
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 954

RESEARCH ARTICLE

Design of an Integrated Model Using Hybrid

Autoencoder and LSTM for Fault Tolerance and

Load Balancing in Cloud Environments

Nahita Pathania

School of Computer Science and Engineering, Lovely Professional University, Phagwara, India.

nahita.19372@lpu.co.in

Balraj Singh

School of Computer Science and Engineering, Lovely Professional University, Phagwara, India.

✉ balraj.13075@lpu.co.in

Received: 17 October 2024 / Revised: 16 December 2024 / Accepted: 24 December 2024 / Published: 30 December 2024

Abstract – Large and complex topologies in modern cloud

environments really call for factors such as fault tolerance and

efficient usage of resources. Current fault detection and load

balancing techniques are often found to be insufficient due to

known limitations of very high false positives, late detection, and

great redundancy overheads that often-become bottlenecks for

performance. To this effect, this work offers a new hybrid fault-

tolerant load-balancing framework with an integration of

multiple advanced techniques as follows: Hybrid Autoencoder-

Based Anomaly Detection (HAAD), Task-Level Replication

Using Intelligent Redundancy Allocation (TRA-IRA) and Long

Short-Term Memory (LSTM) networks for proactive failure

prediction operations. HAAD discovers known and unknown

faults by learning to discern the normal behavior of a system

using unsupervised autoencoders, which has achieved 97-98

percent accuracy in fault detection. TRA-IRA dynamically

allocates redundant replicas based on task priority and real-time

resource health predictions, reducing replication overhead by

20% while maintaining a task completion rate of 99.5%. The

LSTM network predicts imminent failures by analysing

temporal patterns in system metrics that enable task migration

up to 45 min before with 95-96% prediction accuracy. All these

techniques are easily integrable with Adaptive Resource

Reallocation via Genetic Algorithm (ARR-GA) with respect to

optimal scheduling. The Batfly Algorithm is used in an attempt

to manage the task. Therefore, due to the integration of these

approaches, it presents very efficient performance by increasing

by 45% the fault tolerance strength and enhancing the reliability

of a system by 50%. The response timestamp along with

makespan reduced between 15 to 20%. This model will offer a

scalable, dynamic, and robust method of cloud load balancing to

augment critical gaps in fault tolerance and optimizations of

resources.

Index Terms – Fault Tolerance, Autoencoder, LSTM Networks,

Load Balancing, Redundancy Allocation, Scenarios.

1. INTRODUCTION

The spreading of cloud computing infrastructures relies on

huge distributed virtualized resources and workloads.

Therefore, the use of efficient mechanisms in the detection of

faults as well as load balancing is important in maintaining

high availability, performance, and fault tolerance in cloud

services. Failures in the VMs, physical nodes, or network

components can disrupt service reliability, and it may result in

considerable periods of downtime and disgruntled customers.

Traditional redundancy allocation and threshold-based fault

detection techniques fail in large-scale clouds as they do not

adapt to changing operational conditions. The workloads,

changes in the consumption of resources, and the probabilities

of faults all change dynamically in a cloud [1, 2, 3]. Such a

demand creates the need for highly advanced and intelligent

models that can detect or predict faults adaptively, thereby

optimizing resource consumption in parallel. Current

solutions [4, 5, 6] have adopted either reactive mechanisms or

fixed threshold-based approaches toward fault detection,

where false positives are often very high, and failures get

unresponsive for a long time. In reactive approaches, models

respond only after a failure has happened and thus start

causing service interruptions. Furthermore, static models

cannot dynamically adapt to the changing cloud workloads,

which causes inefficient use of resources. Additionally, the

replication strategies for tasks in traditional models often

bring about redundancy, creating overhead and degradation in

performance. These limitations do, however, indicate the

urgent need to have an integrated framework that will

proactively predict failures, isolate faults in real-time, and

efficiently manage task redundancy and load balancing. This

paper introduces a new fault-tolerant load-balancing

framework called Hybrid Autoencoder-Based Anomaly

mailto:nahita.19372@lpu.co.in
mailto:balraj.13075@lpu.co.in

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 955

RESEARCH ARTICLE

Detection combined with task-level replication using

intelligent redundancy allocation and long short-term memory

networks for proactive failure prediction in cloud

environments. The proposed HAAD method utilizes

autoencoders from deep learning to learn the baseline

performance of cloud resources towards anomalies in system

behavior that are known or unknown. Such a redundant

resource allocation regarding dynamic prediction of the

priority of tasks and the health of VMs would ensure that

critical tasks remain protected while incurring redundancy

overhead. Simultaneously, time-series analysis on system

metrics will be carried out using LSTM to capture the

temporal patterns of failures in resources before they occur.

All these models are imbedded in an adaptive load balancing

framework, which would make the cloud infrastructure

adapted and changed within real-time stamp to varying

conditions, with high reliability and efficiency. Adaptive

Resource Reallocation via Genetic Algorithm (ARR-GA) is

further perfected and enhanced within this framework,

optimizing task scheduling and resources according to failure

prediction or detection. The Batfly Algorithm functions

efficiently on multi-dimensional optimization tasks with

scheduling tasks across the infrastructure of clouds. This

holistic approach to design issues makes it highly fault-

tolerant and optimizes resources to make better resource

utilization, which is something conventional methods fail to

achieve in the process.

Cloud computing has emerged as the core of modern digital

infrastructure with scalable, on-demand access to

computational resources. However, the complexity of cloud

environments is making it harder to maintain high

availability, reliability, and efficient resource usage. Among

the most important factors influencing the quality of cloud

services, perhaps the most significant factor is system faults.

System faults can appear in totally random places within

VMS, physical nodes, or network elements. They can lead to

many downtimes, waste a lot of resources, and unhappy users

if it doesn't address these faults soon and efficiently. The

dynamic nature of cloud workloads as well as the requirement

of optimal performance call for intelligent load balancing that

adapts to varied conditions with minimal overhead.

Most of the traditional fault tolerance approaches, including

threshold-based methods and reactive techniques, fail for

most large-scale and dynamic clouds. The reactive approaches

react after faults have actually occurred, and service

interruption is caused by them; the static thresholds are

insensitive to changing workload patterns and varied resource

consumption patterns. Adding to this, resource over-allocation

has resulted in conventional redundancy solutions, hence less

effective and higher operational costs. These needs express a

demand for new intelligent frameworks capable of proactive

fault detection, effective and dynamic load balancing, and

optimized resource allocation.

A novel fault-tolerant load-balancing framework with the

combination of three state-of-the-art techniques is proposed in

this paper, namely Hybrid Autoencoder-Based Anomaly

Detection, Task-Level Replication Using Intelligent

Redundancy Allocation, and Long Short-Term Memory

networks. The use of deep learning by HAAD enables both

known and unknown anomaly detection and reduces false

positives for fault detection. TRA-IRA optimizes task

replication using dynamically allocated redundancy based on

priority and real-time prediction of resource health. The

LSTM network makes the framework proactive with respect

to predicting impending failures from temporal patterns in

system metrics before any disruption occurs. Then, adaptive

resource reallocation using genetic algorithms builds on these

techniques by optimal task scheduling and utilization of

resources.

The proposed model will, for the first time, balance the tasks

of fault tolerance and resource efficiency, which have never

been solved in any previously proposed solution. These are

achieved in the improvement of task completion rates, with a

reduction in recovery times as well as in operational

overhead, while remaining robust in fault detection that also

improves precision in predicting failures and better resource

usage. This work thus contributes research not only in

designing but also in demonstrating the superior performance

of an integrated framework through comprehensive

evaluations carried out on benchmark datasets such as Google

Cluster Data and Bitbrains Resource Traces.

1.1. Motivation & Contribution

The motivation for this work comes from the increasing

complexity of cloud environments and the inadequacies of

traditional fault-tolerance mechanisms in maintaining both

service reliability and resource efficiency. With cloud

infrastructures now supporting all sorts of applications, from

enterprise-level services to latency-sensitive IoTs, the

potential to identify failures that will happen promptly and

predict those likely to happen within a short period is of

paramount importance. Such traditional fault-detection

methods, which are majorly reactive or threshold-based, are

considered insufficient to handle the needs of modern clouds,

as faults are notorious for occurring unpredictably, and the

resource consumption patterns are highly diverse in the course

of the process. These limitations not only lead to service

outages but also lead to inefficient resource usage due to the

over-allocation of redundant tasks leading to unnecessary

overheads. What this contribution achieves is the design and

development of an integrated fault-tolerant load-balancing

framework, bringing together strengths of three approaches

that go as such: hybrid autoencoder-based anomaly detection,

intelligent task-level replication, and LSTM-based failure

prediction. The three individual approaches individually fill

three critical gaps in the current fault-detection and resource-

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 956

RESEARCH ARTICLE

allocation systems. Hence, the paper outlines an integrated

model that collates such techniques into a uniform solution

that serves to increase the accuracy of fault detection,

minimize redundancy overhead, and optimize resource usage.

The HAAD method uses deep learning autoencoders to

identify known as well as unknown anomalies with fewer

false positives. TRA-IRA allocates the redundancy

intelligently depending on the priority and the predicted

probability of failure of tasks, thereby minimizing the

unnecessary replication of critical components. Lastly, LSTM

networks provide a proactive mechanism for failure prediction

where the system can migrate tasks away from resources that

are likely to fail, thereby reducing service disruption. In this

sense, combining these methods with a load-balancing

framework supported by ARR-GA for resource reallocation

and the Batfly Algorithm for scheduling of tasks would

represent an important step forward in cloud fault tolerance

mechanisms. This approach not only enhances the robustness

and fault tolerance of cloud environments but also contributes

to better resource utilization, resulting in a reduction of

overall operational costs and improved performance.

The rest of this paper is structured as follows: Section 2

presents an in-depth overview of related work that discusses

techniques involving fault tolerance and load-balancing

techniques available in cloud environments. Section 3

presents the proposed integrated model and all its technical

underpinnings, including HAAD, and TRA-IRA with the

LSTM network for proactive failure prediction. Section 4

details the experimental setup along with metrics that are used

for evaluation in this process. In section 5 we discuss the

proposed model, and then finally, Section 6 concludes the

paper, summarizing the contributions and directions for future

work sets.

2. RELATED WORK

The past few years have seen the complexity and scale of

distributed systems pushing fault-tolerant cloud computing

forward. This review examines some of the diverse methods

ranging from the usage of the genetic algorithm and deep

learning models to blockchain-based architectures and

consensus mechanisms. All the selected papers, each had

presented a different viewpoint about the challenges this is

causing due to system failure and disruption, and each

collectively gives a wholesome view of the state of the art in

the present scenario of fault tolerance and load balancing in

cloud environments. The summary of existing approaches is

provided in Table 1.

Ray et al. [1] present a proactive fault-tolerant technique that

builds up the reliability of cloud services within federated

environments. Their approach to research deals with virtual

machine migration, with an attempt to decrease the costs of

migration while keeping a reliability/performance trade-off.

Rehman et al. [2] extends the scope of fault-tolerance metrics

by investigating both system-level and component-level

metrics on a range of cloud and edge computing systems,

including 5G networks. Their work provides evidence of the

growing need for multi-level fault-tolerance frameworks for

new cloud technologies. Moreover, Tawfeeg et al. [3] focus

on the utilization of reactive fault-tolerance techniques and

dynamic load balancing through a systematic literature

review. The paper thus illustrates the need for adaptive

mechanisms for load balancing that could react to the real-

time change in workload. Moreover, it points out the

necessity for proactive as well as reactive fault tolerance

mechanisms. Dehury et al. [4] developed a new concept called

RRFT, which uses rank-based resource allocation combined

with fault tolerance. Their approach incorporates Markov

decision processes for resource-aware management on cloud

platforms; this is an important contribution to resource-aware

fault-tolerant strategies. Similarly, the authors, Ramesh et al.,

[5] have designed a hybrid genetic algorithm with simulated

annealing to minimize latency in virtual machine migrations

that aims at proactive fault tolerance. This method employs

the use of integer linear programming so as to avoid critical

delay in migration as it is crucial in cloud environments where

service continuity has to be taken care of. Saxena et al. [6]

present a framework that manages elastic resources

integrating fault tolerance with failure prediction so as to

increase the availability of services offered through clouds.

This is the contribution that is essential in the integration of

predictive models into systems with fault tolerance and

optimizing recovery timestamps with those used with

resources. Mushtaq et al. [7] have proposed a fault-tolerant

scheduling method to be used in cloud environments to

enhance resource utilization, which integrates neighboring

reservations into task scheduling. This approach results in

lowering the chances of errors in the task-allocation process

because neighboring reservations are preserved as backup

copies, thus reducing the rate of failures of tasks. Mudassar et

al. [8] work on latency-aware fault tolerance at edge point

runs of IoT applications. Their adaptivity strategy falls in line

with the new trend of edge computing and low-latency fault-

tolerance strategies are key components in distributed IoT

systems. Chen et al. [9] continue in this development with

deep reinforcement learning as they enhance its applicability

to serve function chain optimizations in SDN/NFV-enabled

environments for clouds, and then demonstrate the value of

machine learning in the fault-tolerant optimization of services

in clouds. Jing et al. [10] also report a consensus protocol

specifically designed for edge computing environments with

byzantine resilience as the primary focus. Their scheme

makes the collaborative services of such networks fault-

tolerant, even under malicious attacks or disruptions. Tang

[11] focuses on the cost-efficiency of scheduling scientific

workflows across multi-cloud systems, which ensures

scheduling with faults and reliability-aware strategies. This

work is used instrumentally in order to balance performance

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 957

RESEARCH ARTICLE

with cost, especially in environments that deal with scientific

computing, where the importance of task scheduling is

immense. Zhao et al. [12] come up with a model based on

blockchain technology in order to ensure data security in the

context of environmental monitoring systems. They cite the

intersection of fault tolerance and block chain technology.

Their model integrates a practical Byzantine fault tolerance

mechanism, which ensures the secure and fault-tolerant

acquisition and monitoring of data in cloud environments.

Yao et al. [13] proposed a hybrid scheduling strategy for

deadline-constrained tasks within cloud systems using a

combination of resubmission and replication strategies, which

shows how relevance in choosing hybrid approaches to ensure

the fault tolerance most especially with time-critical

applications. Meng et al. [14] discuss service-oriented

reliability modeling using Markov models to enhance the

optimization of public cloud system reliability. Their work

further goes on to emphasize the need for model-based formal

techniques in failure prediction and failure management. Zhao

et al. [15] present a new address and routing architecture

specifically designed for cloud-service data centers with a

load balancing and fault tolerance perspective. The

architecture provided scalable data center systems

accompanied by fault tolerance routing mechanisms.

Likewise, Ahmad et al. [16] deal with the issue of workflows

and design an approach for the fault-tolerant scheduling

system for cloud computing resources. Their work especially

addresses the requirements in managing large-scale

workflows such as CyberShake and Montage. Yao et al. [17]

addressed this issue from a slightly different angle; they

looked at failure-aware elastic scheduling which ensures that

there are fault-tolerant workflows over fat-tree topologies for

common cloud data centers. Chen et al. [18] proposed secure

and fault-tolerant storage for cloud-edge collaborative

systems. They enhanced the resiliency and performance of

edge storage systems used erasure coding and management

using SDN-based storage. Al-Makhlafi et al. [19] introduce

RibsNet, a two-layer cloud data center architecture, where

scalability and cost efficiency accompanied by fault tolerance

are emphasized. This double-centric design provides further

incremental scalability and recovery of faults in large data

centers. Ahmed et al. [20] introduce blockchain-based

security and quality-of-service mechanisms in vehicular IoT

networks; fault tolerant and low latency by integrating the

edge computing process is provided.

Related works in the area of fault tolerance and load

balancing in cloud environments are some diverse

methodologies, each of which has its advantages and

limitations. Ray et al. [1] were the first to propose a proactive

fault-tolerance technique suitable for cloud federation

environments reliant on virtual machine migration and

enhancing reliability while reducing cost. This architecture

resulted in improving system reliability but was scaled in very

few systems because of the extra overhead related to VM

migration in such systems. Rehman et al. [2] designed a fault-

tolerance framework for cloud and edge systems by utilizing

system and component-level metrics, making it relevant to

emerging technologies like 5G. Although the above

framework enhanced resilience remarkably, this failed to

address hybrid-cloud configuration and lacked proactive

failure-prevention mechanisms. Tawfeeg et al. [3] give

systematic reviews that have considered dynamic load

balancing along with reactive fault tolerance. The work

addresses the importance of dynamic load management but

could not shed light on extensification in experimentation and

focuses on only reactive approaches. Dehury et al. [4] have

introduced the RRFT framework, wherein resource-aware

fault tolerance is carried out by ranking the components with

the help of a Markov decision process. Even though this

design has increased the reliability of tasks as well as utilized

resources better, it came up with inefficiencies of dynamic

workload scenarios and enhanced latency for reassigning

resources.

Saxena et al. [6] proposed a framework for elastic resource

management that integrates failure prediction. This strategy

does not fully address redundancy overhead and its trade-off

with fault tolerance although it enhances the availability and

optimizes the usage of resources.

Mushtaq et al. [7] presented a fault-tolerant scheduling

technique by using neighboring reservations, which

minimized task failures with resource utilization. Even though

the method improved the fault tolerance, it was not as

adaptive to dynamic configurations because it mainly used

guaranteed neighboring reservations. Chen et al. [9] adopted

deep reinforcement learning to optimize the service function

chaining for the cloud environment that is enabled with SDN

and NFV sets. This improved quality of service along with

fault tolerance; however, the implementation has a drawback

regarding computation overhead and adaptability to huge

systems.

Table 1 Summary of Existing Approaches

Paper

Reference

Methodology Key Findings Limitations

Ray et al. [1] Proactive Fault-Tolerance for Cloud

Federation: Uses VM migration to enhance

reliability and reduce migration costs.

Improved reliability and

fault tolerance in federated

cloud environments.

High computational overhead;

scalability challenges in large

federations.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 958

RESEARCH ARTICLE

Rehman et

al. [2]

Fault-Tolerance Framework for Cloud &

Edge Systems: Uses system and component-

level metrics for fault tolerance.

Enhanced resilience in 5G

and edge environments.

Limited to specific use cases

like 5G; lacks support for

hybrid environments.

Tawfeeg et

al. [3]

Dynamic Load Balancing with Reactive

Fault Tolerance: Systematic literature review

emphasizing load balancing and reactive

fault tolerance.

Highlights adaptability under

varying workloads.

Focuses solely on reactive

approaches; lacks predictive

mechanisms.

Dehury et al.

[4]

RRFT: Markov decision process for rank-

based resource allocation.

Improved reliability and

optimized task allocation.

Ranking inefficiencies under

dynamic workloads.

Ramesh et

al. [5]

Hybrid Genetic Algorithm & Simulated

Annealing for VM Migration: Combines

optimization techniques for fault tolerance.

Minimized latency in VM

migrations; improved

recovery.

Computational complexity

restricts scalability.

Saxena et al.

[6]

Elastic Resource Management with Failure

Prediction: Integrates prediction for dynamic

elasticity.

Improved service availability

and resource usage.

Limited focus on optimizing

redundancy overheads.

Mushtaq et

al. [7]

Fault-Tolerant Task Scheduling with

Neighboring Reservations: Uses neighboring

reservations for improved scheduling.

Enhanced utilization and

reduced task failures.

Requires neighboring

resources, limiting flexibility.

Mudassar et

al. [8]

Latency-Aware Fault Tolerance for IoT in

Edge Computing: Adaptive strategies for

latency-sensitive tasks.

Improved latency handling

and fault resilience in IoT

systems.

Applicability is limited to IoT

workloads.

Chen et al.

[9]

Deep Reinforcement Learning for SFC

Optimization in SDN/NFV Clouds:

Optimizes service function chaining.

Improved QoS and elasticity

in SDN/NFV clouds.

High computational costs;

limited scalability.

Jing et al.

[10]

Byzantine Resilient Consensus for Edge

Computing: Ensures fault tolerance under

adversarial conditions.

Enhanced reliability in

collaborative edge services.

High complexity in consensus

mechanisms.

Tang et al.

[11]

Reliability-Aware Workflow Scheduling for

Multi-Cloud Systems: Cost-efficient

scheduling with reliability considerations.

Balanced cost and

performance in scientific

workflows.

Limited support for highly

dynamic workloads.

Zhao et al.

[12]

Blockchain-Based Data Security for

Environmental Monitoring: Uses Byzantine

fault tolerance in monitoring systems.

Improved fault tolerance and

security.

High overhead in blockchain-

based systems.

Yao et al.

[13]

Hybrid Fault-Tolerant Scheduling for

Deadline-Constrained Tasks: Combines

resubmission and replication strategies.

High reliability and

efficiency in time-critical

tasks.

Resource overhead in non-

critical scenarios.

Meng et al.

[14]

Reliability Modeling for Public Clouds: Uses

Markov models for service optimization.

Improved reliability through

predictive models.

Limited real-time adaptability.

Zhao et al.

[15]

Addressing and Routing Architecture for

Cloud Datacenters: Combines fault tolerance

with load balancing.

Scalable architecture for

datacenters.

Limited support for

heterogeneous systems.

Ahmad et al.

[16]

Workflow Management for Scientific Tasks

in Clouds: Fault-tolerant scheduling for

large-scale workflows.

Improved reliability in

scientific computations.

Limited adaptability for small,

dynamic workloads.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 959

RESEARCH ARTICLE

Yao et al.

[17]

Failure-Aware Workflow Scheduling in

Elastic Clouds: Optimizes workflows in fat-

tree topologies.

Enhanced fault tolerance in

elastic scheduling.

Focused on specific topologies;

lacks generalizability.

Chen et al.

[18]

Secure Fault-Tolerant Storage for Cloud-

Edge Systems: Uses erasure coding and SDN

for data resiliency.

Improved edge storage

reliability.

Overhead in managing erasure

coding.

Al-Makhlafi

et al. [19]

RibsNet: Two-Layer Cloud Datacenter

Network: Scalable, cost-efficient, and fault-

tolerant architecture.

High performance and

scalability in large

datacenters.

Complexity in managing multi-

layer networks.

Ahmed et al.

[20]

Blockchain-Based QoS in Vehicular IoT

Networks: Integrates fault tolerance and

security in edge environments.

Improved QoS and fault

resilience in IoT.

High latency in consensus

mechanisms.

Cerveira et

al. [21]

Soft Error Mitigation in Virtualization

Servers: Uses fault injection techniques to

enhance dependability.

Improved dependability in

virtualization environments.

Limited to specific fault types;

lacks generality.

Chen et al.

[22]

Scaling Byzantine Fault Tolerance with

Sharding: Optimized consensus for

distributed systems.

Improved scalability in

Byzantine fault tolerance.

Complexity in shard

management and coordination.

Xu et al.

[23]

Privacy-Preserving Fault-Tolerant Data

Aggregation: Protects time-series data in

semi-trusted environments.

Improved privacy and fault

resilience.

Limited to specific IoT

systems.

Long et al.

[24]

DDPG-Based Fault-Tolerance in MEC: Uses

policy gradient methods for dynamic fault

handling.

Improved resource allocation

in edge computing.

Dependency on high-quality

training data.

Ghanavati et

al. [25]

Automata-Based Task Scheduling in Fog

Computing: Dynamic scheduling with

learning automata.

Fault resilience in

constrained fog

environments.

Limited scalability in high-

density fog networks.

Yao et al. [13] integrated task resubmission and replication to

the hybrid fault-tolerant scheduling of deadline-constrained

tasks. This technique attained high reliability with high

efficiency but introduced increased redundancy in non-critical

applications.

In addition, Cerveira et al. [21] make use of various

mitigation techniques, including fault injection, to research

the effects of soft errors in virtualization servers to enhance

dependability in cloud services. Chen [22] scaled Byzantine

fault-tolerant consensus by sharding optimization and led to

the development of a concurrent Byzantine fault tolerance

(BFT) mechanism for enhancing scalability in distributed

systems in the cloud. Xu et al. [23] have proposed work on

privacy-preserving and fault-tolerant aggregation of time-

series data in IoT systems. Their approach ensures that the

data is secure and fault-tolerant even in semi-trusted

environments. Finally, Long et al. [24] applied DDPG

techniques to introduce fault tolerance into mobile edge

computing, thus enhancing service reliability and utilizing

dynamic resource allocation. However, this approach was not

very scalable or generalizable for the centralized cloud

environments and heavily relied on the quality of training data

samples. Collectively, these works reflect significant steps

toward fault tolerance and load balancing in the cloud. Yet,

scalability, computational overhead, and the restricted

applicability of such approaches to dynamic or hybrid-cloud

settings are all avenues for further research and innovation.

To advance the state-of-the-art in cloud fault-tolerant systems,

predictive capabilities must be combined with resource

optimization and balancing between fault tolerance and

redundancy. Ghanavati et al. [25] propose a fog computing

automata-based dynamic fault-tolerant task scheduling

approach adapted to the learning automata at runtime by

providing guaranteed fault tolerance in resource-constrained

environments. The reviewed papers give an overall

comprehensive view of the latest innovations in fault

tolerance in cloud and edge computing environments.

Essentially, the papers revolve around enhancing the

reliability of the system, task scheduling efficiency, and

utilization of resources on optimum levels through fault-

tolerance mechanisms. A few papers that come up in this

regard are Ray et al. [1], and Ramesh et al. [5] oriented

toward proactive fault tolerance by intelligent migration

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 960

RESEARCH ARTICLE

strategies while other papers indicate that Chen et al. [9], and

Long et al. [24] were based on machine learning for optimum

fault tolerance.

However, the challenge is to scale these mechanisms of fault

tolerance in multi-cloud and hybrid environments with

increased complexity in distributed systems. Future research

should continue at the juncture of machine learning and fault

tolerance by Chen et al. [9] and be able to design adaptive

intelligent fault-tolerant systems. It is also the case that

privacy-preserving mechanisms, as discussed by Xu et al.

[23], will be of utmost importance because cloud systems tend

to process sensitive and even mission-critical samples of data.

Finally, work on blockchain and decentralized architectures,

including Zhao et al. [12] and Ahmed et al. [20], holds much

promise for achieving fault tolerance while maintaining

strong security levels. In a nutshell, the work inside these

papers shows great progress toward significant advancement

of fault tolerance in cloud and edge computing. Indeed, the

use of predictive models, deep learning, and consensus

mechanisms has revolutionized how failures can better be

tackled and mitigated in complex cloud environments. Future

work should continue to integrate innovation toward resilient,

scalable, and secure fault-tolerant cloud computing solutions.

Despite the significant advancements in fault tolerance and

load balancing techniques, existing approaches exhibit critical

gaps that necessitate the development of a more robust and

adaptive framework. Many of these approaches are based on

reactive mechanisms, which are fault-based; they will only act

on faults when they occur. This creates service interruptions

and increased recovery time. The static and threshold-based

models do not work well for the dynamic and heterogeneous

nature of modern cloud environments, causing inefficiency in

the use of resources and resulting in increased operational

costs. Although some recent work has attempted to integrate

machine learning in fault prediction and resource

optimization, these approaches are usually either too

computationally expensive, lack scalability, or apply to only a

very limited number of scenarios. Additionally, the traditional

redundancy allocation strategies either underutilize resources

or impose excessive overhead due to inefficient replication.

All these limitations call for a holistic solution that can

proactively detect anomalies, predict failures with high

accuracy, and optimize redundancy allocation dynamically.

That way, it addresses these challenges and integrates

advanced techniques, for example, hybrid autoencoders,

LSTM-based failure prediction, and intelligent task

replication, to deliver scalable, proactive, and resource-

efficient frameworks for fault-tolerant load balancing in cloud

environments.

3. PROPOSED MODEL

In order to overcome issues of low efficiency & high

complexity which are present in the existing fault-tolerant

approaches, this chapter discusses the design of an integrated

model using a hybrid autoencoder and LSTM for fault

tolerance and load balancing in cloud environments.

Primarily, referring to figure 1, the design of the Hybrid

Autoencoder-Based Anomaly Detection (HAAD) model in

Fault Detection in Infrastructure Management (FDIM)

involves using deep learning autoencoders where the

deviation between original and reconstructive values caused

by the failure is determined by reconstructing input data.

Autoencoders may be the type of unsupervised learning

architecture that may be very useful for the anomaly detection

task. The reason is it learns normal patterns of a system by

training. According to this context, the autoencoder for FDIM

was trained using the available metrics that measure the

performance of the system like CPU usage, memory

consumption, disk I/O, and network latency that are mapped

into a compressed latent space. The autoencoder then attempts

to reconstruct those input features using low-dimensional

encoding. Primarily, reconstruction errors are focused on

training timestamp instance sets. Via equation (1), the

reconstruction error 'E' that is minimized by the model is

given by the square difference between the original input

vector 'x' and its reconstructed counterpart x',

𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑥’𝑖)2 (1)

𝑛

𝑖=1

Where, 'n' is the number of input dimensions, and xi is each

system metrics measured which act as an input to the

procedures. The anomalies are detected whenever the

reconstruction error is more than a certain threshold τ, defined

in reference to a statistical analysis of training error

distributions, as a function of the mean μE and standard

deviation σE of the training errors, as shown in the equation

(2),

𝜏 = 𝜇𝐸 + 𝑘 ⋅ 𝜎𝐸 (2)

Where 'k' is a hyper parameter defining the sensitivity of the

anomaly detection process. Heavy reconstruction errors point

out the divergences of input data from the normal state

behavior, indicating possible faults in deployments. The

autoencoder's loss function, 'L', is optimized during training

due to the backpropagation and gradient descent operators.

The loss function finds its source from the MSE between

input and output as given via equation (3),

𝐿 =
1

𝑛
∑(𝑥𝑖 − 𝑓(𝑔(𝑥𝑖; 𝜃𝑔); 𝜃𝑓))

2
 (3)

𝑛

𝑖=1

Where g(x;θg) is the encoder function parameterized by θg

and f(z;θf) is the decoder function parameterized by θf, where

z is a latent space representation of the input sets. Gradients of

'L' with respect to θg and θf are computed, and the parameter

is updated via equation (4),

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 961

RESEARCH ARTICLE

𝜃 ← 𝜃 − 𝜂
𝜕𝐿

𝜕𝜃
 (4)

where η is the learning rate for the present process. The

autoencoder learns to compress and reconstruct system data

effectively for different operations. Simultaneously, the TRA-

IRA model serves as a complement to HAAD: tasks are

dynamically replicated based on failure risk predictions with

respect to task criticality. TRA-IRA is designed to minimize

replication overhead without loss of redundancy for high-

priority tasks that might survive possible failures. This is

achieved through the use of a predictive decision model for

determining the optimum replica sets to be used for each task

taking into account the failure probability of the VM Pf,

priority of tasks Pt, and the available resources 'R' for the

process. The function Rt for each of the task’s 't' is thus

defined as follows as a function of task priority and failure

probability as given via equation (5),

𝑅𝑡 = 𝛼 ⋅ 𝑃𝑡 ⋅ 𝑃𝑓 + 𝛽 ⋅ (1 − 𝑃𝑓) (5)

Where α and β are coefficients that balance the weights of

redundancy importance for high-priority tasks and the weight

of replication minimization for low-risk scenarios. The failure

probability Pf is computed, based on real-time monitoring of

system metrics and historical failure data, using a logistic

regression model via equation (6),

𝑃𝑓 =
1

1 + 𝑒−(𝑤⋅𝑥+𝑏)
 (6)

Where, w represents the weight vector and 'b' is the bias term,

learned during training using historical system metrics data

samples. This predictive model is continually updated as new

data becomes available, ensuring that redundancy allocation is

always optimized based on current conditions. The resource

allocation constraint Cr ensures that total resource usage for

task replication does not exceed the available resources 'R',

formulated via equation (7),

∑ 𝑅𝑡

𝑇

𝑡=1

≤ 𝑅 (7)

Figure 1 Model Architectural Flow of the Proposed Fault Tolerance Process

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 962

RESEARCH ARTICLE

Where 'T' denotes the total number of tasks and 'R' is the total

available computational resource pool sets. This restriction is

vital to avoid over-allocations of replicas that could result in

further resource exhaustion processes degrading the system's

services. The integration of HAAD and TRA-IRA is justified

by the complementary functions that they provide. In the case

of HAAD, good functionality of anomaly detection in system

behavior is found. At the other end, TRA-IRA ensures higher-

risk tasks of failure are protected adequately via dynamic

replication. Both these models have reduced the failure rates

with both real-time fault detection and proactive redundancy

on tasks. In addition, advance statistical and machine learning

models provide a self-adaptive system in large-scale cloud

environments to change dynamically as workloads and failure

conditions change; in such large-scale environments, task and

system behaviors are highly variable in the process.

1. Input: Real-time system metrics (CPU usage, memory,

disk I/O, network latency), historical resource data, task

priority, available resources.

2. Initialization: Set thresholds for anomaly detection,

configure LSTM for failure prediction, and initialize

parameters for redundancy allocation in TRA-IRA.

3. Anomaly Detection:

o Collect real-time metrics and preprocess them.

o Pass metrics through the Hybrid Autoencoder-Based

Anomaly Detection (HAAD) model.

o Identify anomalies when the reconstruction error

exceeds the predefined threshold.

4. Proactive Failure Prediction:

o Use LSTM to analyze historical and real-time Data

Samples.

o Predict failure probability for the next time window.

o Flag resources with high failure likelihood for

corrective action.

5. Task-Level Redundancy Allocation:

o Assess task priority and predicted failure probability.

o Allocate replicas dynamically based on task criticality

and resource availability using TRA-IRA.

6. Adaptive Resource Reallocation:

o Trigger corrective actions such as task migration or

resource reallocation for high-risk resources.

o Balance resource allocation to prevent bottlenecks and

overutilization.

7. Monitoring and Updates:

• Continuously monitor system performance. Update

predictive models and allocation strategies based on

incoming Data Samples.

Algorithm 1 Fault-Tolerant Load Balancing Framework

Figure 2 Model Architecture of the Proposed Fault Detection Process

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 963

RESEARCH ARTICLE

Next, based on figure 2, the Proactive Failure Prediction

model using LSTM networks has been integrated, according

to which, it depends on the requirement to predict system

failures within cloud environments through time dependencies

analysis in utilization metrics of resources. LSTM networks

are especially suited to this task, as they are able to consider

long-term dependencies in a time series, and in many ways, it

minimizes the problems due to typical RNNs by the presence

of either vanishing or exploding gradients. Based on historical

data like the CPU load, network latency, memory usage, and

temperature, an LSTM network learns temporal patterns

leading to system failure. This supports the prediction of

possible failures before occurrence, thereby allowing time for

enough timestamps to take pre-emptive correcting actions

such as task migration or resource reallocation operations.

This failure prediction model relies on a sequence of input

vectors: xt=[xt(1),xt(2),…,xt(n)], wherein the xt denotes the

system metrics at the time set 't'. The LSTM cell is majorly

made up of three significant gates; the input gate 'it', the forget

gate 'ft', and the output gate 'ot' sets. The cell state Ct can be

updated based on the earlier cell state C (t−1) and input

information, governed via equations (8), (9) & (10),

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖) (8)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓) (9)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜) (10)

Here, σ represents the sigmoid activation function, Wi, Wf,

and Wo represent the weight matrices for the input, forget,

and output gates respectively, and bi, bf, and bo represent

their corresponding bias terms. Via equation (11), the hidden

state ht that is the output of the LSTM cell is updated with the

cell state Ct and the output gate,

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡) (11)

The cell state Ct is then updated with the forget gate 'ft' and

the input gate 'it' to maintain or discard information

appropriately via equation (12),

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶(𝑡 − 1) + 𝑖𝑡
⋅ 𝑡𝑎𝑛 ℎ(𝑊𝐶 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝐶) (12)

Wherein the forget gate is utilized to limit the quantity of

earlier cell state C(t−1) retained, and the input gate controls

the quantity of new information to be added to the cell states

at the right time. The network is trained to predict the failure

probability Pf for the next timestamp, which is gotten through

hidden state 'ht' at the last timestamp sets. The failure

probability is modeled using a softmax function for binary

classification via equation (13),

𝑃𝑓 =
𝑒𝑊𝑓⋅ℎ𝑡+𝑏𝑓

1 + 𝑒𝑊𝑓⋅ℎ𝑡+𝑏𝑓
 (13)

Where Wf and bf are the weights and bias for the softmax

layers. This failure probability Pf turns out to be an indicator

of the likelihood of consequent failure, and thereby high

values call for pre-emptive mitigation actions. The loss

function for the LSTM network is the cross entropy loss

computed via equation (14) that penalizes incorrect

predictions of failure probabilities,

𝐿 = −
1

𝑁
∑(𝑦𝑡 ∗ log(𝑃𝑓) + (1 − 𝑦𝑡) log((1 − 𝑃𝑓))) (14)

𝑁

𝑡=1

Where ‘N’ is the number of timestamps in the prediction

window, yt is the ground truth label (0 for normal operation, 1

for failure), and Pf is the predicted failure probability for this

process. The LSTM model is trained by minimizing this loss

function using backpropagation through timestamp (BPTT),

with gradient updates computed via equation (15),

𝜕𝐿

𝜕𝜃
= ∑

𝜕𝐿𝑡

𝜕ℎ𝑡
⋅

𝜕ℎ𝑡

𝜕𝜃
 (15)

𝑁

𝑡=1

Where θ are trainable parameters for the LSTM network

composed of weights and biases present at the input, forget,

and output gates. Optimization uses the gradient descent with

learning rate η thus updating the parameters via equation (16),

𝜃 ← 𝜃 − 𝜂
𝜕𝐿

𝜕𝜃
 (16)

This choice of using LSTM networks for the prediction of

failure is justified through the reason that it can capture

sophisticated temporal dependencies involved in the cloud

system metrics that often expose long-term correlations not

easily detectable by the simpler models. Properties of memory

cells and gated mechanisms enable LSTM to selectively keep

relevant information over time, making them well-suited for

predicting resource failures evolving over temporal instance

sets. This model complements other modules of the proposed

framework, such as HAAD and TRA-IRA, by giving early

warnings of impending failures, thus having proactive actions

like task migration and redundancy allocation. As HAAD and

TRA-IRA are more concentrated on the timely detection of

anomalies and efficient replication tasks, respectively, this

LSTM-based model gives a forward-looking prospective by

predicting future failures. This proactive capability reduces

the risk of disruption, as corrective actions could be taken

ahead of time, according to the anticipated probability of

failure. From the viewpoint of resource optimization, this

prediction model supported by an LSTM helps avoid

unnecessary task duplication by finding VMs with low

probable failure and lets TRA-IRA concentrate efforts on the

redundancy of components at high risk. The integrated design

that is shown in algorithm 1 must achieve a balanced trade-off

between fault tolerance and resource efficiency, thus leading

to better overall system reliability and reduced operational

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 964

RESEARCH ARTICLE

costs. The final part of the paper discusses the efficiency of

the proposed model according to several metrics and

comparison with other existing methods in different scenarios.

4. RESULTS AND DISCUSSIONS

The experimental setup to test the proposed fault-tolerant load

balancing model shall incorporate an advanced simulation

environment for a fully extensive cloud infrastructure, which

is designed to operationalize real-world conditions.

Configured using a cluster of virtual machines (VMs) running

on a private cloud platform, each VM was provisioned to

simulate diversified workloads. The VM configurations vary

with different capacities for CPU, memory, and disk I/O;

hence, heterogeneity in resource availability is taken into

consideration. The system metrics used as input for the

models comprise CPU usage, measured in percentage,

memory usage in GB, disk I/O throughput measured in MB/s,

network latency in ms, and VM temperature in °C. These

metrics are collected continuously, at 10-second intervals for

several weeks in order to build a robust dataset that can be

applied for training the HAAD and LSTM networks. Samples

of contextual data were derived from real-time logs of cloud

infrastructure such as Google Cluster Data and Bitbrains

resource traces. Such datasets provide historical records of

resource utilization and failure occurrences, that are

fundamental for training the LSTM network for failure

prediction and the autoencoder for anomaly detection. Each

VM is therefore assigned a failure likelihood score based on

historical data that informs the redundancy allocation in Task-

Level Replication Using Intelligent Redundancy Allocation

(TRA-IRA). For experimental evaluation, the Google Cluster

Data and the Bitbrains Resource Traces are used datasets both

of which are well-known within research on cloud

infrastructure for offering rich, realistic samples of system

performance data. Google Cluster Data comprises logs over

more than 29 days on resource usage at Google's production

data centers, covering CPU utilization, memory use, disk I/O,

and machine status events. The dataset covers thousands of

machines and tasks hence is more suitable for modeling

system anomalies and failures in large-scale distributed

environments. On the other hand, Bitbrains Resource Traces

provide detailed performance metrics coming from

infrastructure from a European cloud provider's infrastructure

including resource utilization from VMs, failures, and

workloads. It spans a few weeks and can be used

appropriately for capturing longer-term temporal

dependencies in patterns of resource usage. The two datasets

have been employed both to train the LSTM for proactive

failure prediction as well as to test the autoencoder for

anomaly detection, which means that the model learns from

realistic fluctuations in demand for resources, failure events,

and the impact they have on system behavior. This avoids any

possibility of historical failure labels in both datasets, thereby

providing added credence to the effectiveness of training and

validating the model's predictive capacity. Input parameters

are thus set to reflect realistic usage scenarios to guarantee an

actual representation of operational conditions. CPU load

starts from 10% up to 90%, and memory utilization falls

between 1GB to 16GB, while disk I/O ranges from 50MB/s to

500MB/s. Network latency is set starting from 1ms up to

150ms to ensure that both optimal and congested network

conditions will be simulated. The τ anomaly threshold of

HAAD is also computed dynamically in training against the

distribution of the reconstruction error and set to normally 1.5

standard deviations from its mean. Using historical data with

a prediction window of 60 minutes, the LSTM network

catches failure events that may have occurred within that

timestamp frame. The TRA-IRA model configures between 1

to 5 replicas per task based on the scores derived to satisfy the

priority of the task and the likelihood of failure, which is

updated dynamically by the predictive model. For predicting

failures, the LSTM network produces a probability score that

invokes corrective actions in case the likelihood exceeds 0.8.

Simulated tasks such as compute-intensive workloads like

matrix multiplications and network-intensive tasks like data

transfers stress the experimental infrastructure to test fault

detection accuracy, failure prediction precision, task recovery

time, and the ability of the system to optimize resource usage.

An experiment setup specific to the dataset includes a training

dataset containing more than 500,000 log entries whereas for

the test dataset, 100,000 log entries are used. These entries

include both labeled examples of normal operation and failure

events, providing good training and testing conditions for the

autoencoder as well as the LSTM network. Each entry within

the dataset is a multi-dimensional vector composed of system

metrics; failure events are also time-aligned with the resource

utilization data, therefore providing an intuitive cause-effect

relationship between resource-related stress and failures.

Evaluation is done using different kinds of metrics, such as

the accuracy of detection, lead time for failure prediction,

efficiency in terms of resource utilization, and the rate of task

completion. The results are compared against traditional

threshold-based fault detection methods and static redundancy

allocation schemes so it can illustrate the advantages of the

proposed model regarding fault tolerance with reduced false

positives and efficient resource utilization. We evaluate the

proposed fault-tolerant load-balancing model using Google

Cluster Data and Bitbrains Resource Traces. The proposed

model was evaluated against Dynamic Load Balancing with

Reactive Fault Tolerance (DLBRFT), Deep Reinforcement

Learning for SFC Optimization in SDN/NFV Clouds

(DRLSFCO), and fault-tolerance mechanism for the

addressing and routing architecture (FT-ARA). Notably, the

proposed model outperformed these methods by large

margins in several aspects. For instance, on Google Cluster

Data, the approach achieved a detection accuracy of 98.2%,

that for Dynamic Load Balancing with Reactive Fault

Tolerance, Deep Reinforcement Learning for SFC

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 965

RESEARCH ARTICLE

Optimization in SDN/NFV Clouds, and fault-tolerance

mechanism for the addressing and routing architecture were

attained with respective accuracies of 93.5%, 95.0%, and

96.3%. Similarly, the proposed model performed better in

failure prediction accuracy at 96.5%, whereas Dynamic Load

Balancing with Reactive Fault Tolerance was at 88.7%, Deep

Reinforcement Learning for SFC Optimization in SDN/NFV

Clouds was at 91.3%, and Hybrid Fault-Tolerant Scheduling

for Deadline-Constrained Tasks was at 93.2%. Hence, the

results show the successful working of the integrated

approach of the proposed model by outperforming existing

methodologies.

4.1. Performance Metrices

4.1.1. Fault Detection Accuracy

Fault detection accuracy defines how good the measure is at

locating anomalies in the system to carry out fault-tolerant

operations. Accuracy is defined by how well the proposed

model classifies true faults so that it doesn't misclassify them.

4.1.1.1. Discussion

Table 2 Fault Detection Accuracy

Model Google Cluster

Data (%)

Bitbrains Resource

Traces (%)

Proposed

Model

98.2 97.9

DLBRFT 93.5 92.8

DRLSFCO 95.0 94.5

FT-ARA 96.3 95.8

As shown in table 2 and figure 3 the proposed approach had

an accuracy of 98.2% in detecting faults in Google Cluster

Data as well as 97.9% in detecting faults in the Bitbrains

Resource Traces while beating all baseline models. Dynamic

Load Balancing with Reactive Fault Tolerance had a lower

precision of 93.5% and 92.8% on the corresponding datasets,

and Deep Reinforcement Learning for SFC Optimization

achieved 95.0% and 94.5%. Fault-Tolerant Scheduling

outperformed all the other baseline methods with 96.3% and

95.8% but still trailed behind the proposed model. This

indicates that hybrid autoencoders are an effective

combination for task-level replication in fault detection.

Therefore, the proposed model significantly outperformed the

baseline methods in terms of fault detection accuracy; it

achieved an accuracy of 98.2% on Google Cluster Data, while
DLBRFT performed worse at 93.5%. DRLSFCO and FT-

ARA provided moderate improvements with an accuracy of

95.0% and 96.3%, respectively. A similar trend is also

reported with the Bitbrains Resource Traces. The accuracy

maintained by the proposed model is 97.9% whereas the

accuracy of the DLBRFT was 92.8% and that of the

DRLSFCO was 94.5% for different scenarios.

4.1.2. Failure Prediction Accuracy

Failure prediction accuracy measures whether a model could

predict faults with enough lead time before their occurrence to

invoke corrective actions.

4.1.2.1. Discussion

Table 3 Failure Prediction Accuracy

Model Google Cluster

Data (%)

Bitbrains Resource

Traces (%)

Proposed

Model

96.5 95.8

DLBRFT 88.7 87.9

DRLSFCO 91.3 90.5

FT-ARA 93.2 92.8

Figure 3 Accuracy Levels for Fault Detection & Prediction Operations

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 966

RESEARCH ARTICLE

The proposed model resulted in a prediction accuracy of

96.5% and 95.8% on the datasets, thereby significantly

outperforming Dynamic Load Balancing with Reactive Fault

Tolerance, which recorded 88.7% and 87.9%. Deep

Reinforcement Learning for SFC Optimization and Fault-

Tolerant Scheduling performed modestly, achieving 91.3%

and 93.2% on Google Cluster Data Samples. The proposed

model is credited to the improved prediction accuracy because

the LSTM network can capture temporal dependencies, hence

providing a reliable mechanism for early failure detection as

shown in figure 3 and table 3.

High prediction accuracy is important to trigger proactive

measures like task migration in a timely manner. The

proposed model predicts accurately with 96.5% on Google

Cluster Data and 95.8% on Bitbrains Resource Traces,

surpassing DLBRFT with 88.7 and 87.9%, respectively, and

DRLSFCO with 91.3 and 90.5%, respectively. FT-ARA

performed equally well with accuracies of 93.2% and 92.8%

but were not yet up to par with the performance of the

proposed approach sets.

4.1.3. False Positive Rate

False positive rate is a critical measure to determine the

capability of a model to avoid false positives, that is, normal

operations are not classified as faults. The lower false positive

rates reflect the reliability of the detection system.

4.1.3.1. Discussion

Table 4 shows that the model that was developed resulted in

much lower false positive rates of 2.1% and 1.9% on the two

datasets, respectively, as against 7.5% and 7.8% that Dynamic

Load Balancing with Reactive Fault Tolerance achieved.

Deep Reinforcement Learning for SFC Optimization managed

to achieve a false positive rate of 5.3% and 5.0%, and Fault-

Tolerant Scheduling managed 4.1% and 3.9%. These results

would show that the proposed model differentiates true

anomalies from a typical fluctuation better while reducing

unnecessary corrective actions toward improved system

reliability levels.

Table 4 False Positive Rate

Model Google Cluster

Data (%)

Bitbrains Resource

Traces (%)

Proposed

Model

2.1 1.9

DLBRFT 7.5 7.8

DRLSFCO 5.3 5.0

FT-ARA 4.1 3.9

The false positive rates of the proposed model are

dramatically reduced compared to others. At 2.1% in Google

Cluster Data and 1.9% in Bitbrains Resource Traces, the

proposed method showed strength in distinguishing true

anomalies from typical fluctuations in data. On the other

hand, DLBRFT indicated a significantly higher rate at 7.5%

and 7.8%, and the lower rates were of DRLSFCO and FT-

ARA than the proposed model, though they were even more

excellent than the proposed.

4.1.4. Task Completion Rate

The task completion rate reflects the system's ability to

successfully complete tasks even under faulty conditions and

ensure service continuity and reliability.

4.1.4.1. Discussion

The proposed model has a task completion rate of 99.7% and

99.5%, which is significantly higher than the rates recorded

for Dynamic Load Balancing with Reactive Fault Tolerance at

96.2% and 95.9%. Deep Reinforcement Learning for SFC

Optimization showed a completion rate of 97.8% and 97.5%,

whereas Fault-Tolerant Scheduling showed a completion rate

of 98.5% and 98.3%. The dynamic redundancy allocation

mechanism plays a very crucial role in the completion of tasks

even if faults exist in the proposed model as presented in table

5.

Table 5 Task Completion Rate

Model Google Cluster

Data (%)

Bitbrains Resource

Traces (%)

Proposed

Model

99.7 99.5

DLBRFT 96.2 95.9

DRLSFCO 97.8 97.5

FT-ARA 98.5 98.3

The proposed model also obtained better completion rates for

tasks, in other words, it proved extremely important for the

maintenance of the continuity of services in cloud

environments. On Google Cluster Data, the model was able to

complete 99.7% of tasks with Bitbrains Resource Traces

yielding exactly the same rate, namely 99.5%. DLBRFT

proceeded relatively poorly having a completion rate of

96.2% and 95.9%, while DRLSFCO, and FT-ARA improved

but did not above the results of the proposed model process.

4.1.5. Task Recovery Time

Task recovery time is the time taken to recover tasks to a

normal state after a fault. Lower recovery times indicate a

more robust and responsive fault-tolerant system.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 967

RESEARCH ARTICLE

4.1.5.1. Discussion

Table 6 presents that the proposed model achieved the

smallest recovery times, at 14.2 and 13.9 seconds for each of

the datasets. Dynamic Load Balancing with Reactive Fault

Tolerance resulted in the highest recovery times, at 23.8 and

24.3 seconds. Deep Reinforcement Learning for SFC

Optimization was able to reach a middle value at 19.5 and

20.0 seconds. Fault-Tolerant Scheduling took 16.7 and 16.5

seconds. The proposed model ensures quick detection and

proactive migration through the use of HAAD and LSTM

networks; it contributes to the considerable reduction of times

related to recovery processes.

Table 6 Task Recovery Timestamp (Seconds)

Model Google Cluster

Data

Bitbrains Resource

Traces

Proposed

Model

14.2 13.9

DLBRFT 23.8 24.3

DRLSFCO 19.5 20.0

FT-ARA 16.7 16.5

Task recovery time, in seconds, is the amount of time taken

for recovery to normal state after the failure was detected. The

model proposed in this work brings a significant reduction in

the task recovery time, which comes around 14.2 seconds on

Google Cluster Data and 13.9 seconds on the Bitbrains

Resource Traces. DLBRFT took 23.8 and 24.3 seconds,

respectively. DRLSFCO and FT-ARA resulted in recovery

times of 19.5 and 16.7 seconds, respectively.

4.1.6. Resource Utilization Efficiency

Resource utilization efficiency is the ability to maximize the

use of computation resources and to minimize redundancy

and wastage of resources.

4.1.6.1. Discussion

In table 7, it has been calculated that the proposed model had

better resource utilization efficiencies with 87.4% on Google

Cluster Data and 85.9% on Bitbrains Resource Traces. While

Dynamic Load Balancing with Reactive Fault Tolerance had

72.1% and 70.8%, Deep Reinforcement Learning for SFC

Optimization had 79.5% and 77.3%, Fault-Tolerant

Scheduling was average at 82.7% and 81.0%. The reason

behind the highly efficient proposed model is that it is built

upon an intelligent task replication mechanism coupled with

proactive failure prediction that prevents resource wastage

and yet does not compromise the reliability of the system.

Among the more critical metrics in Cloud environments is use

resource utilization efficiency, maximizing the utilization of

CPU, memory, and network resources. As shown in figure 4,

both experiment results of the proposed model reported a high

efficiency at 87.4% on Google Cluster Data and at 85.9% on

Bitbrains Resource Traces where such redundancy in resource

allocations could achieve such balance. DLBRFT shows a

huge lag of 72.1% and 70.8%, whereas DRLSFCO and FT-

ARA show moderate improvement but are not at the same

scale of optimization as with the proposed model process.

These tables and results indicate that improvements brought

about by this proposed model relate to fault detection,

prediction accuracy, tasks in recovery, and resource

efficiency. Now, as we can see that the approach

outperformed DLBRFT, DRLSFCO, and FT-ARA over

different test cases, this shows the efficiency of the integrated

technique developed in this research for proactive failure

detection and fault-tolerant load balancing.

Table 7 Resource Utilization Efficiency

Model Google Cluster

Data (%)

Bitbrains Resource

Traces (%)

Proposed

Model

87.4 85.9

DLBRFT 72.1 70.8

DRLSFCO 79.5 77.3

FT-ARA 82.7 81.0

Its superiority is based on the integrated and multi-faceted

design with HAAD (Hybrid Autoencoder-Based Anomaly

Detection), task-level replication using intelligent redundancy

allocation (TRA-IRA), and long short-term memory (LSTM)

networks to perform proactive prediction of failures. HAAD

offers better fault detection with increased accuracy for the

detection of known as well as unknown anomalies by

employing unsupervised learning to reduce false positives. It

will have this dynamic redundancy allocation based on task

priority and failure probabilities, thus safeguarding the critical

tasks without causing any overhead.

The LSTM network further added to this framework would

then analyze the temporal patterns of the system metrics, thus

providing the failure predictions with significant lead times

for the required corrective actions. All of these

complementary parts are used to allow the model to detect,

predict, and respond to faults in real-time, with efficient

resource utilization and the minimization of task disruption. It

will overcome critical gaps found in traditional methods by

showing greater accuracy, with fewer false positives, faster

recovery times, and a higher rate of task completion.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 968

RESEARCH ARTICLE

Figure 4 Recovery & Utilization Performance Levels

4.2. Practical Use Case Scenario Analysis

This section applies the proposed integrated model to an

extensive example in the context of a cloud infrastructure that

is monitored for fault detection and proactive failure

prediction. The data encompasses system metrics such as

CPU utilization, memory usage, network latency, and other

VM health indicators. This data is handled by the model using

central parts: Hybrid Autoencoder-Based Anomaly Detection

(HAAD) for Fault Detection in Infrastructure Management

(FDIM), Task-Level Replication Using Intelligent

Redundancy Allocation (TRA-IRA), and Proactive Failure

Prediction using Long Short-Term Memory (LSTM)

networks. Tables follow, summarizing sample inputs,

intermediate results, and final outputs for each part.

OpenStack provided a simulated cloud infrastructure

environment to conduct this study; it allows for control over

virtual machines, storage, and networking resources. Different

configurations for VMS were used to create different

workload diversity, with the possible CPU capacity up to 2 -

16 cores, memory allocation from 4 GB up to 64 GB, and

network bandwidth from 100 Mbps to 1 Gbps. Real-time

system metrics are retrieved using the Prometheus monitoring

tool, which is constantly gathering data regarding CPU

utilization, memory usage, disk I/O, and network latency.

Later, historical cloud infrastructure datasets from Google

Cluster Data and Bitbrains Resource Traces were obtained. It

provided real-life resource usage and failure logs. For the

training and prediction of models, a server with an NVIDIA

Tesla V100 GPU and 256 GB of RAM was used in order to

enhance the computational performance of deep learning

models, primarily LSTM networks, for proactive failure

prediction. This integration of tools and resources meant that

the environment closely reflected the real world, so the

system was tested and validated properly. For HAAD, it

receives real-time metrics and reconstructs them via an

autoencoder that is actually trained. Instances are classified as

anomalies if the reconstruction error exceeds a predefined

threshold. This example captures the system for several

metrics like CPU load, memory use, and latency in the

network over time. Below is an illustrative table 8 that

displays the result: reconstruction from the autoencoder

model and the resulting error used to flag the anomalies.

In the table 8, during timestamp step 4, the reconstruction

error of 1.702 exceeds the predefined threshold τ because an

anomaly occurred compared to lower errors in the normal

operation of the system. This detection leads to further fault

isolation and replication mechanisms within the system.

Following that is Task-Level Replication Using Intelligent

Redundancy Allocation, TRA-IRA. The approach makes use

of parameters based on task priorities, failure probability, and

available resources for redundancy allocation to the critical

tasks. In table 9 is a sample task set with a mix of different

priorities and predicted failure probabilities accompanied by

their corresponding numbers of replicas assigned by the TRA-

IRA model.

In fact, here, tasks that have a higher priority are scheduled

with more replicas for the sake of fault tolerance while the

others with a lower priority, such as T3 whose failure

probability is smaller, allocate fewer resources. The Proactive

Failure Prediction with LSTM Networks Predicts impending

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 969

RESEARCH ARTICLE

failures using system metrics that are historical and real-time.

Table 10 presents the predictions made by the LSTM network

over a batch of VMs, which are the failure probability and

lead timestamp to undertake corrective actions.

Table 8 Hybrid Autoencoder-Based Anomaly Detection (HAAD) Results

Time

Step

CPU

Usage

(%)

Memory

Usage

(GB)

Network

Latency

(ms)

Reconstructed

CPU Usage (%)

Reconstructed

Memory Usage

(GB)

Reconstructed

Latency (ms)

Reconstruction

Error

1 85.3 12.5 45 85.1 12.4 44.8 0.023

2 92.1 14.7 120 91.9 14.6 118.2 0.036

3 70.5 9.8 50 70.6 9.9 49.7 0.017

4 98.0 15.6 300 92.2 14.9 145.6 1.702

5 55.8 6.3 25 56.0 6.2 24.8 0.015

Table 9 Task-Level Replication Using Intelligent Redundancy Allocation (TRA-IRA)

Task ID Task Priority Failure Likelihood (%) Available Resources (GB) Replicas Assigned

T1 High 85 8 4

T2 Medium 60 6 3

T3 Low 30 12 1

T4 High 90 4 5

T5 Medium 45 10 2

Table 10 Proactive Failure Prediction with LSTM Networks

VM ID Historical CPU Load

(%)

Historical Memory Usage

(GB)

Predicted Failure Probability

(%)

Prediction Lead timestamp

(minutes)

VM1 75.8 10.4 92 40

VM2 65.1 9.2 78 30

VM3 89.7 12.9 95 50

VM4 55.3 7.8 45 10

VM5 82.4 11.7 88 35

Table 11 Final Outputs Comparison

Metric Proposed Model DLBRFT DRLSFCO FT-ARA

Fault Tolerance (%) 98.4 92.5 94.2 96.1

Task Completion Rate (%) 99.7 96.0 97.5 98.3

Resource Utilization (%) 87.5 71.2 78.6 82.0

Task Recovery timestamp (sec) 14.5 24.1 19.7 16.8

False Positive Rate (%) 2.2 7.9 5.6 4.3

In table 10, the LSTM network predicts that the failure

likelihood is very high at 95% on the VM3 with a 50-minute

lead time that leaves ample opportunity to do the proper task

migration or replication prior to failure. Lower failure

probabilities, such as that of VM4 (45%), elicit no immediate

responses. The Final Outputs of the integrated system are

summarized in table 11, mentioning some faults being

tolerated, task completion rates, and improvements in

resource utilization. The following table compares these key

performance indicators across the proposed model with

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 970

RESEARCH ARTICLE

respect to the baseline methods (DLBRFT, DRLSFCO, and

FT-ARA).

Clearly, the developed model is endowed with better fault

tolerance at 98.4% and task completion at 99.7% compared to

all the baseline methods. Simultaneously, it maintains the

resource utilization efficiency at 87.5% while keeping the task

recovery timestamp at 14.5 seconds. With this, it reduces false

positives to 2.2%. These tables and results demonstrate

together the feasibility of the proposed integrated system in

the context of enhanced fault detection, failure prediction,

task redundancy allocation, and overall system performance

in the process of dynamic cloud infrastructure deployments.

5. CONCLUSION

The proposed system of fault-tolerant load balancing

integrates Hybrid Autoencoder-Based Anomaly Detection

(HAAD), Task-Level Replication Using Intelligent

Redundancy Allocation (TRA-IRA), and Proactive Failure

Prediction with Long Short-Term Memory (LSTM) networks

to improve reliability and efficiency in cloud infrastructure.

The system improved fault detection accuracy to 98.2%

against a false positive rate of only 2.1%, whereas with the

traditional methods of DLBRFT, an accuracy of only 93.5%

was recorded at a false positive rate of 7.5%. The proactive

failure prediction using LSTM networks is predicted to occur

correctly with an accuracy of 96.5% and can provide as many

as 50 minutes of lead timestamp for corrective actions. This

would then ensure that task completion rates were at their

maximum of 99.7%, with minimal points of task disruption

and recovery; these were kept to a minimum of only 14.5

seconds. Besides, at 87.5%, resource utilization efficiency

ensured optimum efficacy from cloud infrastructure

performance and averted overhead due to redundancy as too

much replication may lead to contamination. Overall, the

output resonates that the proposed model could strike a

balance between fault tolerance, redundancy of tasks, and

resource usability, addressing the shortcomings of

conventional fault-tolerance approaches. However, several

future directions are worth considering for the proposed

model toward further performance improvement though it is

efficient in fault detection, failure prediction, and resource

optimization. It needs to extend support for real-time resource

scaling in multi-cloud and hybrid-cloud environments for

higher applicability to larger and more heterogeneous

infrastructures. This might include dynamic assignments of

resources across different cloud providers based on predicted

failures and anomalies to further enhance fault tolerance.

Further exploration into more advanced deep learning

techniques, such as transformers for time-series failure

prediction, should be able to increase the accuracy of

prediction beyond 96.5% within more complex environments,

especially with irregular failure patterns. The other area of

interest could be the ingestion of more granular domain-

specific metrics, such as application-level performance

indicators, which could lead to much more precise anomaly

detection and resource allocation. Finally, federated

approaches may be leveraged to train the LSTM and

autoencoder models across distributed datasets without

sensitive data centralization. This will improve model

robustness and appear to align with the requirements of

enterprise cloud environments as a route towards adding

privacy protection capabilities.

REFERENCES

[1] B. K. Ray, A. Saha, S. Khatua and S. Roy, "Proactive Fault-Tolerance

Technique to Enhance Reliability of Cloud Service in Cloud Federation
Environment," in I’E’ Transactions on Cloud Computing, vol. 10, no. 2,

pp. 957-971, 1 April-June 2022, doi: 10.1109/TCC.2020.2968522.

[2] A. U. Rehman, R. L. Aguiar and J. P. Barraca, "Fault-Tolerance in the
Scope of Cloud Computing," in I’E’ Access, vol. 10, pp. 63422-63441,

2022, doi: 10.1109/ACCESS.2022.3182211.
[3] T. M. Tawfeeg et al., "Cloud Dynamic Load Balancing and Reactive

Fault Tolerance Techniques: A Systematic Literature Review (SLR)," in

I’E’ Access, vol. 10, pp. 71853-71873, 2022, doi:
10.1109/ACCESS.2022.3188645.

[4] C. K. Dehury, P. K. Sahoo and B. Veeravalli, "RRFT: A Rank-Based

Resource Aware Fault Tolerant Strategy for Cloud Platforms," in I’E’
Transactions on Cloud Computing, vol. 11, no. 2, pp. 1257-1272, 1

April-June 2023, doi: 10.1109/TCC.2021.3126677.

[5] J. Ramesh, Z. Solatidehkordi, K. El-Fakih and R. Aburukba,
"Minimizing Virtual Machine Live Migration Latency for Proactive

Fault Tolerance Using an ILP Model with Hybrid Genetic and

Simulated Annealing Algorithms," in I’E’ Access, vol. 12, pp. 107232-
107246, 2024, doi: 10.1109/ACCESS.2024.3438358.

[6] D. Saxena, I. Gupta, A. K. Singh and C. -N. Lee, "A Fault Tolerant

Elastic Resource Management Framework Toward High Availability of
Cloud Services," in I’E’ Transactions on Network and Service

Management, vol. 19, no. 3, pp. 3048-3061, Sept. 2022, doi:

10.1109/TNSM.2022.3170379.
[7] S. Umar Mushtaq, S. Sheikh and S. M. Idrees, "Next-Gen Cloud

Efficiency: Fault-Tolerant Task Scheduling With Neighboring

Reservations for Improved Resource Utilization," in I’E’ Access, vol.
12, pp. 75920-75940, 2024, doi: 10.1109/ACCESS.2024.3404643.

[8] M. Mudassar, Y. Zhai and L. Lejian, "Adaptive Fault-Tolerant Strategy

for Latency-Aware IoT Application Executing in Edge Computing
Environment," in I’E’ Internet of Things Journal, vol. 9, no. 15, pp.

13250-13262, 1 Aug.1, 2022, doi: 10.1109/JIOT.2022.3144026.

[9] J. Chen et al., "Fault Tolerance Oriented SFC Optimization in
SDN/NFV-Enabled Cloud Environment Based on Deep Reinforcement

Learning," in I’E’ Transactions on Cloud Computing, vol. 12, no. 1, pp.

200-218, Jan.-March 2024, doi: 10.1109/TCC.2024.3357061.
[10] G. Jing, Y. Zou, D. Yu, C. Luo and X. Cheng, "Efficient Fault-Tolerant

Consensus for Collaborative Services in Edge Computing," in I’E’

Transactions on Computers, vol. 72, no. 8, pp. 2139-2150, 1 Aug. 2023,
doi: 10.1109/TC.2023.3238138.

[11] X. Tang, "Reliability-Aware Cost-Efficient Scientific Workflows

Scheduling Strategy on Multi-Cloud Systems," in I’E’ Transactions on
Cloud Computing, vol. 10, no. 4, pp. 2909-2919, 1 Oct.-Dec. 2022, doi:

10.1109/TCC.2021.3057422.

[12] M. Zhao, W. Liu and K. He, "Research on Data Security Model of
Environmental Monitoring Based on Blockchain," in I’E’ Access, vol.

10, pp. 120168-120180, 2022, doi: 10.1109/ACCESS.2022.3221109.

[13] G. Yao, Q. Ren, X. Li, S. Zhao and R. Ruiz, "A Hybrid Fault-Tolerant
Scheduling for Deadline-Constrained Tasks in Cloud Systems," in I’E’

Transactions on Services Computing, vol. 15, no. 3, pp. 1371-1384, 1

May-June 2022, doi: 10.1109/TSC.2020.2992928.
[14] S. Meng, L. Luo, X. Qiu and Y. Dai, "Service-Oriented Reliability

Modeling and Autonomous Optimization of Reliability for Public Cloud

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/57 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 971

RESEARCH ARTICLE

Computing Systems," in I’E’ Transactions on Reliability, vol. 71, no. 2,
pp. 527-538, June 2022, doi: 10.1109/TR.2022.3154651.

[15] A. Zhao, Z. Liu, J. Pan and M. Liang, "A Novel Addressing and

Routing Architecture for Cloud-Service Datacenter Networks," in I’E’
Transactions on Services Computing, vol. 15, no. 1, pp. 414-428, 1 Jan.-

Feb. 2022, doi: 10.1109/TSC.2019.2946164.

[16] Z. Ahmad, A. I. Jehangiri, N. Mohamed, M. Othman and A. I. Umar,
"Fault Tolerant and Data Oriented Scientific Workflows Management

and Scheduling System in Cloud Computing," in I’E’ Access, vol. 10,

pp. 77614-77632, 2022, doi: 10.1109/ACCESS.2022.3193151.
[17] G. Yao, X. Li, Q. Ren and R. Ruiz, "Failure-Aware Elastic Cloud

Workflow Scheduling," in I’E’ Transactions on Services Computing,

vol. 16, no. 3, pp. 1846-1859, 1 May-June 2023, doi:
10.1109/TSC.2022.3188414.

[18] J. Chen, Y. Wang, M. Ye and Q. Jiang, "A Secure Cloud-Edge

Collaborative Fault-Tolerant Storage Scheme and Its Data Writing

Optimization," in I’E’ Access, vol. 11, pp. 66506-66521, 2023, doi:

10.1109/ACCESS.2023.3291452.

[19] M. Al-Makhlafi, H. Gu, A. Almuaalemi, E. Almekhlafi and M. M.
Adam, "RibsNet: A Scalable, High-Performance, and Cost-Effective

Two-Layer-Based Cloud Data Center Network Architecture," in I’E’
Transactions on Network and Service Management, vol. 20, no. 2, pp.

1676-1690, June 2023, doi: 10.1109/TNSM.2022.3218127.

[20] A. Ahmed, S. Abdullah, S. Iftikhar, I. Ahmad, S. Ajmal and Q. Hussain,
"A Novel Blockchain Based Secured and QoS Aware IoT Vehicular

Network in Edge Cloud Computing," in I’E’ Access, vol. 10, pp. 77707-

77722, 2022, doi: 10.1109/ACCESS.2022.3192111.
[21] F. Cerveira, R. Barbosa, H. Madeira and F. Araujo, "The Effects of Soft

Errors and Mitigation Strategies for Virtualization Servers," in I’E’

Transactions on Cloud Computing, vol. 10, no. 2, pp. 1065-1081, 1
April-June 2022, doi: 10.1109/TCC.2020.2973146.

[22] X. Chen, "Scaling Byzantine Fault-Tolerant Consensus With Optimized

Shading Scheme," in I’E’ Transactions on Industrial Informatics, vol.
20, no. 3, pp. 3401-3412, March 2024, doi: 10.1109/TII.2023.3303990.

[23] C. Xu et al., "Privacy-Preserving and Fault-Tolerant Aggregation of

Time-Series Data With a Semi-Trusted Authority," in I’E’ Internet of
Things Journal, vol. 9, no. 14, pp. 12231-12240, 15 July15, 2022, doi:

10.1109/JIOT.2021.3135049.

How to cite this article:

[24] T. Long et al., "A Deep Deterministic Policy Gradient-Based Method
for Enforcing Service Fault-Tolerance in MEC," in Chinese Journal of

Electronics, vol. 33, no. 4, pp. 899-909, July 2024, doi:

10.23919/cje.2023.00.105.
[25] S. Ghanavati, J. Abawajy and D. Izadi, "Automata-Based Dynamic

Fault Tolerant Task Scheduling Approach in Fog Computing," in I’E’

Transactions on Emerging Topics in Computing, vol. 10, no. 1, pp. 488-

499, 1 Jan.-March 2022, doi: 10.1109/TETC.2020.3033672.

Authors

Nahita Pathania is currently working as an
Assistant Professor in Lovely Professional

University. She has 10 years of teaching

experience. Her research interests include Cloud
Computing, Machine Learning, meta- heuristic

algorithms.

Dr. Balraj Singh is working as an Associate

Professor at Lovely Professional University. He
received his PhD. from Dr. BR Ambedkar National

Institute of Technology, Jalandhar (NIT Jalandhar),
India in the field of computer science. His research

areas include distributed systems, software

engineering, networks etc. He has authored 40+
research papers published in various journals

conferences and book chapters indexed in

Scopus/SCIE etc. He is a co-inventor in many
patents. He is a reviewer in various high repute journals such as IEEE Access,

Supercomputing, Scientific Reports, Scientia Iranica, cluster computing,

Internet of things etc. He has chaired sessions in international conference. He

is a member of organizing committees in various international conferences.

Nahita Pathania, Balraj Singh, “Design of an Integrated Model Using Hybrid Autoencoder and LSTM for Fault Tolerance

and Load Balancing in Cloud Environments”, International Journal of Computer Networks and Applications (IJCNA), 11(6),

PP: 954-971, 2024, DOI: 10.22247/ijcna/2024/57.

