zhang, Y. Ji, and S. Mumtaz, “Emerging 

technologies for 5G-IoV networks: applications, trends and 

opportunities,” IEEE Network, vol. 34, no. 5, pp. 283–289, 2020. 

[3] S. M. Karim, A. Habbal, S. A. Chaudhry, and A. Irshad, “Architecture, 

protocols, and security in IoV: Taxonomy, analysis, challenges, and 

solutions,” Security and Commun. Networks, vol. 2022, 2022. 

[4] H. Taslimasa, S. Dadkhah, E. C. P. Neto, P. Xiong, S. Ray, and A. A. 

Ghorbani, “Security issues in Internet of Vehicles (IoV): A 

comprehensive survey,” Internet of Things, vol. 100809, 2023. 

[5] X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, and F. Dai, “Artificial 

intelligence for edge service optimization in internet of vehicles: A 

survey,” Tsinghua Sci. Technol., vol. 27, no. 2, pp. 270–287, 2021. 

[6] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. 

V. Poor, “Federated learning for internet of things: A comprehensive 

survey,” IEEE Commun. Surveys Tutorials, vol. 23, no. 3, pp. 1622–

1658, 2021. 

[7] Z. Du, C. Wu, T. Yoshinaga, K. L. A. Yau, Y. Ji, and J. Li, “Federated 

learning for vehicular internet of things: Recent advances and open 

issues,” IEEE Open J. Comput. Soc., vol. 1, pp. 45–61, 2020. 

[8] V. P. Chellapandi, L. Yuan, C. G. Brinton, S. H. Żak, and Z. Wang, 

“Federated learning for connected and automated vehicles: A survey of 

existing approaches and challenges,” IEEE Trans. Intell. Vehicles, 

2023. 

[9] Y. Bao, W. Qiu, X. Cheng, and J. Sun, “Fine-grained data sharing with 

enhanced privacy protection and dynamic users group service for the 

IoV,” IEEE Trans. Intell. Transp. Syst., 2022. 

[10] U. Bodkhe and S. Tanwar, “P2IOV: Privacy preserving lightweight 

secure data dissemination scheme for internet of vehicles,” in 2021 

IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1–6. 

[11] M. Jamjoom, H. Abulkasim, and S. Abbas, “Lightweight authenticated 

privacy-preserving secure framework for the Internet of vehicles,” 

Security and Commun. Networks, vol. 2022, 2022. 

[12] D. M. Manias and A. Shami, “Making a case for federated learning in 

the internet of vehicles and intelligent transportation systems,” IEEE 

Network, vol. 35, no. 3, pp. 88–94, 2021. 

[13] X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, “Two-layer 

federated learning with heterogeneous model aggregation for 6G 

supported internet of vehicles,” IEEE Trans. Veh. Technol., vol. 70, 

no. 6, pp. 5308–5317, 2021. 

[14] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Federated 

learning for data privacy preservation in vehicular cyber-physical 

systems,” IEEE Netw., vol. 34, no. 3, pp. 50–56, May/Jun. 2020. 

[15] P. Zhao, Y. Huang, J. Gao, L. Xing, H. Wu, and H. Ma, “Federated 

learning based collaborative authentication protocol for shared data in 

social IoV,” IEEE Sensors J., vol. 22, no. 7, pp. 7385–7398, Apr. 2022. 

[16] X. Yuan et al., “A federated bidirectional connection broad learning 

scheme for secure data sharing in internet of vehicles,” China 

Commun., vol. 18, no. 7, pp. 117–133, Jul. 2021. 

[17] X. Li, L. Cheng, C. Sun, K. Y. Lam, X. Wang, and F. Li, “Federated 

learning-empowered collaborative data sharing for vehicular edge 

networks,” IEEE Netw., vol. 35, no. 3, pp. 116–124, May/Jun. 2021. 

[18] M. Gawas, H. Patil, and S. S. Govekar, “An integrative approach for 
secure data sharing in vehicular edge computing using blockchain,” 

Peer-to-Peer Netw. Appl., vol. 14, pp. 1–18, 2021. 

[19] M. Nakanoya, J. Im, H. Qiu, S. Katti, M. Pavone, and S. Chinchali, 

“Personalized federated learning of driver prediction models for 

autonomous driving,” arXiv preprint arXiv:2112.00956, 2021. 

[20] D. Su, Y. Zhou, and L. Cui, “Boost decentralized federated learning in 

vehicular networks by diversifying data sources,” in 2022 IEEE 30th 

Int. Conf. Network Protocols (ICNP), 2022, pp. 1–11. 

20 40 60 80 100

Proposed 92.3 94.9 96.2 97.8 99.1

FedVPS 91.6 93.1 95.2 96.9 97.3

TS-FSL 90.5 91.6 93.2 95.7 96.9

70

75

80

85

90

95

100

105

C
o
m

m
u

n
ic

a
ti

o
n

 E
ff

ic
ie

n
cy

 (
%

)

Number of Vehicles

Proposed FedVPS
TS-FSL



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2025/11                         Volume 12, Issue 2, March – April (2025) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       177 

     

RESEARCH ARTICLE 

[21] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized 

federated learning using hypernetworks,” in Int. Conf. on Machine 

Learning, 2021, pp. 9489–9502. 

[22] W. Y. B. Lim, J. Huang, Z. Xiong, J. Kang, D. Niyato, X. S. Hua, and 

C. Miao, “Towards federated learning in UAV-enabled internet of 

vehicles: A multi-dimensional contract-matching approach,” IEEE 

Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5140–5154, 2021. 

[23] X. Yuan, J. Chen, N. Zhang, C. Zhu, Q. Ye, and X. S. Shen, “FedTSE: 

Low-cost federated learning for privacy-preserved traffic state 

estimation in IoV,” in IEEE INFOCOM 2022-IEEE Conf. on 

Computer Commun. Workshops (INFOCOM WKSHPS), 2022, pp. 1–

6. 

[24] H. K. Hangdong, M. Bo, D. H. Darong, and Z. D. Zhaoyang, 

“FedVPS: Federated learning for privacy and security of internet of 

vehicles on non-IID data,” in 2023 IEEE 12th Data Driven Control and 

Learning Systems Conf. (DDCLS), 2023, pp. 178–183. 

[25] F. Liang, Q. Yang, R. Liu, J. Wang, K. Sato, and J. Guo, “Semi-

synchronous federated learning protocol with dynamic aggregation in 

internet of vehicles,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 

4677–4691, 2022. 

[26] Y. Wang, L. Xiong, X. Niu, Y. Wang, and D. Liang, “A federated 

learning-based privacy-preserving data sharing scheme for internet of 

vehicles,” in Int. Conf. on Frontiers in Cyber Security, Singapore, 

2022, pp. 18–33. 

[27] W. Jin, Y. Yao, S. Han, C. Joe-Wong, S. Ravi, S. Avestimehr, and C. 

He, “FedML-HE: An efficient homomorphic-encryption-based 

privacy-preserving federated learning system,” arXiv preprint 

arXiv:2303.10837, 2023. 

[28] C. Fang, Y. Guo, Y. Hu, B. Ma, L. Feng, and A. Yin, “Privacy-

preserving and communication-efficient federated learning in internet 

of things,” Comput. & Security, vol. 103, p. 102199, 2021. 

[29] R. Parekh, N. Patel, R. Gupta, N. K. Jadav, S. Tanwar, A. Alharbi, and 

M. S. Raboaca, “GEFL: Gradient encryption-aided privacy-preserved 

federated learning for autonomous vehicles,” IEEE Access, vol. 11, pp. 

1825–1839, 2023. 

[30] P. Agbaje, A. Anjum, A. Mitra, S. Hounsinou, E. Nwafor, and H. 

Olufowobi, “Privacy-preserving intrusion detection system for internet 

of vehicles using split learning,” in Proc. IEEE/ACM 10th Int. Conf. 

on Big Data Computing, Applications and Technologies, 2023, pp. 1–

8. 

[31] M. Wu, G. Cheng, D. Ye, J. Kang, R. Yu, Y. Wu, and M. Pan, 

“Federated split learning with data and label privacy preservation in 

vehicular networks,” IEEE Trans. Veh. Technol., 2023. 

[32] A. Padaria, A. A. Mehta, N. K. Jadav, S. Tanwar, D. Garg, A. Singh, 

and G. Sharma, “Traffic sign classification for autonomous vehicles 

using split and federated learning underlying 5G,” IEEE Open J. Veh. 

Technol., 2023. 

[33] M. Wu, G. Cheng, D. Ye, J. Kang, R. Yu, Y. Wu, and M. Pan, 

“Federated split learning with data and label privacy preservation in 

vehicular networks,” IEEE Trans. Veh. Technol., 2023. 

[34] X. Qiang, Z. Chang, C. Ye, T. Hamalainen, and G. Min, “Split 

federated learning empowered vehicular edge intelligence: Adaptive 

parallel design and future directions,” arXiv preprint 

arXiv:2406.15804, 2024. 

[35] X. Qiang, Z. Chang, Y. Hu, L. Liu, and T. Hämäläinen, “Adaptive and 

parallel split federated learning in vehicular edge computing,” IEEE 

Internet Things J., 2024. 

[36] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, and K. Y. 

Lam, “Local differential privacy-based federated learning for internet 

of things,” IEEE Internet Things J., vol. 8, no. 11, pp. 8836–8853, 

2020. 

 

How to cite this article: 

 

 

 

[37] K. S. Patil, I. Mandal, and C. Rangaswamy, “Hybrid and adaptive 

cryptographic-based secure authentication approach in IoT-based 

applications using hybrid encryption,” Pervasive Mobile Comput., vol. 

82, p. 101552, 2022. 

[38] BITVehicle. Kaggle: Your Machine Learning and Data Science 

Community. [Online]. Available: 

https://www.kaggle.com/datasets/kuanghangdong/bitvehicle 

<Accessed: 16/October/2024>. 

Authors 

Komala Soares graduated from University B.D.T. College 

of Engineering, Davanagere in Electronics and 

Telecommunication engineering in 1997 and obtained 

M.E. in Digital Electronics from S.D.M. College of 

Engineering, Dharward in 1999. Ms Komala Soares was 

employed at Padre conceicao College of Engineering, Goa. 

During her tenure, she held various positions and was 

promoted to Associate professor. In 2009. She accepted the job as Lecturer, 

Government Polytechnic, Altinho-Panaji-Goa. In 2015. She was promoted as 

Head of Department, Electronics and Communication Engineering in 2011. 

She completed her M.S. in Artificial Intelligence and Machine Learning 

(online) in 2022. And Joined Bharati Vidyapeeth (Deemed to 

be University) College of Engineering, Pune as research scholar. Mrs. Soares 

is member of many prestigious technical society like ISTE, IE, ISHRE. Her 

research interests include Machine Learning application in Vehicular 

Networks, artificial intelligence, and transport challenges. 

Dr. Arundhati A. Shinde Graduated in Industrial 

Electronics from Shivaji University and obtained Post 

graduation in in E & TC graduation from The Savitribai 

Phule Pune University. Also obtained Ph.D in Electronics 

from Bharati Vidyapeeth ( Deemed to be University). 

Currently she is working as an Head of Department and 

Professor in Electronics & Communication Engineering, 

Bharati Vidyapeeth Deemed to be University College of 

Engineering Pune India. She has 5 years industrial experience, 32 years 

teaching experience and 7 years research experience. She is Recipient of 

'Seva Gaurav Puraskar' conferred by Bharati Vidyapeeth University and 

published more than 25 research articles in peer reviewed journals and 

conferences. 

Dr. Mangal Patil obtained her B.E. in Electronics 

Engineering from Shivaji University, Kolhapur, India, in 

1999. She subsequently completed her M.E. and PhD at 

Bharati Vidyapeeth Deemed to be University, Pune, 

India, in 2006 and 2019, respectively. She currently 

holds the position of Associate Professor in the 

Department of Electronics & Communication 

Engineering at Bharati Vidyapeeth Deemed to be 

University College of Engineering, Pune, India. With an 

extensive teaching experience of 20+ years, her research domains encompass 

Speech Processing, Image Processing, Communication Systems, and 

Artificial Intelligence and more. She has contributed to over 60 peer-

reviewed research papers published in prominent journals and international 

conferences, focusing on cutting-edge methodologies and emerging 

technologies. 

 

 

 

Komala Soares, Arundhati A. Shinde, Mangal Patil, “PPFedSL: Privacy Preserving Split and Federated Learning Enabled 

Secure Data Sharing Model for Internet of Vehicles in Smart City”, International Journal of Computer Networks and 

Applications (IJCNA), 12(2), PP: 154-177, 2025, DOI: 10.22247/ijcna/2025/11.   

 

 

 

 

 

https://www.kaggle.com/datasets/kuanghangdong/bitvehicle

