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Abstract – The exponential growth of produced data by 

healthcare monitoring devices poses a substantial challenge for 

conventional fog-based computing frameworks. Fog computing, 

a dispersed computing prototype that expands fog computing 

capabilities to the network's edge, emerges as a promising 

solution to address this challenge. This paper, proposes a 

technique for offloading computations for healthcare monitoring 

in fog computing, aiming to minimize task completion time, 

consumption of energy, execution time ratio and response time 

analysis. Enhancing Healthcare Monitoring with Optimal 

Computation Offloading in Fog Environment specifies that the 

research is focused on improving healthcare monitoring systems 

through the use of fog computing. In this approach, data 

processing is carried out closer to the source, such as medical 

devices or sensors, instead of depending only on centralized 

cloud servers. The "computation offloading" technique is 

moving computational workloads from less powerful devices to 

edge or fog nodes with more processing power. By using this 

method, the research seeks to improve real-time data processing, 

minimize latency, maximize resource use, and improve security 

in healthcare monitoring by retaining confidential data closer to 

its source. The goal of the study is to show how this strategy 

might result in healthcare monitoring systems that are more 

effective and efficient, especially when quick decisions and great 

data security are required. The proposed technique dynamically 

offloads computation tasks to fog nodes based on real-time 

network conditions, resource availability, and task 

characteristics. It emphasizes the achievement of superior 

performance metrics including the shortest job completion time, 

lowest energy consumption, and minimal cost compared to 

existing task offloading methods within healthcare contexts. The 

technique notably achieves a reduction of up to 31.1% in task 

completion time, 66.67% in energy consumption, and 20% in 

execution time ratio compared to existing task offloading 

methods in healthcare contexts. Additionally, it improves 

response time by 40%, demonstrating superior performance 

metrics.  It conducts a thorough assessment of the proposed 

technique’s effectiveness through key performance indicators 

such as Task Completion Time, Energy Consumption, Execution 

Time Ratio, and Response Time Analysis. Finally, a detailed 

comparative analysis against established techniques enriches the 

discussion, providing valuable insights into the superiority of the 

proposed technique. 

Index Terms – Fog Computing, Healthcare Monitoring, 

Computation Offloading, Dynamic Task, Resource 

Optimization, Task Completion Time, Energy Consumption, 

Execution Time Ratio, Response Time Analysis. 

1. INTRODUCTION 

The swift procedure in healthcare monitoring technologies has 

resulted in an overwhelming growth in data produced by 
medical sensors, wearable devices, and patient-centric 

applications. This myriad of data presents a notable challenge 

for conventional cloud-based computing architectures, 

characterized by increased latency and constrained bandwidth. 

Fog computing, an emerging paradigm of computing 

distributed across multiple systems that expands cloud 

capabilities to the proximity of end-users, presents a 

captivating solution to tackle these issues [1]. By permitting 

data processing and analysis in real time at the edge of the 

network, fog computing defines the challenges posed by the 

data deluge in healthcare monitoring technologies. Currently 
fast pace of life and markedly improved living standards of 

people, has led to a growing recognition of the importance of 

addressing health concerns [2].  

The healthcare sector has rapidly advanced with the 

emergence of the Internet of Things (IoT). The Internet of 

Medical Things (IoMT) seamlessly integrates human-centric 
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data, contains medical history of the person, prescriptions, 

allergies, laboratory test outcomes, and personal matrices. 

This digital integration significantly grows the efficacy and 

quality of medical services. User data from different 

geographical areas can be centralized in a common data 
center, facilitating the sharing of medical information and 

transcending the temporal and spatial constraints of 

conventional healthcare models, all while safeguarding 

privacy. The IoMT promptly triggers alerts upon detecting 

anomalies in data. The IoMT enables the timely location, 

tracking, and monitoring of users [3]. Furthermore, the IoMT 

optimally delivers its economic benefits by minimizing 

intermediate steps and achieving optimal outcomes in the 

least possible frame of time, thereby providing patients with 

the most gratifying healthcare provisions. In recent times, the 

proliferation of IoT devices and widespread applications has 
experienced a substantial and consistent uptrend. Although, 

the swift expansion of communication technologies is keeping 

rapid pace to meet the growing demands [4].  

Despite this, certain applications, particularly those with time-

sensitive and crucial trust needs, necessitate specialized 

technologies. The concept of trust is critical in identification 

and pinpointing malicious entities masquerading as legitimate 

within the network. The most notable sectors for the 

expansion of IoT are medical services and healthcare 

facilities. The integration of IoT in healthcare mitigates costs 

and enhances the quality of user’s lives by enabling the 

monitoring of everyday actions, incorporating sleep cycles, 
nutritional habits, and exercise regimes. This monitoring 

facilitates the generation of specific tips aimed at promoting a 

healthier lifestyle. Furthermore, the IoT application has 

proven benefits in various medical domains within the 

healthcare setting. This includes management of patient 

information, continuous real-time tracking, handling health 

emergencies, overseeing blood information, and overall health 

management [5]. The abundance of health information 

generated by IoT devices and sensors is collected, processed, 

and analyzed to provide valuable insights. Fog computing 

empowers healthcare systems to swiftly make intelligent 
decisions in emergency situations, particularly for time-

sensitive healthcare problems like critical health condition due 

to COVID-19.  

Additionally, it enhances data security by minimizing 

response times, surpassing other computing methods such as 

the cloud. The real-time processing capabilities, edge 

analytics, improved scalability, and enhanced security 

features make fog computing a compelling solution for 

addressing the evolving needs of modern healthcare systems. 

As the technology continues to mature and healthcare 

organizations embrace its potential, fog computing is ready to 

play an important role in creating the future of health-related 
delivery. Fog computing offers several advantages in relation 

to health-related issues is its caliber to provide real-time 

processing of data [6].  

In emergency situations, such as a sudden surge in COVID-19 

cases, quick and informed decision-making is paramount. 

Processing data at the edge is made easier by fog computing. 
ensuring timely analysis and actionable insights, which is 

crucial for effective healthcare interventions. Fog computing 

integrates edge analytics into healthcare systems, allowing for 

on-the-spot data analysis without the need to send large 

volumes of information to centralized cloud servers. The 

feature is particularly beneficial for resource-intensive 

applications like medical imaging and diagnostic tools, where 

reduced latency is essential for accurate and swift decision-

making. Fog computing provides a scalable framework that is 

capable to cater the dynamic and evolving needs of healthcare 

systems. The volume of healthcare data regulated to grow at 
an increasing rate, fog computing allows for distributed 

computing resources that can scale up or down as per the 

requirement. This scalability feature helps the healthcare 

organizations can efficiently manage the tasks, optimizing 

both performance and resource utilization [7].  

While fog computing offers substantial benefits in terms of 

real-time processing and scalability, addressing concerns 

regarding security and privacy is paramount in the healthcare 

sector. Fog computing mitigates some of these concerns by 

maintaining sensitive data near to the source, curbing the risk 

of unauthorized access during transmitting data to central 

cloud servers. Additionally, fog computing enabled localized 
safety precautions, for example employing encryption and 

controls over access, providing an extra layer of protection for 

healthcare data. Fog computing makes it easier to monitor 

patients in real time using sensors and wearable technology. 

At the network's edge, vital signs including blood pressure, 

glucose levels, and heat rate can be continuously monitored. 

This enables healthcare providers to receive immediate alerts 

and make timely interventions in cases of emergencies, 

ensuring patient safety. Fog computing enhances the 

processing of medical imaging data like CT scans, MRIs, and 

X-rays at the edge of the network. This reduces the time 
required for image analysis and interpretation, leading to 

quicker diagnosis and treatment planning. It also alleviates the 

burden on centralized servers, optimizing overall system 

performance [8]. Smart drug delivery systems integrated with 

fog computing can monitor patient adherence to medication 

regimens. Sensors on medication packaging can send data to 

the edge, ensuring that patients take medications as 

prescribed.  

In case of non-compliance, healthcare providers can be alerted 

in real-time, allowing for timely intervention. Fog computing 

tackles security and privacy issues in healthcare by 

maintaining sensitive patient data closer to its origin. 
Localized processing ensures that critical information stays 
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within the healthcare facility, reducing the risk of 

unauthorized access during data transmission to centralized 

cloud servers. This decentralized approach enhances data 

security and privacy. Fog computing aids in the efficient 

management of healthcare facilities by integrating data from 
various sources, such as patient records, equipment sensors, 

and environment monitoring devices. This enables real-time 

analysis of facility operations, optimizing resource utilization, 

and ensuring a safe and comfortable environment for patients 

and staff. Fog computing supports the development of 

personalized healthcare applications by processing data from 

wearable devices and patient history at the edge. This enables 

the delivery of tailored health insights and recommendations, 

fostering patient engagement and empowerment in managing 

their health proactively [9].  

Fog computing in the healthcare sector enhances the overall 
performance of healthcare delivery by providing real-time 

processing, improving data security, and assisting 

comprehensive applications that contribute to better patient 

results and healthcare management. As technology continues 

to progress, the incorporation of fog computing is anticipated 

to have a growing significance in influencing the future of 

healthcare. In the realm of fog computing, diverse vendors are 

actively participating in providing services utilizing fog 

computing for a multitude of concerns. Major providers of 

cloud service are extending their offerings to the periphery of 

user locations to enhance effectiveness. Private cloud owners 

are offering their underutilized resources for lease to local 
businesses. Environment utilizing fog computing is impacted 

by different internet service providers and mobile network 

operators responsible for information exchange. This dynamic 

involvement of multiple entities introduces a new challenge 

known as the Necessity for Trust among fog nodes. Fog nodes 

in healthcare contribute significantly to improving operational 

efficiency, adding innovation and patient care in healthcare 

solutions, all while addressing the distinctive challenges faced 

by the industry [10]. Given the sensitivity of healthcare data 

and the rigid laws such as the Health Insurance Portability and 

Accountability Act (HIPAA), fog computing enabled local 
processing of sensitive data at the edge. This boosts safety 

and confidentiality by mitigating the necessity of transmitting 

data over external networks.  

In recent times, there has been a notable surge in the use of 

smart devices. The complexity and demand of applications 

capable of performing intricate tasks have also risen sharply. 

Examples of such applications include video streaming, live 

gaming, and face recognition, all of which heavily utilize 

various mobile resources such as CPU, memory and battery. 

Despite the portability, accessibility and affordability of 

mobile devices, many struggle to last a full day due to the 

intensive use of resources, particularly the CPU. Mobile 
Cloud Computing has surfaced as a resolution to improve the 

execution and battery life of mobile devices by integrating 

network, mobile and cloud computing technologies. This 

involves leveraging the abundant resources of cloud service 

providers. Fog computing supports the deployment of clinical 

decision support systems within hospitals. These systems 

leverage patient data, medical knowledge and algorithms to 
help medical professionals in building informed decisions 

about care of patient. Fog nodes enable the fast execution of 

CDSS (Clinical Decision Support System) algorithms, 

providing timely recommendations at the point of care. Fog 

nodes enable hospitals to offer telemedicine services and 

remote consultations to patients. By deploying fog nodes 

within hospital networks, healthcare providers can securely 

transmit patient data, conduct virtual appointments, and 

collaborate with specialists in real-time, regardless of 

geographical distance [11]. Fog computing assists hospitals 

optimize resource utilization and reduce operational costs. By 
distributing computational tasks between fog nodes and 

centralized servers, hospitals can minimize network latency, 

conserve bandwidth, and ensure continuous access to critical 

healthcare services [12]. 

1.1. Problem Statement 

This approach seeks to provide a comprehensive 

understanding of the performance and advantages offered by 

our proposed technique in the context of healthcare 

monitoring within cloud computing environments. Our 

proposed technique tackles the challenge of resource 

constraints encountered in fog devices. Given the limited 

resource capacity of these devices, it is crucial to allocate 
cloud resources efficiently to ensure optimal application 

throughout. To address this, a proposed technique for resource 

scheduling is introduced. Initially, a regression algorithm is 

employed to reformulated user requests, reducing the 

occurrence of repeated requests. The paper presents a method 

for transferring healthcare monitoring computations to fog 

computing, with the goal of reducing task completion, energy 

consumption, execution time ratio, and analyzing response 

times. It also compares results of our proposed technique with 

existing techniques. 

1.2. Contributions 

The contributions of this paper are: 

1. Real-Time Data Operation: The capability of fog 

computing to handle and analyze healthcare data 

instantaneously, decreasing latency and enabling rapid 

decision-making is showcased. 

2. Enhanced Security and Privacy: The sensitive data put 

closer to the source results that fog computing improves data 

security and privacy. It also lowers risks associated with data 

transmission. 

3. Scalability and Efficiency: The scalable design of fog 

computing, which can be adjusted to meet the changing 
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demands of healthcare systems, optimizing performance and 

resource use is highlighted. 

4. Emergency Response: The role of fog computing in 

managing healthcare emergencies, such as COVID-19 

outbreaks, by providing prompt and actionable insight is 

investigated. 

5. Innovative Healthcare Applications: The aggregation of fog 

computing into various healthcare applications, including 

telemedicine, patient monitoring, medical imaging, and smart 

drug delivery systems is explored. 

1.3. Objective 

To introduce a heuristic algorithm aimed at smartphones to 

determine whether to accept computation tasks from wearable 

devices and subsequently offload them to cloud servers. The 

ultimate goal is to devise a calculative offloading method that 

enhances the power efficiency of health-related devices.  

1.4. Structure of the Research Paper 

The remaining portions of the paper are arranged as follows: 

Section 2 pertains to explanation of the related work with 

respect to healthcare monitoring and for optimal service 

offloading within the context of fog computing. Section 3 

proposes a heuristic algorithm aimed at smartphones. Section 

4 discusses the results obtained after conducting the carefully 

designed experiments. By the end, the conclusion of the paper 

is presented in Section 5. 

2. RELATED WORK 

Currently, the demand for healthcare assistance is growing, 

leading to a strain on resources with fewer healthcare 
professionals available to handle the increasing number of 

patients. Management of patient data effectively is crucial, 

especially when it comes to monitoring standard test 

outcomes, which can become tedious for doctors, even if the 

outcomes are normal. For this challenge, IoT technology 

suggests a promising outcome by enabling real-time remote 

monitoring of patients through sensor-equipped devices. 

Nonetheless, the immense amount of data produced by IoT 

devices can inundate conventional systems, leading to delays 

when transferring data from the cloud to the application. To 

curb this concern, the author has proposed leveraging fog 
computing as an intermediary solution.  By utilizing fog 

computing, the author has processed data closer to its source, 

mitigating latency and enabling instantaneous monitoring. 

Moreover, the author has incorporated notification systems 

and machine learning algorithms to enhance the prediction 

procedure, leveraging various inputs to provide insightful 

analysis of patient test results in a simpler and cost-effective 

manner. 

Menna et al. [1] discussed that the IoT has revolutionized the 

method that interacts with technology by connecting various 

devices to the internet, which leads to the generating vast 

amount of data on a regular basis. This data explosion is 

fuelled by the increasing adoption of IoT devices such as 

smart wearable, smartphones, and the development of smart 

cities. Among the various applications of IoT, healthcare 
stands out prominently, where IoT devices play a vital role in 

remote patient health monitoring and management. Fog 

computing has become as a promising alternative architecture 

to tackle these demands. By bringing computational resources 

close to the network's edge, fog computing broadens the 

concept of the cloud and enables data processing and 

examination to occur closer to where the data is produced. 

The author has proposed a novel approach called Trust 

Enforced Computation offloading technique (TEFLON) 

specially designed for securing and trustworthy applications 

using fog computing. TEFLON constitutes of two key 
algorithms: maximum service offloader and evaluation of 

trust. These algorithms are aimed at dealing with trust and 

security concerns while mitigating time of response. Through 

extensive studies for simulation, outcomes demonstrate that 

the network of TEFLON significantly shows an upward trend 

in the rate of success for fog collaboration reduces average 

time for applications that are susceptible to delays and 

enhances the overall trustworthiness of fog-based healthcare 

applications. By addressing the confidence and security 

challenges inherent in fog based computing environments, 

TEFLON paves the way for the widespread adoption of fog-

based computing in sensitive areas such as medical locations.  

The proposed TEFLON framework aims to enhance 

trustworthiness in fog computing environments, particularly 

for sensitive applications. This framework introduces novel 

algorithms for optimal service offloading and trust 

assessment, reducing response times and improving success 

rates for fog collaborations. The subsequent discussion delves 

into related works and research efforts aimed at addressing 

trust and computational offloading challenges in fog 

computing. Various approaches such as commitment-based 

trust assessment, hierarchical trust systems, and load-

balancing techniques are explored. Additionally, trust 
management protocols, reputation-based models, and 

workload allocation strategies are discussed to enhance the 

efficiency, security, and reliability of fog based computing 

systems. These efforts underscore the importance of trust in 

mitigating security risks and optimizing resource utilization in 

fog computing environments, particularly for delay-sensitive 

and trustworthy applications.  

Aazam et al. [2] tells the burgeoning importance of IoT 

devices and their associated applications, highlighting the 

exponential growth in data generation. It emphasizes 

increasing utilization of IoT devices such as wearable, 

smartphones, and systems for smart cities, with healthcare 
emerging as a primary domain for IoT applications. Given the 

sensitive nature of healthcare data and the need for 
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computational operations like storage and analytics, there is a 

demand for robust environments to support remote patient 

monitoring. Traditional cloud environments face challenges in 

meeting privacy and accessibility requirements for such data. 

In response to these challenges, fog computing has developed 
as a promising architecture. Fog computing facilitates 

computation, storage, control, and network services near 

users, addressing issues related to data privacy and 

accessibility.  

Qiu et al. [3] discussed that IoMT has played a vital role in 

managing the spread of the virus during the COVID-19 

pandemic. It facilitates various tasks such as diagnosing and 

treating patients across different levels of healthcare facilities, 

promptly separating and caring for individuals who have been 

confirmed or are suspected cases, and preventing the 

transmission of the novel coronavirus. This study focuses on 
optimizing healthcare monitoring within IoMT deployed on 

fog computing (FOGC-IoMT). The optimization issue is 

complex, non-convex, and nonlinear, involving Quality of 

Service (QoS) requirements, power limitations, and mobile 

front haul constraints. To address this, the author proposed a 

scheme that decouples the problem into three independent 

subproblems, enabling efficient offloading of computation 

and management of resources in FogC-IoMT.  The simulation 

results demonstrate that the proposed optimization network is 

effective in cost minimization. The investigation of the author 

centers on mitigating the cost usefulness for medical users in 

fog computing-based IoMT healthcare monitoring. The author 
considers various factors such as energy consumption, 

transmission delay, QoS requirements, wireless front haul 

constraints, and power limits.  

To tackle the nonlinearity and non-convexity of the initial 

problem, the author decomposed it into three different sub-

problems: sub-channel power allotment, assessment, and 

offloading for medical computation. A low-complexity 

algorithm to address each sub-problem individually, 

enhancing solution efficiency was introduced.  Matching 

theory to allocate sub-channels between Fog Accesses Points 

(F-APs) and medical users (F-MUs) using Non-Orthogonal 
Multiple Access (NOMA) employed. Moreover, the 

transformation the non-convex fractional power assignment 

problem into a sub-tractive form has done to facilitate its 

resolution. The outcomes of simulation validate that the 

effectiveness of the proposed is less than the ideal, simple 

schemes for offloading for health-related computation and 

allocation of resources in FogC-IoMT. Furthermore, the 

author has extended the investigation to cut back cost 

optimization for all F-MUs in FogC-IoMT while considering 

multiple constraints. By decoupling the problem into medical 

task offloading, wireless front haul bandwidth allocation, sub-

channel assignment, and power allocation sub-problems, the 
author proposed a suboptimal, low-complexity scheme to 

mitigate consumption of energy in health-related monitoring 

within FogC-IoMT. The author has suggested that future 

research should delve into enhancing emotion-aware 

capabilities in FogC-IoMT to provide more comprehensive 

patient-centered medical services that offer several 

advantages over traditional cloud-based approaches [13, 14]. 

Computational offloading has garnered significant attention 

among researchers. Smart wireless healthcare devices 

introduce crucial challenges such as battery longevity, 

processing speed, and offloading costs, which hinder the 

widespread adoption of wearable technology [15]. Over the 

past few years, a wealth of research has focused on offloading 

computational tasks from healthcare devices. In the realm of 

computing for the cloud, Deep Learning (DL) techniques have 

been extensively utilized. Simultaneously, considerable 

attempts have been directed towards mitigating the burden of 

DL works to render them reliable on healthcare devices. 
However, wearable devices, with their limited computational 

resources compared to smart healthcare devices, face 

significant hurdles in executing DL tasks. Integrating deep 

learning techniques into fog nodes enables distributed, edge-

based intelligence, empowering healthcare devices to make 

context-aware decisions in real time while leveraging the 

scalability and processing ability of cloud resources when 

needed [16]. DL inference tasks closer to the data source, 

latency is mitigated, making decisions in real-time feasible for 

time-critical applications like healthcare monitoring and high 

workload automation. Additionally, with the help of deep 

learning, transmitting raw data to a server of remote cloud for 
processing can be bandwidth-intensive, especially for 

applications generating large volumes of healthcare data. By 

implementing data locally on nodes of fog, only relevant 

insights or aggregated results need to be sent to the cloud, 

conserving bandwidth. DL techniques in fog nodes utilize 

deep learning algorithms and models within the fog 

computing paradigm. Computing related to fog expands 

computing related to the cloud to the network’s periphery, 

enabling storage and computation, and networking resources 

close to where data is generated and consumed, thereby 

reducing latency and bandwidth usage. Integrating deep 
learning into fog nodes enables the processing and analysis of 

data locally. In scenarios where intermittent connectivity or 

network disruptions occur, fog nodes equipped with deep 

learning capabilities can continue to perform inference tasks, 

ensuring uninterrupted operation [17]. 

Daraghami et al. [18] created an architecture for remote health 

vital sign monitoring that consists of three layers: Edge, Fog, 

and Cloud. To increase security while preserving quick 

calculation and transmission times, the study also investigated 

several authentication techniques. The suggested design 

decreased the execution time by an average of 38.5%, the 

authentication time by 35.1%, and the NB-IoT latency by 

59.9% for many devices. 
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Premlatha et. al. [19] suggested that for efficient IoT-Fog 

computer network job offloading, the “Optimal Energy-

efficient Resource Allocation (OEeRA)” approach, is based 

on the “Minimal Cost Resource Allocation (MCRA)” and 

“Fault Identification and Rectification (FIR)” algorithms. 
Each device is to have minimum one Fog Node and Resource 

Block assigned to it by the MCRA algorithm, which also 

makes sure that each Fog Node is connected to required 

number of Resource Blocks and devices. According to the 

FIR algorithm's proposal, the remaining Resource Blocks are 

gathered and kept as reserve to replace the defective Reserve 

Blocks, resulting in improved processing and response times 

and increased fault detection accuracy. By adjusting FN, RB, 

and IoT devices, the energy efficiency of the suggested 

“OEeRA” method is calculated using the “MCRA and FIR” 

algorithms. As per the performance appraisal, the suggested 
algorithm could attain the highest energy efficiency of 6.12 × 

109 bit/J, 5.69 × 1010 bit/J, and 3.019 × 1010 (bit/J) for 

different Fog Nodes, IoTs, and Resource Blocks. 

The authors have proposed an offloading scheme comprising 

assessment, selection, scanning, and offloading phases, 

healthcare devices via Bluetooth for energy-intensive tasks, 

and providing a communication and computation healthcare 

model for decision-making [20,21,22]. Another technique 

divides tough tasks with highest power utilization into process 

for offloading via Bluetooth and communication for Wi-Fi, 

comparing utilization of energy using Million Floating Point 

Operations (MFLOP). In performance analysis, higher 
MFLOP values indicate greater computational throughput, 

implying that a healthcare system can process more data or 

perform more complex computations within a given time 

period. As such, MFLOP is an essential metric for assessing 

the computational efficiency and scalability of computing 

systems, particularly in field of healthcare systems. MFLOP 

provides a standardized measure to compare the 

computational capabilities of different hardware platforms or 

to evaluate the efficiency of algorithms in terms of 

computational complexity. Floating-point operations involve 

mathematical computations using numbers represented in 

floating- point format, which allows for a wide range of 
values and precision. Healthcare analytics analyzes large-

scale healthcare datasets to derive insights into patient 

outcomes, population health trends, and healthcare resource 

utilization. MFLOP measures the computational complexity 

of statistical analysis, data mining methods, algorithms used 

in machine learning applied to healthcare data, facilitating 

efficient data processing and knowledge discovery. 

Computational models and simulations play vital role in drug 

discovery and development processes, including virtual 

screening, molecular docking, and pharmacokinetic modeling. 

MFLOP can quantify the computational workload of these 
simulations, enabling researchers to optimize algorithms, 

parallelize computations, and accelerate the drug discovery 

pipeline. MFLOP is used to evaluate the computational 

efficiency of these algorithms and optimize their performance 

for real-time clinical decision-making. It quantifies 

computational complexity of these bioinformatics tasks, 

aiding in the design of efficient algorithms and high-

performance computing infrastructures for genomics research 

and personalized medicine applications.  

Additionally, works explore energy minimization in local 

computation and offloading, latency performance in large-

scale networks, and workload distribution in hierarchical 
cloudlet architectures. Despite advancements, attention to 

legitimate communication module selection remains limited. 

For comprehensive insights into cloud computing, studies 

delve into healthcare devices’ efficiency, categorization, and 

the fundamental shape of offloading techniques. Table 1 given 

below presents the summary of related work. 

Table 1 Summary of Related Works 

Reference Contribution Remarks 

[1] The author has proposed a 

novel approach called Trust 

Enforced Computation 

offloading technique for trust 
worthy applications using fog 

computing 

Outcomes demonstrate that the network 

of TEFLON significantly shows upward 

trend the rate of success for fog 

collaboration, reduces average time for 
delay-sensitive applications and 

enhances the overall trustworthiness of 

fog-based healthcare applications. 

[2] Highlighting the exponential 

growth in data generation. 

Fog computing facilitates computation, 

storage, control, and network services 

closer to users, addressing issues related 

to data privacy and accessibility.  

 

[3] This study focuses on Outcomes of simulation demonstrate the 
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optimizing healthcare 

monitoring within IoMT 

deployed on fog computing 

(FOGC-IoMT). 

efficacy of the proposed optimization 

network in terms of cost minimization 

[18] A remote health vital sign 

monitoring system with three 

layers of computing 
infrastructure: Edge, Fog, and 

Cloud. 

 

The recommended architecture reduced 

the NB-IoT latency by 59.9%, the 

execution time by 38.5% on average, 

and the authentication time by 35.1%. 

[19] The OEeRA approach is based 

on the “Minimal Cost Resource 

Allocation” (MCRA) and 

“Fault Identification and 

Rectification” (FIR) algorithms 

The proposed algorithm was able to 

attain the highest EE of 6.12 × 109 bit/J, 

5.69 × 1010 bit/J, and 3.019 × 1010 

(bit/J) for different FNs, IoTs, and RBs 

3. PROPOSED MODEL 

In contrast to servers for cloud with virtually unlimited 

computing resources, smartphones are constrained by factors 

such as cell efficiency. As a result, continually handling 

offloading requests from wearable devices solely on 
smartphones poses usability challenges. This paper introduces 

a heuristic algorithm aimed at smartphones to determine 

whether to accept computation tasks from wearable devices 

and subsequently offload them to cloud servers [23,24]. The 

ultimate goal is to devise a calculative offloading method that 

enhances the power efficiency of health-related devices.  

Current offloading methods generally follow two workflows. 

Firstly, complex computations with high energy consumption 

are offloaded to cloud servers, which then return the results. 

Secondly, smartphones act as intermediary servers, 

facilitating the transmission of operations from wearable 

devices to cloud servers. However, the suggested technique 
incorporates a process of making decision for smartphones to 

evaluate whether to accept wearable device operations, 

considering smartphone energy efficiency, and whether to 

subsequently offload tasks to cloud servers [25]. 

Through the Task Analyzer, tasks are evaluated to determine 

whether they should be offloaded to smartphones based on 

energy consumptions considerations. Subsequently, 

smartphones make informed decisions about task acceptance 

and potential offloading to cloud servers, taking into account 

factors like remaining battery energy and communication 

efficiency.  Following this method, the wearable gadget 
offloads the task of computation to the smart device and 

awaits the outcome. 

This approach enables smartphones to dynamically manage 

computation tasks from wearable devices, optimizing energy 

usage and improving overall system performance. By 

leveraging cloud resources when appropriate, the aim is to 

overcome the limitations posed by smartphone resources and 

enhance the usability and energy efficiency of smart devices 

in offloading scenarios. Figure 1 shows the workflow diagram 

of the proposed technique. 

3.1. Offloading Decision Model 

There are several factors involved in determining whether 

healthcare devices should offload their computations, 

including the local consumption of energy needed for 

processing and the Wi-Fi power costs incurred when 

offloading tasks to a cloud server. Firstly, the paper outlines 

the Millions of Dhrystone Instructions Executed per Second 

(MDIES), as detailed in prior research. Secondly, it presents 

healthcare decision models for computation offloading that 

take into account the communication energy costs associated 

with offloading from each smart device’s perspective. 

3.2. MDIES-Based Workload Model 

MDIES, which stands for Millions of Dhrystone Instructions 
Executed per Second, quantifies the CPU’s performance by 

measuring the number of instructions it can process per 

second. 

𝑊 =
𝑀𝐷𝐼𝐸𝑆𝑚

𝑈𝑚𝑑𝑖𝑒𝑠
× 𝑈𝑡𝑎𝑠𝑘 × 𝑡𝑡𝑎𝑠𝑘                                                 (1) 

In equation (1), The workload WL is obtained by the product 

of 𝑀𝐷𝐼𝐸𝑆𝑚 per CPU utilization and task execution Utask and 

multiplied by time taken to execute the task ttask when the 

Dhrystone Instructions are applied, and 𝑀𝐷𝐼𝐸𝑆𝑚  is the 

median. 

3.3. Healthcare Device’s Decision Model 

The decision to offload tasks from a healthcare device hinges 

on a comparison of the power usage of nearby computing on 

the healthcare device with that of offloading the task to a 

healthcare device via wireless device. Equation (2) is utilized 
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to quantify the energy expended when the computation task is 

processed locally on the healthcare device. 

EHd = EWL_healthcare × WL                                                         (2) 

In equation (2), the energy consumption of the healthcare 

device is computed by multiplying the energy per unit 

workload by work load. 

EWL_healthcare represents the energy expended per healthcare 

instance of the healthcare device, while WL signifies the 

workload achieved based on the workload framework. When 

the healthcare gadget delegates the computation task to the 

wireless device, the energy consumption of the healthcare 

device (Eoffloading_healthcare) comprises the energy expended for 

wireless communication (Ewireless) and the waiting duration 

until the outcome is collected from the healthcare device 

(Pwait_healthcare × twireless).. Eoffloading_healthcare = Pwait_healthcare × tfog 

device + Ewireless device                                                                 (3) 

In equation (3), the energy consumption of the healthcare task 

Eoffloading_healthcare  is obtained by summing the product of power 

consumption during waiting time and the time spent on fog 

device with energy consumed by wireless device. 

Equation (3) represents the energy price framework of the 

healthcare device when computation is offloading to the fog 

device. 

Ewireless device = 
𝑃𝑤𝑖𝑟𝑒𝑙𝑒𝑠𝑠𝑑𝑒𝑣𝑖𝑐𝑒(𝑝𝑜𝑤𝑒𝑟)

𝑇𝑤𝑖𝑟𝑒𝑙𝑒𝑠𝑠𝑑𝑒𝑣𝑖𝑐𝑒(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)
 × N (data size)       (4) 

In Equation (4), the energy consumption of wireless device is 

calculated by dividing the power consumption of the wireless 

device by its throughput and multiplying the result by data 

size N. 

Ewireless device represents the energy expenditure attributed to 
wireless communication for the healthcare device. Within this 

study, a power cost framework specifically tailored to account 

for wireless communication energy costs was formulated. 

Ewifi = 
𝑃𝑤𝑖𝑓𝑖

𝑇𝑤𝑖𝑓𝑖
×𝑁                                                                   (5) 

In equation (5), the energy consumption of the Wi- Fi 

connection is determined by dividing the power consumption 

of Pwifi by its Twifi and then multiplying this result by data size 

N. 

The decision to offload computation tasks can be made by 

comparing the energy consumption (Ehealthcare device) when the 

healthcare device performs computations locally versus the 

energy consumption (Eoffloading_healthcare) when offloading tasks 

to the fog device. This comparison can be expressed as done 

in equation (6). 

Offloading                 if Ehealthcare device >Eoffloading_healthcare       (6) 

Non-offloading          if Ehealthcare device ≤ Eoffloading_healthcare 

3.4. Fog Devices Decision Model 

Upon receiving an inquiry for offloading from a healthcare 

device, the fog device initially evaluates whether to accept the 

request. This evaluation involves computing the energy 

consumption (Edevice) associated with locally processing the 
requested operation and then comparing it against the 

outstanding energy stored in the battery (Ebattery). Equation (7) 

encompasses the energy expenditure for wireless interaction 

required to transmit the outcome of the computed activity 

back, which represents the energy consumed when the fog 

device manages the computation assignment nearby as 

requested by the healthcare device. 

Edevice = WL_device × WL + Ewireless device                                   (7) 

In equation (7), energy consumption of a device can be 

obtained when the energy consumed by device due to its work 

load (WL_device × WL) is added to the energy consumed by its 

wireless operations. 

Ebattery = Bcurrent × V × 3600s                                                 (8) 

Equation (8) is employed to assess if the fog device has the 

capability to offload, achieved by transforming the remaining 

battery capacity of the fog device into an energy unit. 

Furthermore, the fog device evaluates whether to 

acknowledge the request from the healthcare device. It 

quantifies and contrasts the energy utilization associated with 

offloading to the fog server. Equation (9) computes the energy 

usage (Eoffloading_device) when the fog device delegates the 

request from the healthcare device to the fog server and 

awaits the reception of results (Pwait_device × tfog). Wireless 
device energy (Ewireless device) and wireless energy (Ewireless) are 

expanded for transmitting back to the healthcare device and 

fog devices, respectively. 

Eoffloading_device = Pwait_device × tfog + Ewireless device                       (9) 

To enhance the energy efficiency of fog devices, the decision 

to offload is determined by two comparisons as given in 

equation (10) and (11). 

Offloading if      Ehealthcare device <Edevice≤  Ebattery 

Non-offloading if      Edevice≤  Ebattery ≤ Eoffloading_healthcare      (10) 

Offloading if      Eoffloading_healthcare<Ebattery<Edevice 

Refusal if       Ebattery<Edevice ≤ Eoffloading_healthcare                (11) 

Furthermore, if local processing is not feasible but the energy 

cost (Eoffloading_device) of offloading to the fog server is lower 

than the remaining battery energy; the fog device offloads the 

task to the fog server once. However, if the energy 

consumption during offloading exceeds the remaining battery 

energy, the fog device declines the request from the 

healthcare device. 
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Algorithm 1 illustrates a health-related system integrating 

cloud computing, fog computing, and IoT devices. It 

delineates the distribution of tasks among these components. 

IoT health-related devices collect data from patient, which 

may include information from health sensors and wearable 
gadgets as per Figure 1. Then, Fog devices receive the 

acquired data via transmission. Data from IoT devices is 

analysed by fog devices. They process the data locally or 

forward it to the cloud for more intricate computations. 

IoT_Healthcare_Device: 

Step 1: Task Reception at IoT Healthcare Device  

RECEIVE task at IoT_Healthcare_Device 

Step 2: Decision at IoT Healthcare Device 

task_analysis = Task_Analyzer(task)   

IF Offloading_Manager_Decision(task_analysis)== "Offload" 
THEN 

// Task is offloaded to Fog Devices 

GOTO Fog_Device_Processing 

ELSE 

// Task is processed locally at IoT Device 

result = Computation_Part(task) 

Output_Manager(result) 

END 

END IF 

Fog_Device_Processing: 

Step 3: Task Offloading to Fog Devices 

IF Fog_Device_Accepts(task) THEN 

IF Fog_Device_Offloading_Decision(task) == "Offload to 
Cloud" THEN 

// Task is offloaded to Cloud Servers 

GOTO Cloud_Server_Processing 

ELSE 

// Task is processed locally at Fog Device 

result = Computation_Part(task) 

Output_Manager(result) 

END 

END IF 

ELSE 

// Task is refused or returned to IoT Device 

REFUSE or RETURN task to IoT_Healthcare_Device 

END 

END IF 

Cloud_Server_Processing: 

Step 4: Task Offloading to Cloud Servers 

result = Computation_Part(task) 

Output_Manager(result) 

END 

Algorithm 1 The Proposed Computational Offloading Model

 
Figure 1 Workflow of the Proposed Offloading Model 
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Determining factors include the complexity of the task and 

the volume of data. The task analyzer evaluates the data from 

fog devices and makes decisions regarding its processing. It 

assesses whether the task can be managed by a fog device or 

needs to be offloaded to the cloud. Cloud servers possess 
higher processing capabilities to manage intricate tasks. Final 

results are delivered to the appropriate destination depend on 

the intended use. 

4. RESULTS AND DISCUSSIONS 

In this part, carefully designed experiments were conducted to 

collect data, manipulated, and scrutinized to uncover insights 

and draw conclusions. Various methodologies, including 

controlled trials and statistical analysis, has been used to 

guarantee the authenticity and dependability of the results. 

The proposed method’s performance was assessed by 

measuring and contrasting it with established collaboration of 
fog’s benchmarking algorithms using health-related 

applications dataset. 

4.1. Simulation Parameters  

The suggested MDIES framework has been implemented 

through simulation using MATLAB on a system that has 16 

GB RAM and an Intel Core i7 processor. Table 2 contains 

information on the simulation parameters. 

Table 2 Simulation Variables 

S.No Simulation Parameter Value 

1 Simulation Environment Matlab 

2 Quantity of Fog nodes 50 

3 Topology of the Network 
Mesh Network 

Structure 

4 Data Set Heart Disease 

5 Instances Tested 1988 

6 Quantity of Attributes 13 

7 Type of Data Multidimensional 

8 Data Transfer Rate 64 Mbps 

9 OS Windows 11 

10 
Fog Central 

GrowthCapability 
2.4 GHz 

11 RAM 16 GB 

4.2. Dataset 

This set of data originates from 1988 and comprises four 
databases: Long Beach V, Hungary, Switzerland, and 

Cleveland. It encompasses 76 attributes, with one being the 

predicted attribute, although published experiments typically 

utilize a subset of 13 attributes [25]. The patient's heart 

problem is indicated in the "target" field with values of 0 

indicating no disease and 1 indicating disease. 

4.3. Result Analysis 

This section includes the tests that were carried out and 
concludes with a comparison of the suggested approach. To 

demonstrate the effectiveness of the algorithm, its 

performance is juxtaposed with other offloading algorithms 

like GA-ACO, CMS-ACO and FOTO.  

The time for completion of task is influenced by the 

complexity of task scheduling and resource allocation. When 

contrasted with existing algorithms, the proposed algorithm 

demands less time for computation, as illustrated in Figure 2. 

Time for completion varies depending upon the nature of the 

job. The proposed algorithm accomplishes each task 

formulation and decision-making, thereby utilizing a shorter 
timeframe. The chart suggests that GA-ACO receives the 

highest number of requests, trailed by CMS-ACO, FOTO and 

proposed technique. As the number of requests show upward 

trend, there is a corresponding increase in total competition 

time for all four techniques. It seems that proposed technique 

has the shortest total completion time when compared to the 

other three techniques. 

 

Figure 2 Task Completion Time 

Figure 3 illustrates the average energy consumption for every 

type of task across four different techniques. Our proposed 

technique demonstrates the lowest energy consumption, 

averaging about 1Kwh per task. FOTO shows an average 
consumption of around 3 kWh per task. CMS-ACO consumes 

approximately 5 kWh per task. GA-ACO records the highest 

energy consumption, averaging around 7 Kwh per task. The 

proposed technique shows a reduction in energy consumption 

of 66.67% compared to FOTO, 80% compared to CMS-ACO, 

and 85.71% compared to GA-ACO. 
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In Figure 3, the performance metrics of the proposed 

technique are showcased in comparison to existing 

algorithms. Proposed technique employs a multi-objective 

approach to optimize resource allocation within cloud data 

centers, particularly in identifying the optimal host for task 

offloading. 

 
Figure 3 Energy Consumption 

Notably, proposed technique demonstrates shorter response 

times and lower energy consumption compared to existing 

algorithms. This is achieved by allotment of virtual machines 

to hosts only when the required capacity matches the available 

resources. These findings show that the algorithm works 

better than the current ones in terms of resource usage, task 

completion time and efficiency of energy. These findings 
highlight the practical advantages of adopting proposed 

technique in cloud computing environments, where 

optimization of resource allotment and mitigating 

consumption of energy are crucial factors for enhancing 

overall system performance and sustainability. 

 

Figure 4 Execution Time Ratio 

Figure 4 depicts the relationship between the Execution 

Success Ratio and average job arrival rate for four scheduling 

algorithms: GA-ACO, FOTO, CMS-ACO, and the blue, 

yellow, red, and green lines indicate the proposed technique. 

The Execution Success Ratio indicates the proportion of 
successfully completed jobs by each algorithm. Notably, the 

Proposed Technique demonstrates the highest average job 

arrival rate across all levels of Execution Success Ratios, 

suggesting its superior performance in job scheduling 

compared to the other algorithms. As the Execution Success 

Ratio increases, the average job arrival rate also tends to rise 

for all algorithms. This increase in the arrival rate appears to 

follow a consistent pattern across all algorithms. The 

Proposed Technique consistently exhibits the lowest average 

job arrival rate among all the algorithms, regardless of the 

Execution Success Ratio. At an Execution Success ratio of 
0.6, the Proposed Technique job arrival rate ranges from low 

of 0.1 to a high of 1.0. This pattern is consistently observed 

across Execution Success ratio values of 0.7, 0.79 and 0.9 

when compared to FOTO, CMS-ACO, GA-ACO, the 

proposed Technique superior performance reinforces its 

relative efficiency.  

The figure 4 provides insights into the analysis of execution 

time. By changing the quantity of cloudlets, the execution 

time is assessed. The analysis reveals that the execution time 

decreases even when a greater number of cloudlets are 

utilized. Conversely, a smaller number of cloudlets 

necessitate longer execution times. Notably, the proposed 
technique demonstrates significantly improved execution time 

compared to existing approaches, indicating its efficiency in 

managing computational tasks within the cloud environment. 

 

Figure 5 Response Time Analysis 

Figure 5 illustrates the job arrival rate concerning three 

distinct scheduling algorithms, GA-ACO, CMC-ACO, FOTO, 

with proposed technique. The y-axis denotes the job arrival 

rate, whereas the x-axis represents the response time. At GA-

ACO, the response time is observed to increase significantly 
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with the job arrival rate. It starts at around 450% and rises 

sharply, reaching around 950% at the highest job arrival rate. 

At CMS-ACO, the response time is seen to increase with the 

job arrival rate but at a slower pace compared to GA-ACO. It 

starts slightly below 350% and increases steadily reaching 
about 625%. At FOTO, A relatively moderate increase in 

response time is shown by this technique. It starts at around 

200%, increasing gradually and reaching just above 450%. 

The lowest response time across all job arrival rates is 

exhibited by the proposed technique. It starts at about 160% 

and rises slightly, maintaining a response time just below 

370%. The proposed technique is consistently outperformed 

by the other methods in terms of response time, indicating its 

efficiency in handling job arrival rates.  

The job arrival rate signifies the average influx of jobs into 

the system per unit of time. From the figure, it is evident that 
the GA-ACO algorithm generally exhibits a higher job arrival 

rate compared to the CMS-ACO algorithm across various 

response times. Response time refers to the duration taken to 

complete a job from its arrival at the system. 

5. CONCLUSION 

The work presented here aimed at reducing energy 

consumption, minimizing task completion time, and lowering 

data center costs by offloading tasks from healthcare devices 

to cloudlets. The proposed technique restructures user queries 

and identifies accepted requests using a linear regression 

framework. In a cloud data center, it uses multi-objective 

functions to choose the best host. The method's effectiveness 
is evaluated through the simulator and contrasted with task 

offloading algorithms such as CMS-ACO, FOTO, and GA-

ACO. The simulation results demonstrate that the suggested 

technique remarkably reduces energy consumption, decreases 

task completion time, and cuts data center costs. It is 

particularly applied in healthcare devices using Fog 

computing. The execution time was determined by adjusting 

the quantity of cloudlets. and the technique was found to 

outperform existing ones. Looking ahead, plan was made to 

develop new fault tolerance mechanisms to manage virtual 

machine failures and explore more intricate task offloading 
relationships to further improve energy savings for healthcare 

devices. Additionally, security measures will be implemented 

to ensure the protection of offloading tasks. 
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