
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 855

RESEARCH ARTICLE

Implementation and Analysis of Fog Node-Assisted

Scheduling and Optimization of Resource Allocation

and Utilization

Neha Sharma

Department of Computer Science and Engineering, Chandigarh University, Mohali, Punjab, India.

✉ sharma876neha@gmail.com

Deepti Sharma

Department of Computer Science and Engineering, Chandigarh University, Mohali, Punjab, India.

deepti.e14308@cumail.in

Received: 02 September 2024 / Revised: 29 November 2024 / Accepted: 08 December 2024 / Published: 30 December 2024

Abstract – The Internet of Things (IoT) has recently become

popular for collecting and storing data in third-party datasets.

When combined with IoT devices, fog computing (FC) efficiently

manages large data volumes and processing demands. However,

concerns persist regarding privacy, edge node latency, data

security, and energy consumption. With the increasing

automation in smart cities, the workload for fog nodes (FNs) is

developing, and additional FNs are needed. The optimal

allocation of resources is essential in addressing the resource

allocation (RA) issues in executing IoT applications within FC.

To tackle this, the mixed integer linear Ant Lion optimizer

(MILALO) model has been deployed to optimize resource

allocation, reduce execution time, and conserve energy in fog

computing. The proposed model overcomes challenges by

optimizing resource allocation, reducing execution time, and

conserving energy in fog computing. It targets efficient resource

utilization and enhances scheduling, optimization, and cloud

resource management to improve overall time and energy

consumption. This model mediates between the network and

users to process and present results by constructing an allocation

matrix for the allocator. Simulations confirm the effectiveness of

the MILALO model, with demonstrated 20-25% cloud

optimization improvement and 50-60% reduction in time and

energy consumption. It conducts a thorough assessment of the

proposed model's effectiveness through key performance

indicators such as execution time (ET), energy consumption

(EC), and resource utilization (RU). Finally, a detailed

comparative analysis against established techniques enriches the

discussion, providing valuable insights into the superiority of the

proposed technique.

Index Terms – Internet of Things (IoT), Fog Computing (FC),

Resource Allocation (RA), Execution Time (ET), Energy

Consumption (EC), Mixed integer linear Ant Lion optimizer

(MILALO).

1. INTRODUCTION

The development of smart cities has become an important

feature of the new society. Billions of new IoT devices are

used daily for everything from industrial production to

personal use [1], [2].

As per statistics, Figure 1 shows the quantity of IoT-

associated devices in the past and next year’s [3]. Nowadays,

cloud computing offers processing and storage capabilities for

IoT environments. However, cloud computing demands

maximum latency because it is far from the end user.

Furthermore, it takes time for the cloud to evaluate the data

formed by IoT devices [4]. The quantity of data generated and

the number of IoT devices will rise. The large quantity of data

collected from the distinct devices needs to be transferred

with minimal latency. Fog computing (FC) arose as a solution

to this problem. It identifies issues of excessive data transfer

latency by acting as an intermediate layer (IL) between cloud

and IoT devices. In IoT environments, many sensors transmit

data through fog nodes (FNs) instead of straight to the cloud

to fulfill the high processing demand [5]. It is present in

several systems, including smart grids and smart cities

between the cloud and smart devices [6], [7]. This additional

layer, or FC, increases the attack surface that can be

compromised by threats like breaches, and data loss, which

can result in the introduction of new vulnerabilities.

Furthermore, FC environments gave rise to several risks,

including malicious FNs, insider threats, and denial-of-service

(DoS) attacks. For example, in FC situations, attackers may

seek infinite processing and store data in fog devices (FDs)

that prevent customers from accessing the FDs [8].

The number of active connections increases consistently each

year, reflecting significant technological advancements and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 856

RESEARCH ARTICLE

adoptions [9]. This rapid growth of IoT devices generates a

lot of information. A significant segment of this information

is big data (BD), which needs to be processed by an extremely

strong computer system [10].

Moreover, several devices require real-time facilities and

maximum precision in decision-making, producing a direct

effect on the data center (DC) and Internet, involving the

cloud. Data, computers, software, and infrastructure are all

made available via the cloud, which also offers security,

flexibility, and dependability [11]. Cloud computing does,

however, have several challenges, such as request-reply

latency in real-time services, network congestion (NC), etc.

Figure 1 Growing Number of IoT Devices [9]

1.1. Fog Computing

Figure 2 Fog Computing Environment [9]

An intermediate layer between the cloud and the IoT device is

called FC. Figure 2 shows the FC environment. To reduce

latency and NC, FC brings cloud services closer to IoT

devices at the network edge. These days, minimum latency is

a desirable feature in apps such as backup replies in the

medical field, and FC guarantees minimum latency by

providing real-time processing abilities for the transferred

information [11]. FC, according to CISCO [12], [13], is the

field where IoT data analysis takes place closer to the IoT

devices that produce and procedure data. The nodes in a

typical FC system are devices associated with the IoTs. These

nodes are denoted as FNs. Fog devices can be the only device

which has storage, connectivity, computing, etc. The FC layer

stands between the cloud and IoT devices and has useful

features, stored network bandwidth, storage near to the IoT,

and Secure IoT Data.

1.2. Fog Computing Layers

FC is a dependent paradigm but an addition of cloud facilities

to the edge. The Fog atmosphere [14] consists of three

different layers: (i) Cloud (CL) (ii) Fog (FL) and (iii)

Terminal Layer (TL) shown in Figure 3, while the

architecture comprises groupings of FNs. Furthermore, data

processing locally with a desired latency is possible with the

fog.

Figure 3 Design of Fog Computing [14]

The terminal layer consists of distinct end devices, which are

physically separated. These devices take charge of becoming

data and transmitting it to a high-level layer for data storage

and processing. The devices could involve sensors, mobile

phones, etc. The FL is situated at the edge of the network,

suited at the network’s edge [15]. This layer device is called

FN and it is reliable for data transmission, storage, and

computation. An FN is located in a fixed strategic area and

might be movable or stationary. The cloud layer consists of

storage strategies and servers with maximum presentation and

computation power [16]. It is set for performing non-latency

complex jobs transmitted by the lower, or Fog layer [17].

1.3. Characteristics of Fog Computing

Using the data produced by IoT devices and moving it to the

cloud may get more difficult as the amount of IoT devices

rises. To overcome these limitations, FC was developed.

Table 1 defines how FC and Cloud computing (CC) differ in

terms of the subsequent shared features.

Table 1 Characteristics that Contrast Between FC and Cloud

Computing [9, 18]

Characteristics Cloud

Computing

Fog Computing

Deployment Network core Edge of the

network

Scalability Limited High

Delay High Low

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 857

RESEARCH ARTICLE

Geographical

position

No Yes

Mobility Limited Supported

Position

awareness

No Yes

Latency High Low

Architecture Centralized Decentralized

1.4. Fog Computing: Problem and Challenges

Because FC is heterogeneous, it has structural problems.

Since the edge network can be utilized as an FN, some nodes

may not be calculated to provide computations for general-

purpose use. As a result, it could be not easy to integrate the

general-purpose function into its usual duties. Furthermore,

because some FNs have limited resources, expanding large-

scale applications may encounter difficulties in the face of

service orientation.

Thus, a programming environment that facilitates the creation

of distributed applications is required. The fog’s quantity of

service can be greatly impacted by how the security system

works. Data-centric integrity is implemented. Furthermore, it

could be challenging to maintain the privacy of a large

distribution network and authenticate access to services [19,

20, 21].

The problem formulation is related to the utilization of

resource allocation in a fog environment, as directed below:

• The resource allocation (RA) issue is one of the key issues

in executing IoT applications in FC. The optimal

allocation of resource strategy will be the most effective in

resolving this problem because it will reduce energy usage

and communication costs.

• Another problem faced during resource allocation in a fog

environment is that workload allocation should be done

fairly in the fog and cloud layer to achieve minimum

power usage with the restricted service delay.

• To solve existing research works, an optimized resource

allocation algorithm will be used to optimize the execution

time of priority tasks has to be minimized. Cloud

dependency should be delayed to achieve better system

performance.

1.5. Motivation

The motivation for deploying a MILALO model in fog

computing is to optimize resource allocation, reduce

execution time, and conserve energy. This model enhances

scheduling, overall time and energy consumption, and cloud

resource optimization.

1.6. Objectives

The various objectives of this research work are listed below:

• To design a novel fog node-assisted scheduling framework

using an optimized mixed integer linear Ant Lion

optimizer for resource allocation and utilization.

• Implement the suggested algorithm in a simulator and

assess the performance of the algorithm.

• Compare the proposed algorithm with current resource

allocation techniques and evaluate based on execution

time, energy consumption, and resource utilization.

1.7. Focus of the Paper

• Designed a new fog node-assisted scheduling architecture

using optimized mixed integer linear programming (MILP)

scheduling for resource allocation (RA) and utilization with

Ant Lion Optimizer (ALO). MILP is frequently utilized for

system analysis (SA) and optimization as it defines a reliable

and energetic approach for resolving huge, difficult issues.

• MILP method that rapid conversion and worldwide optimum

with well-known solving techniques. The method builds upon

existing efforts in procedure integration, considers constraints,

and resolves them. After that, the ALO method is a current

meta-heuristic approach that simulates antlions (ALs)

foraging performance in exploring and attacking ants.

Moreover, the ALO method suffers from local optimal and

slow convergence speeds for some optimization issues.

• It deploys the researched model MILALO (Mixed Integer

Linear Ant Lion Optimizer), which reduces cloud dependency

and gives an energy-efficient (EE) and cost-effective solution.

It also enhances the overall time and energy consumption as

well as the cloud dependency of resources.

• It analyses the presentation of the researched method by

comparing it with the current RA method, considering the

metrics, execution time (ET), energy consumption (EC), and

resource utilization.

1.8. Organization of the Paper

The rest of the paper is organized as follows: Section 2

explains related work. Section 3 presents the proposed mixed

integer linear Ant Lion optimizer. Section 4 discusses the

results. The paper ends in Section 5 with the conclusion.

2. RELATED WORK

This section elaborates on the various existing task

scheduling, and RA-based methods in FC with the proposed

method, problem, findings, and so on in Table 2. Next-

generation communication applications are expected to

require FC and IoT. However, the communication capability

was explored to be controlled upon assessment of the growth

in IoT devices.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 858

RESEARCH ARTICLE

Md Razon Hossain [10] presented a Scheduling-based

Dynamic Fog Computing (SDFC) to overcome the gap of

resource scattering. Moreover, three energy-related

parameters are incorporated into the method to improve the

resource allocation and the comparison is done based on two

previous existing algorithms. The author in [22] proposed a

task scheduling approach to reduce the complexity in real

word and improve better efficiency.

Chao Yin and Juan Wang [23, 24], introduced a new hybrid

approach for complex resource allocation to enhance

energy efficiency and cost by considering the parameter load

balancing, delay, energy consumption, and reliability. Weimin

Liu et al. [25] explored the complex process of task

scheduling using various optimization algorithms, including

PSO, ABC, PGABC–PSO, SJF–PSO, and HSF.ABC & PSO.

These methods were implemented on a system with 10 GB

RAM and Intel(R) processors to evaluate performance in

terms of time delay and energy consumption. Among the

methods, the PGABC–PSO demonstrated notable

improvements. The researchers found that this method

significantly reduced both delay and energy consumption,

making it a highly efficient approach for task scheduling. The

results highlight the potential of advanced optimization

techniques in enhancing system performance and energy

efficiency.

Amit Kishor et al. [26] employed Smart ACO, Round Robin

throttled, MPSO, and BLA algorithms to tackle complications

in load balancing and latency due to NP-hard issues using

MATLAB on a system with GB RAM and Intel(R)

processors. Their approach improved QoS in the IoT-Fog

tool. Jaspal Singh et al. [27] proposed a self-adaptive hybrid

optimization algorithm (SHOA) to address complications in

multiple task allocation using CloudSim. This method

reduced energy consumption, migration rate, and SLA

violation, providing better performance.

Author [28] utilized the Lotka-Volterra load balancer and

Elman Hebbian-recurrent neural network cache (LV-EHRCC)

for load balancing in FoT, addressing complications in

resource allocation with IFogSim. This method improved

makespan, bandwidth, and load balancing. Jalasri Mahendran

et al. [29] introduced a Data Security Management model

combining ACOMKSVM and block chain technology with

WBANM for secure, private data sharing. This method

enhanced accuracy, precision, response time, data security,

and recall, effectively eliminating intermediate attacks. In [30]

Raspberry Pi in fog and cloud computing, addressing

transmission and computational delays, and improving

response time and data transfer for better end-user services.

Table 2 Comparison of Discussed Approaches

Author’s

Name

Method Comparative

Methods

Gaps Simulator\

Implement

ation Tool

Parameters Findings

Md Razon

Hossain et

al. (2021)

[10]

Scheduling-

Based

Dynamic

Fog

Computing

(SDFC)

Real-Time Efficient

Scheduling (RTES)

First Come First

Serve (FCFS)

Issues Of

Scattered

Resources.

iFogSim

Java

Execution time

Bandwidth

Energy Consumption

It provides better

augmenting

resource

utilization.

Hardik

Mahendrab

hai Patel et

al. (2023)

[22]

Task

Scheduling

Approach

Simple Priority-

Based Allocation

Priority-Based

Allocation Using

Load Comfort

Index

Complications

in the real-

world method.

Fog

Java

Latency

Bandwidth

Scalability

Energy Efficiency

Cost

Location of

Processing

This method

provides better

efficiency.

Chao Yin

et al.

(2023) [23]

GA and

ACO

ACO

IACO

PSO

More

implementatio

n cost

Ifogsim

Windows 7

Economic Cost

 Load balancing

It reduces the

total cost,

considering the

user’s QoS.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 859

RESEARCH ARTICLE

Juan Wang

et al.

(2019) [24]

A Hybrid

Heuristic

Method

IPSO

 IACO

RR

Complications

in multiple

task

allocation.

MATLAB

Windows 7

Delay

Energy Consumption

Reliability

It improves the

better

performance of

energy

consumption.

Weimin

Liu et al.

(2023) [25]

PSO, ABC PGABC–PSO

PGABC

SJF–PSO

HSF.ABC & PSO

MFO

 Complex

process of task

scheduling

Window -

10

GB RAM

Intel(R)

Time delay

Energy Consumption

This method

reduced delay and

energy

consumption.

Amit

Kishor et

al. (2021)

[26]

Smart ACO Round Robin

Throttled

MPSO

 BLA

Complications

in Load

balancing and

Latency due to

NP-hard

issues

MATLAB

GB RAM

Intel(R)

Latency Time It improves the

QoS in the IoT-

Fog tool.

Jaspal

Singh et al.

(2022) [27]

Self-

Adaptive

Hybrid

Optimization

Algorithm

(SHOA)

LR-MMT

RE-VMC

MOABC-VMC.

Complications

in multiple

task

allocation.

CloudSim Energy Consumption

Migration Rate

SLA Violation

This method

reduces energy

consumption and

provides better

performance.

S.V.

Nethaji et

al. (2023)

[28]

Lotka-

Volterra

Load

Balancer

And Elman

Hebbian-

Recurrent

Neural

Network

Cache (LV-

EHRCC)

LVEHRCC

EPRAM

Load Balancing For

Fot

Complications

in resource

allocation.

IFogsim Makespan

Bandwidth

Load Balancing

It improves the

better

performance of

energy

consumption.

Jalasri

Mahendran

et al.

(2021) [29]

Data

Security

Management

Model

ACOMKSVM

Blockchain

Technology With

Wireless Body Area

Networks (BC-

WBANM) Model

O Compressed And

Private Data

Sharing Framework

(Cpds)

Security and

privacy issues.

Window -

10

Accuracy

Precision

Response Time

Data Security

 Recall

This method

eliminates

intermediate

attacks.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 860

RESEARCH ARTICLE

Pratik

Kanani et

al. (2020)

[30]

 Raspberry

Pi

Cloud Computing

Fog Computing

Not suitable

for time-scale

healthcare

services.

Ifogsim

Java

Transmission Delay

Computational Delay

Data Transferred

Response Time

This method

provides better

services to end-

users.

3. PROPOSED MODELLING

This research aims to reduce the execution time required to

perform resource allocation in fog computing by making

enhancements to the optimized Model for Resource

Allocation. The best cost solutions for the task execution are

changed here with the aim of resource-allocating jobs. This

results in increasing the time of execution and saving energy

in a fog environment in comparison to the previous technique.

There are three phases in which the Scheduling-based

Dynamic Fog Computing algorithm is executed. Between the

cloud and the citizen fogs, or general-purpose fog nodes, there

is an MF layer. The MF is committed to bearing all

computing costs associated with job scheduling and instantly

the highest priority is being assigned to the highest qualified

CF. The MF utilizes one technique to sort the citizen fogs

depending on the available computational capacity, and

another method is job scheduling jobs depending on their

priority. Additionally, the proposed method ensures that the

CF layers assets are used effectively, lowering dependency on

the cloud.

3.1. Flowchart of Proposed Optimized Resource Allocation

Technique

The proposed algorithm is divided into various steps in Figure

4. These entire steps help to build a cloud network with fog

layers and ensure the successful execution of resource

allocation and utilization. The proposed flow shows building

the cloud network at the initial stage and building micro data

centers at the fog layer. All the collected tasks from the

physical layer are submitted to the initial fog layer in the

queue. The listed tasks are processed with micro data centers

at the fog layer with optimized load allocations and utilization

process modules. The proposed optimization builds various

execution patterns and provides low-cost execution solutions

in terms of performance like energy consumption, time

consumption, etc.

3.1.1. Research Design

The proposed framework for optimized resource allocation in

fog computing. Figure 4 shows the research framework with

the proposed methods. Initially, it built a cloud network and

assigned the initial metrics for resources and task

requirements. When a cloud network is built, a fog layer is

built with micro data centers (DCs).

The proposed framework for RA in Fog Computing in figure

4, it collected the task from the physical layer (PL). If

execution is prepared, then load the micro-DC layers with

virtual machines (VMs). If execution is not prepared, then

collect the task from the PL. Its initial metrics for resources

and task requirements align sets with occupied sub-sets and

available sub-sets. It initializes ants and locations of Ant

Lions (ALs). It constructs an iterative procedure to evaluate

the fitness of prepared solutions. When a procedure all the

elements with the given objective function (OF) are done. It

constructs the fitness set of procedure solutions. If the process

is not completed, then the iterative procedure is to evaluate

the fitness of the prepared solutions. It prioritizes solutions in

the MILP method.

When it constructs an allocation matrix with optimal

solutions. It gives feedback to the ALO phase and fine-tunes

both metrics. Load balancing and allocations at VMs with

optimization. It simulates a cloud and a physical layer for data

transmission. It evaluates resource utilization, energy

consumption, and execution time and compares them with the

existing methods.

The process that is followed in the proposed architecture has

various steps and sub-processes to achieve resource allocation

and utilization in FC.

• Build cloud network: The first process is to create a

virtual environment of cloud architecture where a

network is formed with data centers and virtual machines.

This helps to make the process smooth for getting tasks

and managing resources on the cloud side along with

optimization processes that get data to process and

finalize the outcome. There are various submodules of

this process attached to provide the list of resources

virtually along with the specifications like what type of

resources are in the network that participate within the

process of resource allocation and utilization process.

• Build Fog layer with micro data centers and VMs: The

micro data centers and VMs are part of the Fog layer

which works processing the small tasks without

interrupting or providing heavy load on the cloud

network. This process needs some calculation that is used

to find the right way to how the network processes task

queues and how the VMs get managed.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 861

RESEARCH ARTICLE

Figure 4 The Proposed Framework for RA in Fog Computing

• Collect tasks: The collection of tasks is the process where

users submit all the tasks that need to be processed on the

cloud side. These tasks can be anything like getting data

from a database, doing some calculations, building

images from data, etc. The first interaction layer of cloud

architecture gets all the tasks and builds some task queues

to send them within the optimization process. Here the

tasks can be anything with some specification or

requirement like what type of VM it needs to get

processed on the cloud side. The heavy tasks need more

configuration and bigger VM and small tasks need a

small configuration VM to get processed.

• Loading VMs and load balancing: Before data comes

under the load balancing and scheduling process, it needs

to get loaded with the configuration within the

optimization process. This layer provides extraction of

data from the given network with the configuration like

what type of machines are present within the network and

what are various parameters of those machines.

• Align sets and subsets process: The process of sets and

subsets is a way to get the data and their dependencies

over multiple processes. Here it is the first layer of the

optimizer where the optimizer gets aligned with the data

that is available and that needs to be processed on the

cloud server.

• Initialize Ants and positions of ANT-Lion and fitness

value: The process of optimization starts from the

initialization of the population where the optimizer

initializes the population as a network and calculates the

fitness value over all the tasks. It is used to find the best

route of execution for all the tasks over the cloud network

on behalf of some parameters like utilization, and energy

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 862

RESEARCH ARTICLE

consumption. Time efforts etc. The calculated fitness

value is used to find the optimal route and repeat till the

end of the defined iteration. The iteration process helps to

provide various cases so that the optimizer can able to

find the best fitness score with a high accuracy value.

Once the fitness value is evaluated by the optimizer, it is

prioritized by MILP and it builds an allocation matrix for

the allocator that works in between the network and users

to process and show results. Later, according to the

matrix, the task gets processed on the cloud network and

updates results accordingly.

• Transmission and performance computation: The

transmission belongs to results that the resource allocator

evaluates from the network after execution and then

transfers to the user. After completion of all the execution

then results such as energy, time, etc., get calculated to

see the performance of the researched design.

Figure 5 The Framework of the FC Resource Management System (RMS)

Figure 5 shows various modules of the resource management

system. The main two modules that are responsible for the

collection of tasks and the executions are:

• Task Allocation and Management Module: This module is

attached to the application layer and is responsible for

collecting tasks and preparing a queue at the server end.

All submissions from the user end are arranged into a task

queue and processed using the proposed architecture to

provide efficient results. The first phase of the proposed

approach begins at this layer, where the task queue is

taken as input.

• Virtual resource scheduling module: The scheduling is

implemented using a multi-threading approach, enabling

the system to perform multiple tasks simultaneously.

Virtual machines play a significant role in this processing

as they are a subset of physical machines. The proposed

approach utilizes these virtual machines to execute the

tasks captured at the task allocation and management

layer. Allocation and load-balancing tasks are performed

in this layer by the proposed architecture. It processes the

tasks and generates response data for users, which is then

transferred back to the previous layer for interaction with

the user.

Figure 5 shows the allocation of tasks in the cloud

environment.

• The number of users who submit their tasks to the cloud

network. All the tasks build queues at the cloud platform

for executions.

• These queues are used to schedule tasks on virtual

machines that are a subset of the actual physical machines.

• The data centers are high-speed computers and to give

high availability to users and better utilization the network

uses virtual machine mechanism.

• The execution at this stage is handled by schedulers and

tasks management algorithms.

4. RESULTS AND DISCUSSIONS

In this section, a comprehensive description of the proposed

MILALO (mixed integer linear Ant Lion optimizer) model

using the MATLAB project desktop application is presented.

An evaluation of the MILALO model's effectiveness is

detailed in section 4.1, comparing current research with other

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 863

RESEARCH ARTICLE

methods such as SDFC (Scheduling-Based Dynamic Fog

Computing) [10] and PGABC-PSO [19] optimization

methods.

The scheduling-based dynamic fog computing framework

(SDFC) aims to enhance resource utilization by optimizing

task allocation in cloud-fog environments. This framework

leverages various algorithms to address the challenges posed

by dynamic workloads and resource availability, ultimately

improving performance metrics such as response time and

operational costs.

Section 4.2 provides an in-depth discussion of performance

metrics, including energy consumption (EC), utilization

consumption (UC), and time. The simulation setup is

thoroughly explored in section 4.3, with the result analysis

showcasing the MILALO model's capacity to reduce energy

and time parameters when compared to existing methods. The

proposed model aims to diminish cloud dependency and

provide an energy-efficient (EE) and cost-effective solution

4.1. Experimental Settings

The experimental tool is elaborated and the proposed

MILALO (mixed integer linear Ant Lion optimizer) model

uses the MATLAB project desktop application and software

with system requirements, OS window 8 up to, RAM 64GB,

Intel Processor i3, and hard disk -4TB.

4.2. Performance Metrics

This section described resource allocation (RA) in fog

computing (FC) performance parameters as are set of metrics

used to calculate the performance of the MILALO model,

such as SDFC, and PGABC-PSO. These introduced

performance metrics are different such as EC, RU, and TC.

4.2.1. Energy Consumption (EC)

Here, the overall power is shown as the sum of the power of

the total assets used in the task performance. The avg. power

is the avg. power of all the assets utilized for the model.

Hence, EC is the quantity of energy spent for the execution of

the number of tasks and the evaluation formulation is defined

as eq (1).

𝐸𝐶 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟
∗ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (1)

4.2.2. Resource Utilization (RU)

It is a crucial aspect of evaluating the presentation of

PHYSICAL machines in the form of managing assets. Thus,

it shows the amount of assets used for the performance of a

defined amount of tasks. The evaluation of this RU aspect is

defined in eq (2).

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ 𝑁𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘 (𝐾𝑖)𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑝𝑒𝑟 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑅𝑖)𝑖=𝑛

𝑖=1 (2)

4.2.3. Time Consumption (TC)

It shows the time taken by the physical machines for the

completion of the tasks. Thus, for evaluating the time for the

execution of the tasks by physical machines by utilizing the

subsequent formulation shown in eq (3).

𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = ∑ 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 +𝑖=𝑛
𝑖=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 (𝑖)

𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 sec(𝑀𝐼𝑃𝑆)(𝑖)
 (3)

4.3. Results

The result analysis section is assumed to examine the

calculation of the planned MILALO model. The research

model is normally compared with the existing models like

SDFC [10], and PGABC-PSO [19], to validate its efficiency

over the other algorithms used for comparison.

4.3.1. Energy Consumption (EC)

The physical machines consume to give the services to the

consumers, and the energy consumption is based on the total

power of the physical machines.

Figure 6 Comparison of EC (j)

The comparison of EC among various other algorithms is

shown in Figure 6. This shows the effectiveness of the

algorithms with the same number of input and processing

architecture. The less EC shown by any algorithm is

considered as high performance. Here MILALO, SDFC [10],

and PGABC-PSO [19] are compared in Figure 6. The

presentation of the proposed MILALO is high as it consumes

less energy as compared to SDFC and PGABC-PSO.

4.3.2. Time Consumption

The time consumption is the total time taken by any algorithm

to procedure the task queues. If the time consumption is high

then the response time to the user will be high as well. The

0

100

200

300

400

500

600

MILALO SDFC PGABC-PSO

J
o

u
le

s

Comparison Analysis : Energy

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 864

RESEARCH ARTICLE

efficient algorithm takes less time and provides faster speed

within the cloud environment for all the executions.

Figure 7 Comparison of Time in Seconds

Here the time taken by MILALO's proposed architecture takes

less time as compared to the other SDFC [10] and PGABC-

PSO [19] approaches as shown in Figure 7. So, it shows the

high-speed execution of the proposed architecture as

compared with the recent existing approaches.

4.3.3. Resource Utilization

Figure 8 Comparison of Utilization Consumption

Resource utilization is a crucial aspect of evaluating the

performance of physical machines in the form of managing

resources. The main goal is to improve processing speed and

reduce the demand on network bandwidth. Efficient resource

utilization is crucial in fog computing to achieve high

performance and low latency.

The resource utilization process shows how efficient the

approach is to manage the network. Here in Figure 8, three

different approaches are compared to get the results of the

utilization process. The proposed architecture shows high

performance as in Figure 8 shows high utilization as

compared with the other existing approaches.

4.4. Discussions

The performance comparison needs various test cases where

the approaches get executed for different inputs. Some of the

inputs need to be bigger and some of them need smaller to

check the approaches performance of different approaches.

Table 3 Performance with 10 Nodes with MILALO

Tasks Energy

consumption

(J)

Time

consumption

(Sec.)

Resource

Utilization

(%)

10 21 17 95

100 178 287 97

500 612 491 97

1000 917 721 95

5000 1832 1312 97

10000 4619 2917 98

Table 3 shows various test cases with a static network size of

10 nodes. The testing of load is to show the effectiveness of

the implemented model. While increasing the load from 10 to

10,000 tasks on a small network, the proposed architecture

shows less energy and time consumption. It shows the stable

performance of resource utilization within the execution of all

the test cases for MILALO.

Table 4 Performance with 10 Nodes with SDFC

Tasks Energy

consumption

(J)

Time

consumption

(Sec.)

Resource

Utilization

(%)

10 47 59 91

100 383 507 89

500 857 690 86

0

100

200

300

400

500

600

700

MILALO SDFC PGABC-PSO

T
im

e
in

 S
ec

Comparison Analysis :Time

0

10

20

30

40

50

60

70

80

90

100

MILALO SDFC PGABC-PSO

U
ti

li
za

ti
o

n
 i

n
 %

Comparison : Utilization

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 865

RESEARCH ARTICLE

1000 1491 1037 91

5000 2302 1783 91

10000 6082 4231 88

Table 4 shows various parameter calculations in 10 to 10000

task test cases. This is built on the network size of 10 nodes.

The parameters are energy, time consumption, and resource

utilization within the SDFC. The performance of SDFC

shows more energy and time consumption than the proposed

MILALO.

Table 5 Performance with 10 Nodes with PGABC-PSO

Tasks Energy

consumption

(J)

Time

consumption

(Sec.)

Resource

Utilization

(%)

10 58 72 93

100 513 643 93

500 1096 1187 95

1000 1821 1452 93

5000 3152 2465 91

10000 7455 5241 90

Table 5 shows the performance of PGABC-PSO on behalf of

three parameters same as table 4 and table 5. The network size

is 10 nodes and performance is calculated on behalf of 10 to

10000 tasks. The performance of PGABC-PSO needs some

improvements as compared to the MILALO and SDFC

approach in Tables 3 and 4.

Table 6 Performance with 20 Nodes with MILALO

Tasks Energy

consumption

(J)

Time

consumption

(Sec.)

Resource

Utilization

(%)

10 17 14 96

100 102 163 98

500 435 211 97

1000 714 513 97

5000 1488 918 98

10000 3425 2496 97

Similar to Table 6 the performance of MILALO is calculated

based on 20 nodes network in Table 6. This various is used to

see the time and energy consumption within the execution. If

the network has a huge number of nodes, then the proposed

architecture should be able to manage and utilize the network.

The better the management of task load and network, the

better an approach will perform. Here the performance is

computed on behalf of energy consumption, time

consumption, and resource utilization.

Table 7 Performance with 20 Nodes with SDFC

Tasks Energy

consumption

(J)

Time

consumption

(Sec.)

Resource

Utilization

(%)

10 35 42 92

100 291 418 91

500 611 492 87

1000 1019 830 89

5000 1728 1423 91

10000 4521 3424 88

The performance over small to heavy loads is calculated in

Table 7. It shows various executions where the number of

tasks from 10 to 10000 are executed to see the performance of

SDFC. The load taken in this ratio is to see whether the SDFC

approach can handle the load and utilize the network in

different scenarios or not. Here SDFC executed the tasks

successfully and showed the parameters.

Table 8 Performance with 20 Nodes with PGABC-PSO

Tasks Energy

consumption

(J)

Time

consumption

(Sec.)

Resource

Utilization

(%)

10 42 58 93

100 455 518 95

500 769 985 94

1000 1423 996 93

5000 2695 2014 94

10000 5547 4278 91

Table 8 shows the results of different executions on 20 node

networks. The tasks started with 10 and at the final stage of

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 866

RESEARCH ARTICLE

test cases, it ended with 10000. The performance of every test

case was noted in terms of energy consumption, time

consumption, and resource utilization.

Figure 9 Test Cases Comparison of Energy Consumption with

10 Nodes

The test cases comparison in Figure 9 shows a plot to present

the performance of MILALO, SDFC, and PGABC-PSO. Here

the plot is used to see the one graph performance where all the

approach shows their results for different executions of

energy consumption. Here the performance of MILALO is

better in all the cases with less energy consumption when it is

tried with 10 nodes and 10 to 10000 tasks.

Figure 10 Test Cases Comparison of Time Consumption with

10 Nodes

Figure 10 shows test case results of time consumption for all

three approaches. The tests are moving from 10 to 10000 and

the performance of MILALO is showing less time

consumption in all the cases. The rise in time is because of the

number of tasks in the same network. But the better thing is

here, all the cases seem good and show high-performance

MILALO technique to process the task queues.

Figure 11 Test Cases Resource Utilization with 10 Nodes

The resource utilization tests using a load of 10 tasks to 10000

tasks are performed in Figure 11. This is a way where the

resource allocator performance gets validated on the behalf of

utilization metric. When a heavy load occurs then the

allocation process needs to pay attention to send the tasks and

get a response from the network end. It should be well

planned and organized so that the issues can be rectified

during allocation only. Here in all the cases, the performance

of MILALO is better, and the shows high resource utilization

as compared with the SDFC and PGABC-PSO approaches.

Figure 12 Test Cases Energy Consumption with 20 Nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

10 100 500 1000 5000 10000

J

Tasks

Energy Consumption With 10 Nodes

MILALO SDFC PGABC-PSO

0

1000

2000

3000

4000

5000

6000

10 100 500 1000 5000 10000

S
ec

Tasks

Time Consumption with 10 Nodes

MILALO SDFC PGABC-PSO

80

82

84

86

88

90

92

94

96

98

10 100 500 1000 5000

%

Tasks

Resource Utilization with 10 Nodes

MILALO SDFC PGABC-PSO

0

1000

2000

3000

4000

5000

6000

10 100 500 1000 5000 10000

J

Nodes

Energy Consumption With 20 Nodes

MILALO SDFC PGABC-PSO

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 867

RESEARCH ARTICLE

In Figure 12, the test cases same as in Figure 9 were

performed with the number of nodes 20 in size. The

validation process here is to see if along with several tasks,

the network size can be changed and increase in number of

nodes. The execution process gets faster as the network has

more nodes available and the ideal energy can be reduced

with this process. So, in short here the MILALO architecture

again shows better results for all the test cases and provides

less energy consumption in all the cases.

Figure 13 Test Cases Time Consumption with 20 Nodes

Figure 14 Test Cases Resource Utilization with 20 Nodes

The time parameter in the test cases is shown in Figure 13

with 20 nodes in the network. Here when nodes increase in

size then the time also decreases. It happens due to the

availability gets increased and the allocator has more

resources to process the tasks. The time consumption should

be less and here the test cases with 20 nodes in the network

show the high performance of the proposed architecture with

MILALO.

In figure 14 it shows the various test cases with 20 nodes and

10 to 10000 tasks. The graph shows resource utilization by

the MILALO, SDFC [10], and PGABC-PSO [19] approaches.

If the load increases, it's hard for the allocation process to

manage and distribute the resources within the task queues.

Here the performance of MILALO shows high performance

in the utilization compared to other approaches.

Table 9 Comparison Analysis

Methods Energy

Consumption

(J)

Time

Consumption

(Sec)

Resource

Utilization

(%)

MILALO 169 279 97

SDFC

[10]

373 495 91

PGABC-

PSO [19]

532 651 92.2

Table 9 depicts a comparison of the proposed method with

existing algorithms in terms of energy consumption, time

consumption, and resource utilization. The MILALO is

designed to optimize resource allocation efficiently, reducing

energy consumption. This method achieves the lowest energy

usage among the compared algorithms. In contrast, SDFC and

PGABC-PSO are less energy-efficient, consuming more

energy than the proposed algorithm. In terms of time

consumption, the proposed model demonstrates efficient time

usage. The quick execution time highlights the method's

capabilities to allocate resources and execute tasks rapidly.

The existing algorithms have longer processing times.
MILALO stands out as the best choice for scenarios requiring

maximum resource utilization, while SDFC and PGABC-PSO

are also efficient but slightly less effective in utilizing

resources to their fullest extent. For resource allocation, the

proposed model achieves the highest resource utilization at

97%, whereas SDFC and PGABC-PSO have resource

utilization rates of 91% and 92.2%, respectively. They are

slightly less effective in fully utilizing resources.

5. CONCLUSION

The proposed work concluded that the initialization of the

cloud network and different parameters such as the number of

resources and task requirements. The initial layer is a fog

layer with microdata centers. All the tasks are collected from

the physical layer. When the execution is prepared, they load

the micro datacenter's layers with virtual machines. Before

data comes under the load balancing and scheduling process,

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 100 500 1000 5000 10000

S
ec

Tasks

Time Consumption with 20 Nodes

MILALO SDFC PGABC-PSO

80
82
84
86
88
90
92
94
96
98

100

10 100 500 1000 5000

%

Tasks

Resource Utilization with 20 Nodes

MILALO SDFC PGABC-PSO

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 868

RESEARCH ARTICLE

it needs to get loaded with the configuration within the

optimization process. The process of optimization starts from

the initialization of the population where the optimizer

initializes the population as a network and calculates the

fitness value over all the tasks. It is used to find the best route

of execution for all the tasks over the cloud network on behalf

of some parameters like utilization, energy consumption, etc.

The calculated fitness value is used to find the optimal route

and repeat till the end of the defined iteration. The iteration

process helps to provide various cases so that the optimizer

can able to find the best fitness score with a high accuracy

value. Once the fitness value is evaluated by the optimizer.

The transmission belongs to results that the resource allocator

evaluates from the network after execution and then transfers

to the user. After completion of all the execution then results

like energy value at 169j, time value is 279 sec, and resource

utilization value is 97% get calculated to see the performance

of the research architecture. The proposed model has 6%

improved resource utilization. The further enhancement of the

proposed hybrid method offers limited scalability but can be

improved by using a huge number of IoT devices and servers

in the Fog background.

REFERENCES

[1] Katal, A. and Sethi, V. (2022) ‘Energy-efficient cloud and Fog computing
in internet of things: Techniques and challenges’, Cloud and Fog

Computing Platforms for Internet of Things, pp. 67–83.

[2] Basharat, A. and Mohamad, Mohd.M. (2022) ‘Security challenges and
solutions for internet of things based smart agriculture: A Review’, 2022

4th International Conference on Smart Sensors and Application (ICSSA).

[3] Jamil, B. et al. (2022) ‘Resource allocation and task scheduling in fog
computing and internet of everything environments: A taxonomy, review,

and Future Directions’, ACM Computing Surveys, 54(11s), pp. 1–38.

[4] Veith, A. da, Dias de Assunção, M. and Lefèvre, L. (2023) ‘Latency-
aware strategies for deploying data stream processing applications on

large cloud-edge infrastructure’, IEEE Transactions on Cloud Computing,

11(1), pp. 445–456.
[5] Chennam, K.K. et al. (2021) ‘Smart Cities Data Analysis Using Fog

Computing’, 4th Smart Cities Symposium (SCS 2021).

[6] Aljićević, Z. et al. (2022) ‘Resource allocation model for cloud-fog based
smart grid’, SSRN Electronic Journal.

[7] Alshouiliy, K. and Agrawal, D.P. (2021) ‘Confluence of 4G LTE, 5G,
fog, and cloud computing and understanding security issues’, Fog/Edge

Computing For Security, Privacy, and Applications, pp. 3–32.

[8] Jamil, B. et al. (2022) ‘Resource allocation and task scheduling in fog
computing and internet of everything environments: A taxonomy, review,

and Future Directions’, ACM Computing Surveys, 54(11s), pp. 1–38.

[9] Daase, C. et al. (2023) ‘The Future of Commerce: Linking modern
retailing characteristics with cloud computing capabilities’, Proceedings

of the 25th International Conference on Enterprise Information Systems.

[10] Hossain, M.R. et al. (2021) ‘A scheduling-based dynamic fog computing
framework for Augmenting Resource Utilization’, Simulation Modelling

Practice and Theory, 111.

[11] Mahajan, K. (2023) Fog computing: A systematic review of Architecture,
Iot Integration, algorithms and research challenges with insights into

cloud computing integration.

[12] Sharma, N. and Prabha, C. (2021) ‘Computing paradigms: An overview’,
2021 Asian Conference on Innovation in Technology (ASIANCON).

[13] Awaisi, K.S. et al. (2021) ‘Simulating fog computing applications using

ifogsim toolkit’, Mobile Edge Computing, pp. 565–590.

[14] Das, R. and Inuwa, M.M. (2023) ‘A review on Fog computing: Issues,
characteristics, challenges, and potential applications’, Telematics and

Informatics Reports, 10.

[15] Stavrinides, G.L. and Karatza, H.D. (2022) ‘Resource allocation and
scheduling of real-time workflow applications in an IOT-fog-cloud

environment’, 2022 Seventh International Conference on Fog and Mobile

Edge Computing (FMEC).
[16] Katal, A. and Sethi, V. (2022) ‘Energy-efficient cloud and Fog computing

in internet of things: Techniques and challenges’, Cloud and Fog

Computing Platforms for Internet of Things, pp. 67–83.
[17] Solanki, M.S. (2021) ‘Fog computing: A conceptual and practical

overview’, International Journal of Innovative Research in Computer

Science & Technology, pp. 158–162.
[18] Alsadie, D. (2024) ‘A Comprehensive Review of AI Techniques for

Resource Management in Fog Computing: Trends, Challenges, and

Future Directions’, IEEE Access, 12, pp. 1180–118059.

[19] Das, J., Ghosh, S.K. and Buyya, R. (2021) ‘Geospatial Edge-Fog

Computing: A systematic review, taxonomy, and Future Directions’,

Mobile Edge Computing, pp. 47–69.
[20] Premalatha, B. and Prakasam, P. (2024) ‘Optimal Energy-efficient

resource allocation and fault tolerance scheme for task offloading in IOT-
Fog Computing Networks’, Computer Networks, 238, p. 110080.

[21] Mebrek, A. and Yassine, A. (2024) ‘Intelligent Resource Allocation and

task offloading model for IOT applications in fog networks: A game-
theoretic approach’, IEEE Transactions on Emerging Topics in

Computational Intelligence, pp. 1–15.

[22] Patel, M. and Modi, K. (2023) ‘Dynamic Resource Allocation for Real-
Time Task Scheduling in Cloud-Fog Computing: A Cost-Effective and

Low-Latency Approach’, Approach,” International Journal of Intelligent

Systems and Applications in Engineering, 11(3), pp. 1222–1228.
[23] Yin, C. et al. (2023) ‘An optimized resource scheduling algorithm based

on Ga and ACO algorithm’, The Journal of Supercomputing, 80, pp.

4248–4285.
[24] Wang, J. and Li, D. (2019) ‘Task scheduling based on a hybrid heuristic

algorithm for smart production line with Fog Computing’, Sensors, 19(5).

[25] Movahedi, Z., &Defude, B. (2021). An efficient population-based multi-
objective task scheduling approach in fog computing systems. Journal of

Cloud Computing, 10(1), 1- 31.

[26] Kishor, A. and Chakarbarty, C. (2021) ‘Task offloading in fog computing
for using smart ant colony optimization’, Wireless Personal

Communications, 127(2), pp. 1683–1704.

[27] Singh, J. (2022) ‘An Optimal Resource Provisioning Scheme Using QoS
in Cloud Computing Based Upon the Dynamic Clustering and Self-

Adaptive Hybrid Optimization Algorithm’, International Journal of

Intelligent Engineering and Systems, 15(3), pp. 148–160.
[28] Nethaji , S.V. and Chidambaram, M. (2023) ‘Lotkavoltera and Elman

Hebbian Recurrent Neural Network Cache-based resource allocation in

fog environment’, International Journal of Intelligent Engineering and
Systems, 16(2), pp. 228–239.

[29] Mahendran, J. and Lakshmanan, L. (2022) ‘Fog computing with IOT

device’s data security management using density control weighted
election and extensible authentication protocol’, International Journal of

Intelligent Engineering and Systems, 15(1).

[30] Kanani, P. and Padole, M. (2020) ‘Implementing and evaluating health as
a service in fog and cloud computing using Raspberry Pi’, International

Journal of Intelligent Engineering and Systems, 13(6), pp. 142–155.

Authors

Er. Neha Sharma is a research scholar (Pursuing Ph.D.)

from chandigarh University Gharuan Mohali, Punjab, India.

She received M.E. degree in Computer Science and
Engineering from Chandigarh University, Gharuan, Mohali

(Punjab) India. She also had published several research

papers in national as well as international Journals and
conferences of repute. She has research contributions in the

area of cloud and Fog.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2024/51 Volume 11, Issue 6, November – December (2024)

ISSN: 2395-0455 ©EverScience Publications 869

RESEARCH ARTICLE

Prof. (Dr.) Deepti Sharma is presently working as Program
Leader, Cloud Computing, DevOps, ME and Full Stack Web

Development. in Chandigarh University, Punjab, India. She

has received M.Tech Degree(Computer Science
Engineering)and Ph.D. Degree in Cloud Computing. She is

having an experience of more than 24 years in the field of

teaching, research and administration. Her area of interests are cloud computing,
energy efficiency, mobile computing and IOT. She had published several

reputed International/SCI papers and attended several National and International

IEEE/Springer conferences. She has guided more than 40 PG theses and one
Ph.D. scholar. She is currently guiding 5 PhD. Scholars. She has recently

certified as facilitator for “AI for Future Workforce Program” by Intel

corporation under Intel Readiness Program. She is also certified for AWS
Academy graduate from AWS Academy foundations. She has written 5 book

chapters in reputed publications (Springer, Scrivener). She is a reviewer of

various reputed (IEEE, Springer) Conferences. She has published 6 Patents.

How to cite this article:

Neha Sharma, Deepti Sharma, “Implementation and Analysis of Fog Node-Assisted Scheduling and Optimization of

Resource Allocation and Utilization”, International Journal of Computer Networks and Applications (IJCNA), 11(6), PP:

855-869, 2024, DOI: 10.22247/ijcna/2024/51.

