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Abstract – The exponential growth of data generated by various 

aspects of life, particularly through internet-enabled devices, has 

introduced significant challenges in processing such data within 

strict time constraints. Cloud computing has emerged as a 

potential solution due to its ability to handle heterogeneous, 

energy-constraint, and non-cooperative data. However, the task 

scheduling problem in cloud computing, being NP-hard, 

demands efficient solutions that balance system performance 

and energy consumption. Current methods often fail to address 

the imbalanced system loads and fluctuating cloud requests 

effectively, leading to increased energy usage and degraded 

performance. This paper tackles these challenges by proposing 

an energy-efficient load balancing strategy coupled with an 

optimized cloud requests placement method. Task scheduling is 

approached using the binary chaotic Jaya (BCJaya) algorithm, 

which leverages evolutionary techniques to ensure high 

performance. The proposed algorithm is evaluated against key 

metrics, including Makespan, virtual machine (VM) utilization, 

energy consumption, and load balancing rate. Additionally, the 

BCJaya algorithm's efficacy is demonstrated using a real-world 

benchmark dataset and is compared against established 

baselines. The results show that BCJaya consistently 

outperforms alternative methods, particularly in scenarios 

involving increasing tasks and VMs, making it a robust solution 

for cloud scheduling challenges. 

Index Terms – Cloud Requests Placement, Resource Monitoring, 

Task Scheduling, Resource Monitoring, Chaotic Jaya, Cloud 

Computing. 

1. INTRODUCTION 

In today’s era of pervasive digitalization, every aspect of 

human life is increasingly dependent on computational 

systems and internet-enabled devices. This dependence has 

led to an exponential increase in data generation, making 

effective management of computational resources a critical 

necessity. Cloud computing has emerged as a cornerstone for 

addressing these challenges, offering scalable, on-demand 

access to resources for storing, processing, and managing 

data. However, the rapid growth of cloud computing has also 

raised significant concerns about energy consumption, 

resource optimization, and environmental impact. These 

challenges are magnified by the heterogeneous, latency-

sensitive, and dynamic nature of workloads, necessitating 

innovative solutions for resource management and energy 

efficiency.   

Request placement and resource monitoring are essential 

components in cloud computing, significantly influencing the 

performance and efficiency of cloud systems. Poor task 

placement and ineffective resource monitoring can result in 

inefficient resource utilization, higher energy consumption, 

elevated operational costs, and a decline in Quality of Service 

(QoS). Addressing these issues requires energy-aware 

optimization techniques that not only improve resource 
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utilization but also minimize energy expenditure. Cloud 

computing has transfigured the business horizon as to how 

computational resources are delivered and consumed. It 

enables organizations to access computing power without 

significant upfront investments, promoting agility, flexibility, 

and cost savings. However, these benefits come with 

challenges, especially in terms of energy efficiency. A typical 

cloud datacenter houses thousands of servers, networking 

devices, and cooling systems, all of which contribute to 

substantial energy consumption. Studies suggest that 

datacenters globally consume approximately 1-2% of the 

world's total electricity, and this figure is expected to grow as 

the demand for cloud services increases.   

Task consolidation and resource management are now 

feasible choices as a result of the development of cloud 

computing which offers end users on-demand services over 

the Internet based on a pricing structure. Cloud computing, 

which provides virtualization techniques for the dynamic 

scheduling of cloud requests, appears to be a popular solution. 

Cloud requests must be handled promptly to reduce average 

waiting time and execution time while effectively increasing 

resource utilization. To make this feasible, heuristic 

algorithms or standard scheduling cannot yield the best 

results. The exponential growth of cloud computing can be 

attributed to its dynamic environment, scalability, 

customization, and on-demand access to computing resources. 

The abstraction of virtual resource management, which makes 

the technical complexities easier to understand, is one of its 

main benefits.  

1.1. Problem Statement 

Effective task scheduling or cloud request placement for users 

requesting services is necessary for efficient resource 

monitoring in cloud computing [1-4]. When there are few 

tasks and resources, scheduling is easy; however, it becomes 

difficult when different user demands call for different levels 

of service quality. Task consolidation and resource 

monitoring, which are considered NP-hard problems, in cloud 

computing is challenging because of the heterogeneous and 

dynamic nature of datacenters, which makes it difficult to 

solve NP-hard problems. Metaheuristic-based scheduling 

techniques have proven to be more effective than traditional 

and heuristic approaches [5, 6]. These non-deterministic 

techniques, like meta-heuristic algorithms, have proven to be 

appropriate and perform satisfactorily when used to solve NP-

hard optimization problems [7]. 

Numerous advantages come with cloud computing, including 

fewer maintenance requirements, increased flexibility, and 

consistent quality because of outside management. However, 

finding the best mapping algorithm to allocate resources 

among cloud requests is necessary for optimizing the resource 

utilization (NP-hard [8]) rate. Improved results are obtained 

by expanding the search space with population-based 

algorithm-based metaheuristics. Withstanding the advantages 

of such algorithms, these metaheuristics produce better 

results. Because scheduling strategies guarantee that the cloud 

requests are distributed among compatible virtual machines 

(VMs), they are critical to effective cloud computing 

solutions. One major problem that impacts QoS, performance, 

and user experience is the placement of cloud requests on 

suitable VMs. There is a dearth of research on resolving these 

issues with the JAYA variant available in the literature [9]. It 

is very difficult to get the best solution for placement and 

resource monitoring problems in a given amount of time 

when competing metrics are involved and tasks are 

dynamically assigned to different resources. A heterogeneous 

environment is defined by a fluctuating number of tasks and 

virtual machines, which makes it difficult to verify the 

algorithm's effectiveness in both homogeneous and 

heterogeneous environments. Metaheuristic techniques can 

yield approximate optimal solutions within predictable 

timeframes, according to prior research [8]. 

1.2. Motivation 

Several challenges complicate the implementation of energy-

aware optimization in cloud computing environments: Task 

Heterogeneity: Cloud requests vary in terms of computational 

requirements, priority, and deadlines, making uniform 

optimization strategies ineffective. Dynamic Resource 

Availability: Resource availability changes dynamically due 

to varying workloads, hardware failures, and maintenance 

activities. VM Consolidation Overheads: While consolidating 

VMs onto fewer servers can save energy, excessive VM 

migrations can introduce overheads, negating potential 

savings. Trade-offs Between QoS and Energy Efficiency: 

Ensuring high QoS while minimizing energy consumption 

requires balancing conflicting objectives, particularly for 

latency-sensitive applications. NP-Hard Nature of Task 

Scheduling: Task scheduling in cloud environments is 

inherently NP-hard, meaning that finding an optimal solution 

requires significant computational effort. To address these 

challenges, this study introduces an evolutionary approach to 

optimize cloud request placement and resource monitoring. 

The proposed method integrates Binary Chaotic Jaya 

(BCJaya) optimization to address the limitations of existing 

methods. BCJaya, an advanced metaheuristic algorithm, 

combines chaotic maps with the Jaya algorithm to enhance 

exploration and exploitation capabilities in the solution space. 

The research focuses on addressing critical challenges such 

as:   

• Dynamic Workload Adaptability: Ensuring that the 

optimization framework can adapt to fluctuating 

workloads and resource availability.   

• Energy-Aware Task Scheduling: Incorporating energy 

metrics into the scheduling process to minimize power 

consumption without compromising QoS.   
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• Load Balancing: Achieving a balanced workload 

distribution across active servers to prevent resource 

bottlenecks and underutilization.   

• Reduction of VM Migration Overheads: Minimizing the 

frequency and cost of VM migrations to achieve energy 

efficiency without excessive overheads.   

Using an evolutionary approach, this research attempts to 

address cloud request placement on the underlying VMs with 

effective resource monitoring throughout the system. In 

particular, the goal of the study is to improve the traditional 

Jaya algorithm by introducing a variation called Chaotic Jaya 

(CJaya) to speed up convergence and produce ideal solutions. 

Additionally, a binary version of the CJaya (BCJaya) 

algorithm is designed to display the produced solution within 

a range of 0 and 1. The primary motive for using the Jaya 

metaheuristic approach for this problem is its simplicity and 

power to strike a balance between local and global optima. 

Both the best and worst solutions are estimated in a single 

equation by considering very few control parameters which 

makes it more powerful and efficient than others. Particle 

swarm optimization (PSO) is a commonly used and accepted 

standard method among various metaheuristic algorithms 

[10]. Nevertheless, PSO fails to overcome local optima as a 

global search technique, despite its advantages. As the 

number of tasks within the problem domain increases, it also 

faces challenges related to early convergence [11]. In contrast, 

CJaya demonstrates a high convergence rate and does not get 

trapped in local optima due to its simultaneous consideration 

of both the best and worst solutions in a single equation [12]. 

Another popular and highly advantageous optimization 

method is genetic algorithms (GA). However, because there 

are a lot of control parameters in GA, it has a high 

computational cost. On the other hand, because solutions are 

updated using a single equation in a single step, BCJaya has 

low computational complexity and requires less time. 

Furthermore, BCJaya preserves a trade-off in the problem 

space between particle exploration and exploitation capacity. 

BCJaya reduces computational time because it doesn't require 

additional control parameter tuning, unlike GA and PSO. 

1.3. Contributions 

To summarize, the following is a list of the major 

contributions: 

• To optimise the scheduling and resource monitoring, and 

accomplish efficient load balancing, the Binary Chaotic 

Jaya algorithm is proposed in conjunction with a resource 

monitoring strategy, 

• Taking into account a fitness function to protect the 

interests of the user and the cloud service provider, 

making sure the goals of load balancing, resource usage, 

and energy consumption are maintained, 

• Running simulations in environments in a heterogeneous 

to show how effective the suggested algorithm is, 

• To measure the scheduling metrics and validate the 

algorithm's effectiveness, a benchmark dataset is used.  

1.4. Flow of the paper 

The remaining sections of the document are arranged as 

follows: Section 2 reviews the current state of relevant 

research. The various system models are shown in Section 3, 

which is followed by the problem formulation. The proposed 

methodology is explained in Section 4, with special attention 

to the Binary Chaotic Jaya algorithm and the resource 

monitoring strategy. In Section 5, test cases and dataset 

utilization are experimentally evaluated. A comparative 

analysis with existing algorithms is provided, and a discussion 

follows. The paper is finally concluded with some future 

perspectives in Section 6. 

2. RELATED WORK 

Cloud data centers strive for energy efficiency, often achieved 

through dynamic virtual machine (VM) consolidation. By 

dynamically consolidating VMs onto fewer active servers, 

power consumption is significantly reduced. However, server 

workloads fluctuate, necessitating frequent consolidation 

adjustments. The following research papers propose 

metaheuristic or evolutionary-based approaches to solve task 

mapping problem considering various constraints. For 

instance, Mishra and Majhi [13] proposed a hybrid load-

balancing approach integrating Genetic Algorithm (GA) with 

Jaya optimization to efficiently schedule dynamic medical 

data in cloud systems for biomedical applications. GA 

generates the initial population of solutions, while Jaya 

optimization identifies the most suitable virtual machines 

(VMs) for executing these solutions. This integration 

leverages the strengths of both algorithms, resulting in 

improved scheduling and load-balancing efficiency. However, 

the proposed method does not account for thermal aspects or 

fluctuating workloads, which limits its applicability to 

dynamic and real-time scenarios. The research also lacks 

consideration of energy-aware metrics and dynamic VM 

consolidation, leaving room for further exploration in these 

areas. Zahedi et al. [14] introduced a "thermal-aware 

consolidation" technique to address energy efficiency and 

workload distribution in cloud datacenters. The model 

categorizes servers based on their energy efficiency and 

prioritizes VM placement on highly efficient servers. This 

approach effectively reduces energy consumption and 

mitigates thermal challenges by preventing hotspots. Despite 

these advantages, the method does not adequately address 

dynamic workloads or task prioritization. The lack of 

consideration for Quality of Service (QoS) requirements and 

workload variability in dynamic cloud environments 

highlights an important research gap that future studies could 
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address. Zhang et al. [15] developed a reservation-based VM 

allocation strategy using an evolutionary algorithm to 

optimize server energy consumption. The approach 

strategically allocates VMs based on their instruction-to-

energy ratios, achieving significant energy savings. However, 

the study primarily focuses on energy efficiency and does not 

sufficiently address task heterogeneity or workload 

imbalance. Additionally, the method overlooks real-time 

workload fluctuations and dynamic task scheduling, which are 

critical for enhancing cloud resource management under 

varying conditions. Mishra et al. [16] proposed a dynamic 

load scheduling approach for Infrastructure-as-a-Service 

(IaaS) cloud ecosystems using the binary Jaya algorithm 

integrated with a load-balancing technique. This approach 

minimizes the number of active servers, ensuring efficient 

task distribution and improved energy efficiency. However, 

the model is limited by excessive VM migrations and the 

absence of thermal management considerations. Moreover, 

the study lacks an energy-aware framework and overlooks 

thermal-aware consolidation techniques, which could enhance 

its applicability in dynamic cloud environments. Llager et al. 

[17] tackled the issue of "blind consolidation" in dynamic VM 

consolidation, where excessive VM migrations can negate 

energy savings due to high migration overheads. Their energy 

and thermal-aware consolidation model ensures balanced 

workload distribution while mitigating hotspots. This 

approach effectively addresses energy efficiency and thermal 

challenges. However, it does not consider task deadlines or 

QoS constraints, which limits its applicability in scenarios 

requiring strict service-level agreements (SLAs). The lack of 

focus on resource heterogeneity further highlights areas for 

improvement. Azizi et al. [18] proposed a two-phase VM 

migration algorithm to address resource imbalance in 

powered-on servers. The algorithm relocates VMs from 

overloaded servers to efficient, powered-off servers, thereby 

improving resource utilization and overall system efficiency. 

While this method enhances resource distribution, it incurs 

high overhead due to frequent VM migrations. The study also 

lacks applicability to heterogeneous environments and 

dynamic task scheduling, which are essential for real-world 

cloud datacenter operations. Yavari et al. [19] introduced a 

hybrid approach combining heuristics and metaheuristics to 

address multi-dimensional constraints such as CPU, memory, 

and temperature during VM consolidation. This method 

improves performance by targeting VM migrations and 

balancing resources effectively. However, its scalability is 

limited when applied to large cloud systems. Additionally, the 

study does not fully optimize energy consumption or QoS 

requirements, leaving a gap in achieving comprehensive 

efficiency in cloud resource management. Abdessamia et al. 

[20] explored energy-efficient VM placement using the 

Binary Gravitational Search Algorithm (BGSA). The 

algorithm guides VMs toward high-efficiency physical 

machines, enhancing energy savings. Despite its benefits, the 

method primarily focuses on energy efficiency without 

addressing thermal metrics or QoS constraints. Furthermore, 

the absence of dynamic scheduling and workload 

heterogeneity limits its practical application in diverse cloud 

environments. Abualigah et al. [21] proposed a hybrid 

Differential Evolution-AntLion Optimization (DE-ALO) 

algorithm for multi-objective task scheduling in cloud 

environments. The method maximizes resource utilization and 

minimizes Makespan, demonstrating significant performance 

improvements. However, the high computational complexity 

of the hybrid approach makes it unsuitable for real-time or 

large-scale scenarios. Additionally, the study does not address 

dynamic workloads or energy efficiency, which are critical for 

adaptive cloud systems. Mishra and Majhi [22] introduced a 

load-balancing approach based on Binary Bird Swarm 

Optimization (BBSO) for cloud computing environments. 

This method effectively balances system loads and improves 

resource utilization. However, the approach is limited to 

homogeneous environments with a small number of tasks, 

reducing its significance for real-world, large-scale, and 

heterogeneous cloud systems. The absence of a focus on 

energy efficiency and dynamic task scheduling further limits 

its utility in modern cloud datacentre. The summary of these 

related works is presented in Table 1. 

Table 1 Summary of Related Works 

Authors 

(Reference) 

Methodology Used Advantages Limitations Research Gaps 

Mishra & Majhi 

[13] 

GA + Jaya optimization Efficient 

scheduling and 

load balancing 

Ignores thermal aspects No dynamic 

VM 

consolidation 

or energy 

metrics 

Zahedi et al. [14] Thermal-aware consolidation Reduces energy 

and addresses 

thermal issues 

Limited dynamic workload 

handling 

No QoS or 

workload 

variability 

consideration 
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Zhang et al. [15] Reservation-based VM 

allocation using evolutionary 

algorithm 

Optimizes energy 

via instruction-to-

energy ratios 

Ignores task heterogeneity 

and workload imbalance 

Lacks dynamic 

task scheduling 

Mishra et al. [16] Binary Jaya algorithm with 

load balancing 

Minimizes active 

servers 

Excessive VM migrations, 

no thermal management 

No energy-

aware or 

thermal-aware 

consolidation 

Llager et al. [17] Energy and thermal-aware 

VM consolidation 

Prevents hotspots Lacks task deadline 

handling 

No QoS or 

resource 

heterogeneity 

consideration 

Azizi et al. [18] Two-phase VM migration Improves resource 

utilization 

High VM migration 

overhead 

Limited to 

homogeneous 

environments 

Yavari et al. [19] Hybrid 

heuristics/metaheuristics 

Balances CPU, 

memory, and 

temperature 

Limited scalability Does not 

optimize 

energy 

consumption or 

QoS 

Abdessamia et al. 

[20] 

Binary Gravitational Search 

Algorithm 

Enhances energy 

efficiency 

Ignores thermal and QoS 

metrics 

No dynamic 

scheduling or 

workload 

heterogeneity 

Abualigah et al. 

[21] 

Hybrid DE-ALO Maximizes 

resource 

utilization, 

minimizes 

Makespan 

High computational 

complexity 

Lacks dynamic 

workloads or 

energy 

efficiency 

Mishra & Majhi 

[22] 

Binary Bird Swarm 

Optimization 

Balances system 

loads 

Tested on homogeneous 

environments 

Limited to 

small-scale, 

homogeneous 

environments 

This research focuses on the integration of a resource 

monitoring strategy and a requests placement technique to 

achieve both an equitable workload distribution and an 

optimal task mapping to virtual machines (VMs) for better 

resource utilization. Workloads are divided among the VMs 

by the Broker using a particular load balancing technique. It 

also uses the proposed BCJaya-based scheduling algorithm to 

figure out how to allocate tasks to virtual machines in the 

most efficient way. Iteratively distributing the workload and 

optimizing resource utilization, this process keeps going until 

a balanced state is achieved through a compatible–based 

resource monitoring strategy for an increasing number of 

tasks on heterogeneous VMs. 

3. SYSTEM MODELS AND PROBLEM FORMULATION 

The Cloud-assisted scheduling and resource monitoring 

framework is depicted in Figure 1. This figure illustrates a 

Cloud computing framework designed for efficient task 

scheduling and resource allocation using the Binary Chaotic 

JAYA (BCJaya) optimization algorithm. The architecture is 

centred around a Cloud datacenter, which acts as the 

computational backbone for executing user tasks. The 

framework incorporates various components that interact to 

manage resources effectively, optimize task placement, and 

meet Quality of Service (QoS) requirements. 

The Cloud users represent the end-users who submit tasks to 

the cloud. These tasks are sent via a request and response 

channel, which facilitates communication between the users 

and the cloud system. Once a task is submitted, it is passed 

through the broker, an intermediary responsible for managing 

task requests and responses between users and the datacenter. 

Within the Cloud datacenter, the heart of the system lies in the 

computational framework, where the BCJaya algorithm 
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operates. The framework begins with resource monitoring and 

load balancing, which tracks the status of physical resources 

and ensures that tasks are distributed evenly across the 

infrastructure. Tasks submitted by users are temporarily 

stored in a task buffer, awaiting scheduling based on their 

priority and resource requirements. The BCJaya algorithm is 

used for both initial scheduling and final placement of tasks, 

focusing on optimizing factors such as execution time, energy 

efficiency, and resource utilization. The framework also 

evaluates QoS metrics, which guide decision-making to meet 

user expectations for performance and reliability. 

The system relies on a pool of heterogeneous resources, 

which includes physical machines with varying computational 

capabilities, such as servers, desktops, and mobile devices. 

These resources execute the tasks assigned by the scheduling 

framework. A dedicated Cloud Information Service (CIS) 

provides real-time metadata about resource availability, 

capacity, and status, enabling informed decisions during the 

scheduling process. 

Finally, the placement and scheduling module determines the 

most suitable physical machines for executing tasks, ensuring 

optimal use of the infrastructure while adhering to constraints 

like workload balancing and energy efficiency. Once tasks are 

completed, the results are transmitted back to the users 

through the broker. 

 

Figure 1 Cloud-Assisted Request Placement and Resource Monitoring Framework 

This architecture ensures an efficient, scalable, and QoS-

aware cloud computing environment. By leveraging the 

BCJaya algorithm for scheduling and load balancing, it 

achieves optimal resource utilization and maintains high 

performance while meeting the dynamic demands of cloud 

users. 

3.1. Task-VM Model 

A tremendous number of tasks is generated from the internet-

enabled devices by cloud users on a daily basis which requires 

to be processed by computationally-rich and resource-rich 

nodes. The generated tasks are of disparate nature in terms of 
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size, specifications, resource requirements, bandwidth 

requirements, speed, processing cores required to get executed, 

etc. Therefore, the tasks are expressed in million instructions 

(MI) and are assumed to be independent in nature. These are 

denoted as T = {T1, T2, … , Ti, … , TN}, i ∈ N  and are 

characterised in terms of size (l), processing core (c), memory 

(m), and storage (s) expressed as 〈Ti
l, Ti

c, Ti
m , Ti

s〉. Likewise, 

the computationally-rich nodes are deployed in the Cloud layer 

for processing these requests. The Cloud layer encompasses a 

series of hosts deployed in a rack of servers. Furthermore, a 

number of VMs are created under a series of hosts through 

virtualization technology. The VMs are further classified as 

homogeneous and heterogeneous in nature. Homogeneous in 

nature, we mean, the technical specifications of all the VMs 

are the same whereas different in a heterogeneous 

environment. The VMs are expressed as VM =

{M1, M2, … ,MJ, … ,MVM}, j ∈ VM  and are characterised in 

terms of processing core, speed in MIPS, memory in GB, 

storage in GB and bandwidth denoted as 〈Mj
c, Mj

m, Mj
s, Mj

BW〉. 

This research considers a dynamic range of tasks and 

heterogeneous VMs for the simulation and validation of the 

effectiveness of the proposed strategy.   

3.2. Scheduling Parameters 

These parameters are also called Quality of Service (QoS) 

parameters. These parameters hold significance in appraising 

the performance of the proposed algorithm over others.  

MAKESPAN (Makespan): it is the maximum execution time 

of all the allocated services for each fog node, and is 

expressed as shown in Equation (1) [23]: 

Makespan = max∑ Exet(Mj)
N
i=1                                        (1) 

The execution time of the jth  VM (Exet(Mj))  is the time 

required to process all the cloud requests on a VM and is 

computed as in Equation (2):            

Exet(Mj) = ∑ (Proct
j
+ Propt

j
)

T
k
j
ϵMj

                                 (2) 

Where 

Proct
j
=

L(Tk
j
)

ρ(Mj)×CPUrate(Mj)
                                                   (3) 

Propt
j
=

D((x1,x2)(y1,y2))

3×108                                                       (4) 

Where Proct
j
 is the processing time of the jth VM, Propt

j
is the 

propagation time for sending an cloud request from an 

internet-enabled device to the jth VM through distance D( ), 

L(Tk
j
) is the number of instructions in the kth request, ρ(Mj) 

is the number of core present in the  jth VM, and CPUrate(Mj) 

is the processing capability of the  jth VM. 

VM UTILIZATION (UtilM): It's the level of virtual machine 

(VM) usage. Minimising the makespan is the aim of load 

balancing, which aims to optimise resource utilisation. On 

average Equation (5) is used to determine the average 

utilisation of all virtual machines (VMs), where M is the total 

number of VMs [16]. 

UtilM
avg

=
∑ Exet(Mj)

M
j=1

makespan ×M
                                                          (5) 

DEGREE OF IMBALANCE ( doi ): The gauge for 

determining task imbalances among VMs is the degree of 

imbalance [22]. Equations (6) and (7) are used to measure it, 

where Texei
max and Texei

min represent the highest and lowest 

execution times of task Ti across all VMs. Moreover, Texei
avg

 

represents the average execution time. The task’s length is 

represented by Len , the number of cores in the jth  VM is 

denoted by Mj
#c, and a total MIPS assigned to the jth VM is 

represented by Mj
MIPS. 

doi =  
Texei

max−Texei
min

Texe
i
avg                                                      (6) 

Ti =
Len

Mj
#c×Mj

MIPS                                                                 (7) 

3.3. Energy Consumption Model 

An additional objective of this study is to optimize resource 

utilization while minimizing energy consumption. Efficient 

resource utilization can be achieved by ensuring that only the 

necessary processors are active, while others remain idle or 

powered down. When services are distributed across multiple 

processing nodes, it often leads to some nodes being 

underutilized, consuming energy inefficiently. Idle nodes can 

still use approximately 30-40% of their peak energy 

consumption. Therefore, to reduce the overall energy 

consumption of virtual machines (VMs) in the cloud, it is 

crucial to schedule services effectively. The energy usage of 

the jth VM and the total energy consumed by all VMs in the 

datacenter are mathematically represented by Equations (8-9) 

[23]. 

E
C

Mj
= Exet(Mj) × activej + (Makespan − Exet(Mj) ×

idlej)                                                                                   (8) 

EC
Total = ∑ EC

MjM
j=1                                                                 (9) 

3.4. Problem Formulation Model 

Assume a problem matrix with N × d -dimension {X =

{X11, X22, X33, … , Xij, … , Xnm}, Xij {T ∈

(1,2,3, … , i, … , N);M ∈ (1,2,3, … , j … ,M)}}  represents each 

particle in the problem space. The objective of this research is 

to map the tasks or cloud requests to compatible VMs 
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optimally to achieve the following objectives: (1) minimize 

makespan (Makespan) and maximize average VM utilization 

(UtilM
avg

) shown in Equation (10), (2) minimize the degree of 

imbalance (doi) shown in Equation (11), and (3) minimize 

total energy consumption (EC
Total) shown in Equation (12). 

Each objective is stated with respect to the constraints in the 

following equations. 

𝕆1 = min
Tn,i

m Mn,i
m

∑
1

Makespan
× UtilM

avg
,    m ∈ M,    n ∈ T;         (10) 

𝕆2 = min
Mn,i

m
∑doi,    m ∈ M,    n ∈ T;                                    (11) 

𝕆3 = min
Mn,i

m
∑EC

Total,    m ∈ M;                                              (12) 

Hence, the objective function considering minimization and 

maximization of makespan and VM utilization (Equation 

(10)), minimization of the degree of imbalance (Equation 

(11)), and minimization of Energy consumption (Equation 

(12)) has been formulated as shown in Equation (13): 

𝕆 = 𝕆1 × α + 𝕆2 × β + 𝕆3 × γ                                        (13) 

subject to:  

C1: α + β + γ = 1;                                                                                                                                                

C2: ∑ ∑ 0 ≤ Xi,j ≤ 1;j∈Mi∈T   

Equation (10) indicates that a datacenter's makespan should 

be minimised and resource utilization to be maximized, 

contingent on the required durations of tasks and execution 

times of individual virtual machines. Though the makespan 

and resource utilization are associated in a reverse linear 

relationship, it is considered in one equation. The 

minimization of the system's degree of imbalance is discussed 

in Equation (11). In order to lessen the severity of imbalance, 

this goal makes sure that loads are distributed evenly amongst 

VMs. Equation (12) shows that resource utilisation should be 

maximised. The weighted average of each sub-objective is 

shown in Equation (13). 

The primary objective (𝕆) will have a balancing factor of one, 

according to Constraint (C1). Many weight values are used in 

the simulation; it was found that α=0.5, β=0.25, and γ=0.25 

are the most significant values. It is crucial to remember that 

it takes a lot of work to figure out the exact weight values. 

After we conducted tests and tracked our results using several 

weight values, the precise weight values were taken into 

account. Constraint C2  states that the optimal mapping of 

tasks to virtual machines (VMs) should be represented by 

either 0 or 1. It is a binary variable. 

4. PROPOSED STRATEGY 

This section explains the proposed methodology implemented 

to carry out this research. The proposed strategy is a two-fold 

mechanism. First, a mapping of tasks to VMs would be 

initiated based on the resource monitoring. If the system is 

identified as imbalanced, the resource monitoring algorithm 

would be triggered to redistribute the workloads among VMs 

based on resource availability and resource adaptability. In 

addition, the tasks scheduling algorithm called BCJaya 

(Binary Chaotic Jaya) would be executed for scheduling the 

tasks among VMs. As a result, the optimal mapping of tasks 

into VMs would take place resulting in a reduced makespan, 

energy consumption, degree of imbalance and improved VM 

utilization. In this regard, sub-section 4.1 presents the cloud 

request placement strategy (task scheduling) using a binary 

chaotic Jaya (BCJaya) algorithm. Next, the load balancing 

and resource monitoring strategy is presented in sub-section 

4.2.  

4.1. Cloud Requests Placement Strategy Using BCJaya 

Jaya is a population-based metaheuristic optimization 

algorithm used to address constrained and unconstrained 

optimization problems [16]. This algorithm consists of two 

entities, such as particles and food sources. Likewise, our 

cloud requests placement strategy consists of tasks as particles 

and VMs as food sources. In the Jaya-based algorithm, each 

particle competes among itself to get into the compatible food 

source. Analogously, the tasks compete among themselves to 

get into a compatible VM in our problem domain. The 

position of each particle is updated in each iteration and so are 

tasks. The fitness of each particle is estimated according to the 

fitness value, and the best and worst positions are estimated 

through a single equation in the Jaya algorithm. The fitness of 

each task is evaluated through a defined fitness function in 

Equation (13). The position of each particle is updated 

through the following Equation (14). 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1(𝐵𝑖 − |𝑋𝑖
𝑡|) −  𝑟2(𝑊𝑖 − |𝑋𝑖

𝑡|)                 (14) 

Here, 𝑋𝑖
𝑡 and 𝑋𝑖

𝑡+1 are the current and the updated positions of 

the particle 𝑖  at 𝑡 and 𝑡 + 1 iterations, respectively, 𝑟1  and 𝑟2 

are arbitrary numbers between 0 and 1, 𝐵𝑖  and 𝑊𝑖 are the best 

and worst solutions of the particle 𝑖.  

However, the standard Jaya suffers from slow convergence 

and consequently, local entrapment of the particles may take 

place. Therefore, the chaotic JAYA (CJAYA) theory of chaos 

serves as the foundation for this work. This technique is used 

to overcome the drawback of being slower at the JAYA 

algorithm's standard convergence rate. This is intended to 

hasten exploration without becoming ensnared in local 

optima. The standard JAYA and the CJAYA operate on 

similar principles. Because of CJAYA, an arbitrary, chaotic 

number generator is used to create the random numbers that 

make up the initial population. Because of its simplicity, the 

tent map function is used as a chaotic random number 

generator in this study rather than other chaotic map 

functions. Equation (15) is used to express it.               
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𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡

0.7
,                   𝑋𝑖

𝑡 < 0.7

10

3
(1 − 𝑋𝑖

𝑡), 𝑋𝑖
𝑡 ≥ 0.7

                                     (15) 

Note. 𝑋𝑖
𝑡  is the previous random number and 𝑋𝑖

𝑡+1  is the 

newly generated chaotic random number. Since the initial 

value affects the drifting pattern of some of the chaotic maps, 

it is set to 0.7. 

Initially, the continuous optimization problem is the focus of 

the standard JAYA and its variations. Additionally, this has 

been enhanced to address more dynamic optimization issues, 

such as cloud computing task scheduling, that are limited to 

0s and 1s, which requires the solutions to be converted to 

binary. Therefore, the tangent hyperbolic logistic transfer 

function is used [16]. It is represented by Equations (16) and 

(17). 

tanh(|𝑋𝑖
𝑘+1 |) =

𝑒
(|2𝑋𝑖

𝑘+1 |)
−1

𝑒
(|2𝑋𝑖

𝑘+1 |)
+1

                                           (16) 

𝑋𝑖
𝑘+1 = {

1,     𝑖𝑓 𝑟𝑎𝑛𝑑() < tanh(|𝑋𝑖
𝑘+1 |)

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (17) 

The pseudo-code for the proposed BCJaya placement 

algorithm is presented in Algorithm 1. 

BEGIN 

1. Initialize 𝑇 and 𝑀 set, Particles’ position using Chaos map 

theory   Eq. 15; 

2. LOOP 

 for 1: N 

Estimate the fitness of each task using Equation (13); 

 𝑖𝑓(𝕆 < 𝐵𝑖) 

Update the task’s new fitness as the 𝐵𝑖; 

End; 

End; 

 for 1: n 

Initiate a new placement by estimating the position with 

Equation (14); 

Modify the tasks’ position through binary solutions with 

Equation (16) and Equation (17); 

end; 

Till the maximum iteration is reached; 

3. Optimal placement of tasks to VMs is accomplished; 

END 

Algorithm 1 Cloud Requests Placement Strategy Using 

BCJaya 

4.2. Load Balancing and Resource Monitoring Strategy 

This strategy estimates the workloads and capacities of all the 

underlying VMs. By comparing the capacity with workload, it 

estimates the state of the VM and categorises them into one of 

the groups Overutilized VM (OVM), Underutilized VM 

(UVM) and Normalized VM (NVM). Next, the used 

resources and available resources of all the UVMs are 

estimated and then the tasks of OVMs are evaluated against 

each UVM to check the adaptability for the offloading to 

bring a balance across the total workloads in all the VMs. 

These are delineated as follows: 

Step 1: estimate the doi and check if the system is balanced or 

not. If not, then trigger the load balancing operation as 

follows. 

Step 2: estimate the capacity of each VM and the capacity of 

all the VMs. 

The capacity of a VM (Equation (18)) is defined as the 

maximum workload handled by a VM and is expressed with 

respect to its attributes. The capacity of all the VMs is 

denoted in Equation (19). 

𝐶𝑎𝑝(𝑀𝑗) = 𝑀𝑗
𝑐 × 𝑀𝑗

𝑚 × 𝑀𝑗
𝑠 × 𝑀𝑗

𝐵𝑊                               (18) 

𝐶𝑎𝑝(𝑀) = ∑ 𝐶𝑎𝑝(𝑀𝑗)
𝑀
𝑗=1                                                 (19) 

Step 3: estimate the workload of each VM, the total workload, 

and the average workload 

The load on a virtual machine (VM) is characterized as the 

total number of tasks assigned to it at a given time 𝑡. This 

load is quantified using Equation (20), which evaluates the 

ratio of the number of tasks allocated to a VM to its execution 

time at the same time 𝑡. Similarly, the overall workload across 

all VMs and the average workload of the datacenter are 

determined using Equations (21) and (22), respectively. These 

equations collectively provide an estimation of individual and 

collective workloads within the cloud environment.              

𝐿(𝑀𝑗
𝑡) =

𝑁𝑇(𝑡)

𝐸𝑥𝑒𝑡(𝑀𝑗)
                                                            (20) 

𝐿 = ∑ 𝐿(𝑀𝑗
𝑡)𝑀

𝑗=1                                                              (21) 

𝐿𝑎𝑣𝑔 =
1

𝑀
∑ 𝐿(𝑀𝑗

𝑡)𝑀
𝑗=1                                                      (22) 

Step 4: identify the state of the VMs, group them into three 

classes, and sort them depending on their loads 

The VMs’ state can be found by contrasting the VM’s load 

with the average load. For instance, if the load of a VM is 

greater than the average loads (𝐿(𝑀𝑗
𝑡) >  𝐿𝑎𝑣𝑔) , it can be 

treated as an overutilized VM (OVM). Similarly, if the load of 

a VM is less than the average loads (𝐿(𝑀𝑗
𝑡) <  𝐿𝑎𝑣𝑔), it can 

be treated as an underutilized VM (UVM), otherwise, it is 

referred to as normalized VM (NVM).  Initially, the UVM 
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group's underloaded resources are arranged according to 

increasing loads. The second step involves rearranging the 

underloaded resources in descending order of resource 

utilisation while maintaining the same state of loads. Finally, 

the OVM group's overloaded resources are arranged 

according to decreasing load orders. 

Step 5: Resource Monitoring for UVM 

Resource monitoring is an essential step before migrating 

tasks from an OVM to a suitable UVM for a trade-off. Hence, 

the total resources available and total resources used by all the 

UVMs are to be estimated. It is expressed in Equation (23) 

and Equation (24). Here, vector 𝑇𝑖
⃗⃗   is the resource usage 

pattern (core, memory, storage) of all the tasks, and vector 𝑇𝑅
⃗⃗⃗⃗  

denotes the total resources of a UVM. 

𝑇𝑅𝑢𝑠𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑀𝑗(𝑈𝑉𝑀)) = ∑ 𝑇𝑖

⃗⃗  𝑁
𝑖=1                                             (23) 

𝑇𝑅𝑎𝑣𝑎𝑖𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑀𝑗(𝑈𝑉𝑀)) = 𝑇𝑅

⃗⃗⃗⃗ − 𝑇𝑅𝑢𝑠𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                    (24) 

Step 6: Identifying the adaptability and migration of tasks of 

OVM to UVM based on adaptability value. 

After estimating the available resources of UVM, it is pivotal 

to identify the compatibility between the tasks of OVM with 

all the UVMs for better placement of tasks and improved 

performance. Hence, the adaptability is estimated in Equation 

(26), where the value 0.5 is initialized for 𝛼. If the value of 

the adaptability is less, it means better compatibility exists 

and hence, migration or placement of that task to the 

respective UVM is feasible. For checking the compatibility, 

the similarity (Equation (25)) is identified between the task of 

an OVM (𝑇𝑂
⃗⃗⃗⃗ ) with the available resources of the UVM. 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos−1 (
𝑇𝑂⃗⃗ ⃗⃗  ⃗× 𝑇𝑅𝑎𝑣𝑎𝑖𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑇𝑂⃗⃗ ⃗⃗  ⃗||𝑇𝑅𝑎𝑣𝑎𝑖𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

)                               (25) 

𝑎𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛼 × 𝑎𝑛𝑔𝑙𝑒 + (1 − 𝛼) × 𝑈𝑡𝑖𝑙𝑀         (26) 

5. PERFORMANCE EVALUATION AND ANALYSIS 

This section demonstrates the experimental setup and presents 

the compared baselines and dataset utilization for carrying out 

the simulations. Lastly, the obtained results are demonstrated 

through graphs for different considered service parameters. 

5.1. Experimental Setup 

The current study's simulation tests leverage a cloud 

environment to boost the capabilities of the CloudSim 

simulator. The environment consists of both homogeneous 

and heterogeneous virtual machines (VMs) housed in a cluster 

with an arbitrary mesh topology. Numerous reliant tasks that 

are dynamically generated need to be scheduled on the virtual 

machines. The research uses 46 to 246 virtual machines 

(VMs) and 500 to 2500 tasks. To create heterogeneity 

between the VMs, each one's processing power must adhere 

to a consistent distribution between 2000 and 20000 MIPS. 

Virtual machines' power consumption ranges arbitrarily from 

80 to 200 watts when they are in active mode. It is believed 

that during idleness, 70% of the power used in the active state 

is used. A 1000 Mbps bandwidth is allotted to the 

communication channel, and a propagation delay of 1 to 3 

milliseconds is considered to exist between the virtual 

machines. The tasks are divided into three categories: hard 

real-time activities, soft real-time tasks, and firm real-time 

tasks. Hard real-time tasks are arbitrarily generated between 

100 and 372 MI, with task sizes that are always between 100 

and 500 MI. The second and third task types have sizes of 

1028–4280 MI and 2400–6800 MI, respectively, with 

matching deadlines of 500–2500 MI and 1500–4500 MI. A 

random selection is made for the input and output file sizes 

for each task type, ranging from 100 to 10,000 KB, 50 to 

1000 KB, and 1 to 500 KB, respectively. The Java 

programming language simulation experiments are 

implemented using the CloudSim simulator.  The trials are 

performed on a laptop with Windows 11 that has an Intel® 

Core i7-6600U CPU, four cores, and a 2.6 GHz clock speed. 

It also has 16 GB of RAM. To ensure accurate results, each 

experiment is conducted thirty times, and the average of the 

results is displayed. For the suggested algorithm, the 

maximum number of iterations is set to 750 and the 

population size is set to 30.  

In order to evaluate this algorithm's performance, the authors 

considered actual workloads. The GoCJ: Google Cloud Jobs 

dataset for distributed and cloud computing infrastructures, 

which Google published in September 2018, was the dataset 

that the authors used [24]. This dataset, which is kept in the 

Mendeley data repository, consists of 19 text files, each with a 

different number of jobs per million instructions (MI). Each 

job is treated as a cloudlet based on its length in MI. For the 

execution of the corresponding VMs, the number of cloudlets 

(1000–2500) with different instruction sizes, ranging from 

1000 to 5000, is taken into consideration. 

5.2. Results Analysis 

To appraise the effectiveness of the proposed algorithm, the 

authors compared it with other baselines such as binary bird 

swarm optimization (BBSO) [22], the standard Jaya, Binary 

Jaya (BJaya) [16], and a hybrid genetic algorithm and Jaya 

algorithm (GAYA) [13].  

All these algorithms are validated for a set of scheduling 

parameters like Makespan, VM Utilization, Load balancing 

( doi ), and Energy consumption. A distinct dataset with 

varying task ranges in terms of lengths, MI, and execution 

times is used to assess the performance parameters in order to 

realise the impact of a growing set of tasks and virtual 

machines on the suggested algorithm's scalability and 

performance. The obtained results present the mean values of 
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these performance parameters for the various task and virtual 

machine ranges in a heterogeneous environment. 

5.2.1. Performance Analysis for Makespan 

The Makespan metric is a critical indicator of efficiency in 

task scheduling algorithms, measuring the total time required 

to execute all tasks. The provided graph compares five 

algorithms—BCJaya, Binary Bird Swarm Optimization 

(BBSO) [22], Standard Jaya, Binary Jaya (BJaya) [16], and 

GAYA (GA + Jaya) [13]—across increasing workloads, from 

500×46 to 2500×246 tasks and VMs. BCJaya consistently 

outperforms the others, achieving the lowest Makespan across 

all configurations, reflecting its superior scalability and 

adaptability in handling dynamic, large-scale cloud 

environments. By incorporating chaotic mappings into the 

Jaya optimization framework, BCJaya effectively explores the 

search space, avoids premature convergence, and ensures 

efficient task allocation to virtual machines (VMs), 

minimizing idle times and maximizing resource utilization. 

Figure 2 shows the impact of makespan on the proposed 

technique. 

In contrast, BBSO performs the worst, showing the highest 

Makespan values across all workloads. Its limited exploration 

capabilities and tendency to get stuck in local optima result in 

inefficient task allocation and scalability issues. Standard Jaya 

shows moderate performance, achieving better Makespan 

values than BBSO but lagging behind the hybrid approaches. 

Its steady increase in Makespan with workload growth 

indicates its limited adaptability in heterogeneous and 

dynamic cloud settings. 

Binary Jaya (BJaya) improves upon Standard Jaya by 

introducing binary representation for task scheduling, better 

aligning with the problem's discrete nature. While BJaya 

outperforms Standard Jaya, it lacks the advanced adaptability 

and efficiency provided by BCJaya’s chaotic mappings. 

GAYA, which combines Genetic Algorithm (GA) for 

generating initial solutions with Jaya for refinement, 

demonstrates better performance than BJaya and Standard 

Jaya. Its hybrid approach effectively balances exploration and 

exploitation, achieving lower Makespan values. However, 

GAYA’s performance slightly declines as workloads grow, 

indicating its limitations in handling large-scale and dynamic 

environments compared to BCJaya. 

The Makespan trends reveal significant differences in 

scalability. BCJaya exhibits the slowest growth in Makespan 

as workloads increase, demonstrating its ability to balance 

tasks effectively and maintain efficiency under high 

workloads. In contrast, BBSO and Standard Jaya show steep 

increases in Makespan, reflecting their inefficiency and 

limited scalability. BJaya and GAYA offer moderate 

improvements but fail to match BCJaya’s robustness and 

efficiency. 

The superior performance of BCJaya highlights the 

importance of advanced optimization techniques. By 

integrating chaotic mappings, BCJaya avoids local optima and 

ensures faster convergence, resulting in consistently lower 

Makespan values. This adaptability makes BCJaya highly 

suitable for modern cloud environments, where workloads are 

dynamic and heterogeneous. On the other hand, the poor 

scalability of BBSO and Standard Jaya underscores the 

limitations of traditional heuristic approaches. While BJaya 

and GAYA represent steps forward, they fall short of 

BCJaya’s performance, particularly for large workloads. 

 

Figure 2 Performance Analysis of the Proposed BCJaya for 

Makespan 

5.2.2. Performance Analysis for VM Utilization 

VM Utilization is a critical performance metric in virtualized 

environments. It measures the extent to which a virtual 

machine's resources (primarily CPU and memory) are being 

used. High VM utilization indicates efficient resource 

allocation, while low utilization suggests underutilization or 

potential resource overprovisioning. 

Figure 3 compares the VM Utilization performance of several 

techniques: Binary Bird Swarm Optimization (BBSO), 

Standard Jaya, Binary Jaya, GAYA, and the proposed 

BCJaya. The x-axis represents different task and VM 

configurations, while the y-axis indicates VM Utilization 

percentage. 

Across all task and VM configurations, BCJaya consistently 

demonstrates superior VM Utilization compared to other 

techniques. This indicates that BCJaya effectively allocates 

resources and schedules tasks, maximizing the utilization of 

virtual machines. As the task and VM configurations increase 

in complexity, the performance gap between BCJaya and 

other techniques widens. This suggests that BCJaya's 

advantages are more pronounced in larger and more intricate 

environments. BBSO, Standard Jaya, and Binary Jaya exhibit 

some improvement over GAYA, but they still lag behind 

0

50

100

150

200

250

500×46 1000×92 1500×146 2000×192 2500×246

M
a

k
es

p
a

n
 (

se
c
)

Tasks × VMs

BBSO[22] Jaya Bjaya[16] GAYA[13] BCJaya



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/49                         Volume 11, Issue 6, November – December (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       832 

     

RESEARCH ARTICLE 

BCJaya. This highlights the impact of hybridization and 

chaotic map incorporation in BCJaya. 

BCJaya's optimization algorithms likely excel at assigning 

tasks to VMs, ensuring optimal resource allocation and 

minimizing idle time. The proposed technique may effectively 

allocate CPU and memory resources to VMs, preventing 

over-provisioning and underutilization. BCJaya is capable of 

adapting to changing workloads and resource constraints, 

ensuring sustained high utilization. 

In a nutshell, Figure 3 demonstrates the significant potential 

of BCJaya in optimizing VM Utilization. Its ability to 

effectively allocate resources and schedule tasks makes it a 

promising solution for improving the performance and 

efficiency of virtualized environments. 

 

Figure 3 Performance Analysis of the Proposed BCJaya for 

VM Utilization 

5.2.3. Performance Analysis for Energy Consumption 

Figure 4 illustrates the performance metric of Energy 

Consumption for various techniques, including Binary Bird 

Swarm Optimization (BBSO), Standard Jaya, Binary Jaya, 

GAYA, and the proposed BCJaya. A key observation is that 

BCJaya consistently demonstrates the lowest energy 

consumption across different task and VM configurations. 

This superior performance highlights BCJaya's ability to 

efficiently allocate resources and schedule tasks, minimizing 

idle time and unnecessary energy expenditure. 

While BBSO, Standard Jaya, and Binary Jaya exhibit some 

improvement over GAYA, they still consume significantly 

more energy than BCJaya, particularly in larger and more 

complex scenarios. This underscores the impact of BCJaya's 

hybridization and chaotic map incorporation, which enhance 

its ability to optimize resource utilization and reduce energy 

consumption. Reduction in makespan and increased efficient 

utilization of resources lead to reduce the consumption of 

energy in the datacentre. The reduction in energy 

consumption achieved by BCJaya has significant implications 

for datacenters and cloud computing environments. Lower 

energy consumption translates to reduced operational costs 

for datacenter operators and cloud service providers. By 

minimizing energy usage, BCJaya contributes to a reduced 

carbon footprint and promotes sustainable computing 

practices. Efficient resource utilization can lead to improved 

system reliability and reduced downtime. Because optimal 

VM utilisation reduces server energy consumption, there is a 

close, direct linear relationship between energy consumption 

and VM utilisation.  

5.2.4. Performance Analysis for Load Balancing Rate 

Figure 5 illustrates the performance metric of Load Balancing 

Rate for various techniques, including Binary Bird Swarm 

Optimization (BBSO), Standard Jaya, Binary Jaya, GAYA, 

and the proposed BCJaya. A key observation is BCJaya's 

consistent outperformance across different tasks and VM 

configurations, indicating its superior ability to effectively 

distribute workload across VMs. This superior performance is 

particularly evident in larger and more complex scenarios, 

suggesting the efficacy of BCJaya's hybridization and chaotic 

map incorporation. 

While BBSO, Standard Jaya, and Binary Jaya exhibit some 

improvement over GAYA, they still lag behind BCJaya, 

highlighting its potential to optimize workload distribution 

and improve load balancing. By effectively distributing 

workload, BCJaya can minimize the overall job completion 

time, leading to reduced system response times and improved 

user experience. Optimal workload distribution ensures that 

VMs are utilized efficiently, preventing idle resources and 

maximizing system capacity. Balanced workload distribution 

through the proposed similarity-and-compatibility-based load 

balancing method helps prevent system overload and improve 

overall system reliability. 

 

Figure 4 Performance Analysis of the Proposed BCJaya for 

Energy Consumption 

The enhanced load balancing achieved by BCJaya is closely 

linked to its ability to reduce makespan and increase VM 

utilization. By efficiently distributing tasks across VMs, 
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BCJaya minimizes idle resources and maximizes system 

throughput. This, in turn, leads to reduced job completion 

times and improved system performance. 

 

Figure 5 Performance Analysis of the Proposed BCJaya Load 

Balancing Rate (%) 

6. CONCLUSIONS AND FUTURE DIRECTIONS 

This study introduces a dynamic scheduling approach 

combined with an efficient load balancing mechanism. The 

objective function is designed to optimize multiple parameters 

simultaneously: reducing the makespan, energy consumption, 

and degree of imbalance while enhancing VM utilization. The 

approach adopts a two-step strategy—first, it ensures an even 

distribution of workloads across VMs to achieve load 

balancing. This, in turn, significantly improves Quality of 

Service (QoS) parameters. Following this, the Binary Chaotic 

JAYA (BCJaya) algorithm is applied for task scheduling. The 

chaotic principle integrated into Jaya helps address the 

exploration-exploitation trade-off inherent in the standard 

Jaya algorithm. Furthermore, the binary adaptation allows for 

precise task-to-VM mapping in a discrete space. The method 

is evaluated in a heterogeneous environment where the 

number of tasks and virtual machines (VMs) dynamically 

increases, providing a robust test for the algorithm's 

efficiency. Simulation results highlight substantial 

improvements in key performance metrics, including 

makespan, load balancing efficiency, energy consumption, 

and VM utilization. Compared to other algorithms, the 

proposed approach consistently delivers superior 

performance, demonstrating its effectiveness in dynamic 

cloud environments. 

For future work, prioritization of cloud requests could be done 

to reduce the latency and incurred delay. Different natures of 

tasks could be explored and simulated to witness the efficacy 

of the proposed algorithm. A hybrid algorithm could be 

devised to surmount the inherent limitations of the underlying 

algorithm. 
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