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Abstract – The research introduces MC-DSR-AHO a routing 

protocol integrating Markov Chain-based Dynamic Source 

Routing (MC-DSR) with Adaptable Hummingbird Optimization 

(AHO) for Mobile Wireless Sensor Networks (MWSNs). MWSNs 

face challenges such as packet loss, latency, limited throughput, 

and energy inefficiency in dynamic and resource-constrained 

environments. MC-DSR-AHO addresses these issues by 

combining the probabilistic modeling of MC-DSR with the 

adaptive optimization of AHO. This integration results in 

improved packet delivery reliability, reduced packet drops, 

efficient data transmission, optimized delays, and energy 

conservation. Simulations demonstrate the protocol’s scalability 

and consistent performance across varying node counts. This 

research highlights the effectiveness of utilizing probability 

modeling and bio-inspired optimization to enhance the 

adaptability and efficiency of routing protocols in MWSNs. MC-

DSR-AHO represents a significant advancement, providing 

practical benefits and guiding future research in dynamic 

network environments. 

Index Terms – Dynamic Source Routing, Hummingbird 

Optimization, MWSNs, Routing Protocol, Bio-inspired 

Optimization, QoS, Healthcare. 

1. INTRODUCTION 

The intricate technical challenge in Healthcare Mobile 

Wireless Sensor Networks (H-M-WSN) revolves around 

ensuring high Quality of Service (QoS) within dynamic 

healthcare environments. The need for real-time and low-

latency data delivery in healthcare applications is paramount, 

as any disruption or delay in healthcare data transmission can 

significantly impact patient care and clinical decision-making 

[1]. Maintaining QoS while scaling the network and adapting 

to evolving healthcare demands presents a complex dilemma. 

The expanding number of sensor nodes and the growing 

scope of healthcare applications increase the complexity of 

this challenge, requiring sophisticated solutions in network 

architecture, data prioritization, and resource allocation to 

uphold QoS standards. The mobility of sensor nodes is a 

unique facet of H-M-WSNs [2]. Patient monitoring often 

necessitates sensor repositioning or mobility, which 

complicates maintaining QoS during these transitions. 

Ensuring continuous data transmission and QoS as sensors 

move within healthcare settings is a non-trivial technical issue 

. Effectively managing interference and congestion within H-

M-WSNs is a critical concern. Healthcare environments 

typically host multiple wireless devices, networks, and 

potential sources of interference [3], [4]. These networks 

require advanced interference mitigation techniques and 

efficient traffic management strategies to maintain consistent 

QoS. To address the QoS challenge in H-M-WSNs, 

innovative routing protocols, QoS-aware data transmission 

mechanisms, and adaptive resource management techniques 

must be developed and implemented. 

1.1. Problem Statement 

Ensuring high QoS in H-M-WSNs presents intricate technical 

challenges. Real-time, low-latency data delivery is crucial for 

patient care and clinical decision-making. Scaling the network 

while adapting to evolving healthcare demands complicates 

QoS maintenance. The motivation is to address the QoS 

challenge in H-M-WSN is deeply rooted in the critical need to 

ensure seamless and reliable healthcare data transmission 

within dynamic healthcare settings. The continual growth of 

healthcare applications and the deployment of wireless 

sensors emphasize the need to uphold high QoS standards 
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consistently. The mobility of sensor nodes within healthcare 

facilities adds complexity to the challenge, demanding 

uninterrupted data transmission and sustained QoS. In 

healthcare environments characterized by many wireless 

devices and networks, introducing interference and congestion 

issues necessitates the development of innovative techniques 

to mitigate these challenges and ensure a consistent QoS. The 

ultimate goal is to provide the highest quality of healthcare 

services, characterized by timely, dependable, and 

uninterrupted data transmission within a dynamic, scalable, 

and interference-prone healthcare landscape, with the 

potential to impact healthcare quality and patient well-being 

significantly. 

The main objective of this research is to develop and 

implement a bio-inspired optimization-based routing protocol 

tailored explicitly to address the QoS challenge in H-M-WSN. 

This specialized routing protocol will draw inspiration from 

natural systems and uniquely adapt to the demands of 

dynamic healthcare environments. The critical research 

objectives encompass the following: 

 Design and customize a bio-inspired routing protocol that 

considers the mobility patterns, resource constraints, and 

QoS requirements specific to healthcare applications 

within H-M-WSN. 

 Focus on significantly improving QoS within H-M-WSN 

by minimizing latency, reducing packet loss, and 

enhancing data reliability. The routing protocol will 

dynamically adapt routing decisions to meet the real-time 

QoS demands of critical healthcare applications, ensuring 

uninterrupted and reliable data transmission. 

 Ensure the routing protocol’s adaptability to the mobility 

of sensor nodes within healthcare environments by 

implementing efficient handover and re-routing 

mechanisms. This will guarantee continuous network 

connectivity and seamless data transmission, even in the 

presence of mobile nodes within healthcare settings. 

 Conduct comprehensive performance evaluations through 

simulations and real-world experiments within healthcare 

contexts. Evaluate the routing protocol’s effectiveness in 

maintaining and enhancing QoS standards, minimizing 

latency, and reducing data packet loss in dynamic and 

critical healthcare scenarios. 

The article is well-organized and properly structured to 

provide a comprehensive overview of the research. It starts 

with Section 1, which presents the introduction, discusses the 

challenges and issues faced by MWSNs, and discusses the 

motivation for integrating MC-DSR with AHO. Section 2 

reviews related work, covering existing routing protocols and 

optimization techniques relevant to MWSNs. The description 

of the proposed MC-DSR-AHO algorithm in detail outlines 

the integration process and the individual components of MC-

DSR and AHO in Section 3. The simulation setup and 

parameters discussed in Section 4 are used to evaluate the 

performance of the proposed algorithm. Section 5 holds the 

results and discussion analyzes performance metrics such as 

packet delivery ratio, packet drop ratio, throughput, delay, and 

energy consumption. Section 6 concludes the paper by 

summarizing the findings and highlighting the advantages of 

MC-DSR-AHO in enhancing the efficiency and reliability of 

routing in MWSNs. Finally, the article ends with the 

references portion. 

2. LITERATURE REVIEW 

“MRIRS” [5] proposes an innovative method to enhance 

mobile ad hoc networks by incorporating reflective surfaces, 

which can bounce signals to improve communication. This 

approach adds intelligence to conventional mobile ad hoc 

routing by optimizing network performance. “EAGR” [6] 

introduces an innovative strategy for monitoring workers in 

industries. This research focuses on saving energy while 

efficiently directing information to keep track of the 

workforce in real-time. The key idea is to use a geographic 

routing approach that takes the location of workers. “Reliable 

WBSN” [7]introduces an advanced routing strategy for 

Wireless Body Sensor Networks. This protocol is designed 

for multi-hop communication, meaning data can hop through 

multiple sensor nodes to reach its destination. The QoS 

awareness ensures that the communication meets specific 

quality standards, and the PLQE mechanism predicts link 

quality, helping in making more reliable routing decisions.  

“Heterogeneous MSN” [8] addressing challenges in Mobile 

Sensor Networks (MSN). The protocol tackles the 

complexities of a diverse network with varying sensor 

capabilities and intermittent mobile sinks. By strategically 

routing data in this heterogeneous environment, it optimizes 

communication efficiency. “EPRS” [9] for Wireless Body 

Area Networks (WBAN) is tailored for healthcare 

applications, which enhances the stability of data routes in 

WBANs using a probabilistic approach. By incorporating 

probabilistic mechanisms, EPRS adapts dynamically to the 

changing conditions of the body area network, ultimately 

optimizing the stability of data routes. Different bio-inspired 

optimizations are applied in various networks to enhance the 

performance in terms of energy efficiency [10]–[13]. 

“BeeRoute” [14], the paper puts forth an energy optimization 

routing protocol for hierarchical cluster-based Wireless 

Sensor Networks utilizing the Artificial Bee Colony 

algorithm. By dynamically adapting routing decisions through 

the artificial bee colony, the protocol significantly enhances 

energy optimization in WSNs. BeeRoute’s working 

mechanism uses artificial bees to intelligently guide data 

routing within the hierarchical structure, ensuring energy-

efficient communication. The key contribution of 
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“TrustAntQoS” [15]  lies in combining an innovative trust 

computation approach with a reliable fuzzy and heuristic Ant 

Colony mechanism. TrustAntQoS’s working mechanism 

involves leveraging energy-based random repeat trust 

computation to evaluate node reliability, coupled with a fuzzy 

and heuristic Ant Colony system to optimize data routing for 

improved QoS. “HeatSink” [16] paper introduces TEO-

MCRP, a Thermal Exchange Optimization-based Clustering 

Routing Protocol with a mobile sink for WSNs. HeatSink’s 

mechanism involves leveraging thermal exchange principles 

to optimize the selection and movement of a mobile sink, 

improving overall network performance.  

“TrustNet” [17] introduces an optimal cluster and trusted path 

approach for routing formation and intrusion classification in 

WSNs. The formation of optimal clusters and the 

identification of trusted paths are made by combining 

machine learning for intrusion detection and classification. 

The protocol ensures reliable and secure routing in WSNs by 

optimizing cluster formation and leveraging machine learning. 

“FuzzyElection” [18] introduces E-FLZSEPFCH, an 

Enhanced Fuzzy Logic Zone Stable Election Protocol for 

Cluster Head Election and Multipath Routing in WSNs. The 

distinct contribution lies in incorporating enhanced fuzzy 

logic for stable cluster head election and implementing 

multipath routing strategies. Its working mechanism involves 

refining the stable election protocol using enhanced fuzzy 

logic, ensuring robust cluster head selection. “OptiCluster” 

[19] is a paper that presents a novel hybrid optimization for a 

cluster-based routing protocol in information-centered 

wireless sensor networks (IC-WSNs). It comprises a 

synergistic blend of optimization methods, combining the 

strengths of different algorithms to enhance the efficiency of 

cluster-based routing. The protocol optimizes data transfer 

and processing by adapting to the unique demands of IC-

WSNs for IoT-based Mobile Edge Computing (MEC). 

“EcoDist” [20] a Modified Distance-Based Energy-Aware 

(mDBEA) Routing Protocol. The working mechanism 

involves dynamically adjusting routing decisions based on 

distance metrics, effectively minimizing energy consumption. 

By incorporating modifications, the protocol ensures a more 

adaptive and efficient approach to energy-aware routing. 

“TrustEcoRoute” [21] is an Energy-Aware Trust and 

Opportunity-Based Routing Algorithm for WSNs utilizing the 

Multipath Routes Technique. The essential contribution lies in 

integrating trust-aware and energy-aware mechanisms into the 

routing algorithm. Dynamic assessment of trust levels among 

sensor nodes and identification of energy-efficient routes 

through multipath techniques are the working mechanisms of 

the protocol. “CentroMove” [22] is a Centroid-Based Routing 

Protocol with a Moving Sink Node designed to address 

uniform and non-uniform distribution challenges in WSNs. Its 

working mechanism involves dynamically calculating 

centroids to guide data routing and optimize energy 

efficiency. The moving sink node strategically collects data, 

adapting to the spatial distribution of sensor nodes. 

“MothWolf” [23] working mechanism involves leveraging the 

unique characteristics of moths and grey wolves to optimize 

cluster-based routing. It, coupled with the customized Grey 

Wolf Optimization, ensures dynamic adaptation and efficient 

energy utilization in WSNs. By incorporating artificial 

electric field principles, the protocol intelligently guides the 

formation of energy-efficient clusters. 

“MERT” [24] introduces MOCRAW, a Routing Algorithm 

for WSNs that optimizes cluster head selection through meta-

heuristic methods. The algorithm’s distinct contribution is 

evident in its use of meta-heuristic optimization techniques, 

dynamically choosing cluster heads to enhance overall 

network efficiency. MetaCluster’s mechanism involves the 

integration of meta-heuristic algorithms, facilitating adaptive 

and robust cluster formation, ultimately refining the routing 

performance in WSNs. This innovative approach marks a 

significant stride in optimizing the selection process of cluster 

heads, showcasing the potential for improved efficiency and 

adaptability in wireless sensor network routing strategies. 

“ECOG” [25] the paper introduces MOCRAW, an innovative 

WSNs routing algorithm. Its primary innovation centres 

around a meta-heuristic optimized cluster head selection 

mechanism. MetaRoute employs sophisticated meta-heuristic 

algorithms to select cluster heads dynamically, optimizing 

overall network performance. The operational mechanism 

revolves around utilizing meta-heuristic optimization 

techniques to choose cluster heads adaptively, considering 

factors like energy efficiency and network connectivity. This 

strategy enhances overall efficiency and extends the 

network’s lifespan by ensuring a balanced distribution of 

energy consumption. Table 1 illustrates the comparison of the 

related work and projects, as well as the merits and demerits 

of the related existing works. 

Table 1 Comparison of Related Literature 

State-of-the-Art 

Algorithms 
Merits Demerits 

MRIRS [5] 
It Optimizes mobile ad hoc routing with 

intelligent reflecting surfaces. 

Implementation complexity and adaptability 

challenges may arise in diverse mobile 

environments. 
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EAGR [6] 

It Optimizes energy for real-time 

monitoring through efficient geographic 

routing. 

Limited adaptability to dynamic conditions may 

affect reliability. 

Reliable WBSN 

[7] 

Enhances reliability through a multi-hop 

QoS-aware protocol with predicting link 

quality estimation 

Complexity in implementing QoS metrics may 

impact adaptability. 

Heterogeneous 

MSN [8] 

Introduces adaptability to intermittent 

mobile sinks, enhancing routing 

efficiency. 

Challenges may arise in managing heterogeneity, 

affecting protocol scalability. 

EPRS [9] 
Enhances route stability in WBANs and 

optimizes reliability. 

Enhanced probabilistic mechanisms might 

introduce computational overhead, impacting real-

time responsiveness. 

BeeRoute [14] 

Hierarchical clustering using artificial 

bee colonies optimizes energy 

consumption in WSNs 

Computational complexities potentially impact 

real-time performance. 

TrustAntQoS 

[15] 

Trust computation approach coupled 

with a reliable fuzzy and heuristic ant 

colony mechanism enhances Quality of 

Service. 

It might introduce computational overhead. 

HeatSink [16] 
Optimizes thermal conditions and 

contributes to energy-efficient routing. 

They are impacting the protocol’s scalability and 

adaptability in certain dynamic WSNs. 

TrustNet [17] 

Integrates machine learning 

classification to enhance intrusion 

detection. Improved security and 

reliability 

It may introduce computational overhead. 

FuzzyElection 

[18] 

Ensures efficient and reliable cluster 

head election, improving the network 

stability and energy efficiency 

This may increase computational overhead, 

impacting the protocol’s scalability in large-scale 

WSNs. 

OptiCluster [19] 

Enhances data delivery by optimizing 

cluster formation and routing decisions, 

ensuring improved network 

performance. 

It is impacting the protocol’s real-time 

performance and adaptability in resource-

constrained environments. 

EcoDist [20] 

Optimizes energy consumption by 

considering distance metrics, leading to 

improved network longevity. 

Adaptability to changing network conditions and 

potentially reducing the protocol’s effectiveness 

TrustEcoRoute 

[21] 

Enhances network reliability by 

leveraging trust metrics and multipath 

routing, resulting in improved data 

delivery. 

Real-time performance in resource-constrained 

scenarios and posing challenges in highly 

dynamic network conditions. 

CentroMove 

[22] 

Dynamic adjustment of sink node 

position improves energy utilization and 

network lifetime. 

Irregular node distribution. 

MothWolf [23] 

Optimizing energy consumption and 

enhancing the network’s overall 

efficiency. 

Dynamic network conditions or irregular sensor 

node deployment affects its adaptability. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/20                         Volume 11, Issue 3, May – June (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       320 

     

RESEARCH ARTICLE 

MERT [24] 

Cluster Heads using advanced meta-

heuristic algorithms. Optimizes network 

performance. 

Limiting its applicability in certain scenarios. 

ECOG [25] 

Energy-balanced routing protocol 

optimizes energy consumption and 

increases network lifespan. 

Fine-tuning parameters may be required for 

optimal performance. 

3. ADAPTABLE HUMMINGBIRD OPTIMIZATION 

BASED DYNAMIC SOURCE ROUTING (AHODSR) 

3.1. Dynamic Source Routing 

Dynamic Source Routing (DSR) is a crucial routing protocol 

in WSNs and is well-known for its adaptability in dynamic 

network conditions. DSR enables efficient communication in 

ad-hoc environments where sensor  node movement is 

unpredictable. This on-demand protocol relies on a route 

discovery mechanism, which begins with a Route Request 

(RREQ) signal broadcast to locate the destination. Once a 

path is established, it will be maintained dynamically by 

adapting to node mobility and topology changes. This 

decentralized approach reduces the necessity for a fixed 

infrastructure, making it perfect for resource-constrained 

WSNs. Its dependence on route caching and discovery 

mechanisms leads to overhead, which affects its scalability. 

3.2. Enhanced Dynamic Source Routing with Markov Chain 

Algorithm (MC - DSR) 

A Markov Chain (MC) is a mathematical model that describes 

a sequence of events in which the probability of transitioning 

from one state to another depends entirely on the current state 

and time elapsed. Integrating MC into the DSR algorithm, 

MC-DSR enhances the protocol’s functionality and 

adaptability. 

3.2.1. State Representation and Transition Probability Matrix 

Initially, integrating MC into the DSR algorithm includes the 

state representation. Let 𝑆  denote the set of states that 

characterize diverse network conditions. Each state 𝑠𝑖 ∈ 𝑆 

represents distinct aspects such as link quality, node mobility, 

or available energy levels.  

The state representation is crucial in forming the foundation 

for subsequent modeling, and it plays a pivotal role in shaping 

the probabilistic transitions within the Markov Chain. The 

discrete nature of the state space allows for a clear and finite 

delineation of possible network configurations that can be 

mathematically expressed in Eq.(1). 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} (1) 

The MC’s state space provides the foundation for constructing 

a transition probability matrix ( 𝑃 ). Let 𝑃𝑖,𝑗  represent the 

probability of transitioning from state 𝑠𝑖 to state 𝑠𝑗 in a single 

step. The transition probability matrix can be represented in 

Eq.(2). 

[

𝑃11

𝑃21

𝑃12

𝑃22

⋯
⋯

𝑃1𝑛

𝑃2𝑛

⋮    ⋮ ⋱ ⋮
𝑃𝑛1 𝑃𝑛2 ⋯ 𝑃𝑛𝑛

] (2) 

Where the matrix captures the network dynamics, quantifying 

the likelihood of transitions between different states. The 

robust definition of states, as demonstrated by 𝑆  and the 

subsequent probability matrix 𝑃 , forms the mathematical 

basis for the subsequent steps in integrating MC into the DSR 

algorithm. 

3.2.2. Markov Chain Initialization 

This initialization process is crucial and is achieved by setting 

the initial distribution (𝜋) based on the fundamental network 

state. The mathematical representation of the initial 

distribution is shown in Eq.(3). 

𝜋 = [𝜋1, 𝜋2, … , 𝜋𝑛] (3) 

Where 𝜋𝑖  represents the probability of commencing the MC 

in the state 𝑠𝑖. The initial distribution is a probability vector 

that encapsulates the likelihood of the system starting in each 

defined state. The values of 𝜋𝑖 are contingent upon the current 

network conditions and are instrumental in shaping the early 

stages of the MC evolution. The mathematical expression 𝜋 =
[𝜋1, 𝜋2, … , 𝜋𝑛]  encapsulates the probabilistic foundation for 

subsequent state transitions. This initialization process 

ensures that the MC accurately reflects the network’s initial 

conditions, influencing the dynamic evolution of the system 

within the MC-DSR framework.  

3.2.3. Adaptive Route Discovery 

In Adaptive Route Discovery, the information is embedded in 

the MC to dynamically adapt the selection of routes based on 

the prevailing network state. The higher transition 

probabilities within the MC guide the route discovery towards 

more stable or efficient paths. The adaptive route discovery 

process is mathematically represented in Eq.(4). 

𝑃(𝑅𝑜𝑢𝑡𝑒 = 𝑟𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)
∝ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑆𝑡𝑎𝑡𝑒 𝑠𝑖) 

(4) 

Where 𝑃(𝑅𝑜𝑢𝑡𝑒 = 𝑟𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒) denotes the probability 

of selecting a route 𝑟𝑖  given the current network state. This 

probability is proportional to the likelihood of transitioning to 

a state 𝑠𝑖 within the Markov Chain. The adaptability of route 

discovery is contingent upon the dynamic nature of the 

network states and their associated transition probabilities. 
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This adaptive mechanism ensures that the route selection 

process aligns with the evolving conditions of the wireless 

network. This integration can logically navigate the network 

landscape and enhances resilience and efficiency in response 

to changing circumstances. 

3.2.4. Link Quality Assessment 

The Link Quality Assessment utilizes the information 

encoded in the MC to assess the quality of links within the 

network. The assessment is based on the transition 

probabilities associated with changes in link states. The link 

quality assessment is represented in Eq.(5). 

𝑃(𝐿𝑖𝑛𝑘 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑞𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)
∝ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑆𝑡𝑎𝑡𝑒 𝑠𝑖) 

(5) 

Where 𝑃(𝐿𝑖𝑛𝑘 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑞𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)  represents the 

probability of link quality being qi given the current network 

state. This probability is proportional to the likelihood of 

transitioning to a state 𝑠𝑖  within the MC. The link quality 

assessment leverages the probabilistic nature of state 

transitions to make informed decisions about the stability and 

reliability of links. 

The dynamic evolution of link quality within the MC can be 

represented by a set of equations, where 𝐿𝑖𝑗  denotes the link 

quality between nodes 𝑖  and 𝑗  and 𝑃𝑖𝑗  is the transition 

probability between the associated states. 

𝑑𝐿𝑖𝑗

𝑑𝑡

= 𝑃𝑖𝑗 (6) 

Eq.(6) captures the temporal changes in link quality, 

reflecting the influence of state transitions on the dynamic 

assessment of link conditions. Integrating link quality 

assessment into the MC-DSR framework enhances the 

protocol’s ability to make adaptive routing decisions based on 

the probabilistic modeling of network dynamics. 

3.2.5. Energy-Aware Routing 

This phase involves adapting routing decisions based on the 

energy state transitions within the Markov Chain. The 

dynamic changes in energy levels influence the routing 

decisions, ensuring an energy-aware approach to extending 

the network’s lifetime. 

𝑃(𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑑𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)
∝ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑆𝑡𝑎𝑡𝑒 𝑠𝑖) 

(7) 

In Eq.(7). 𝑃(𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑑𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒) 

represents the probability of selecting a routing decision 𝑑𝑖 

given the current network state. This probability is 

proportional to the likelihood of transitioning to a state 𝑠𝑖 

within the MC. The energy-aware routing mechanism adapts 

to the changing energy states, optimizing routing decisions for 

energy efficiency. The dynamic evolution of energy levels 

within the MC can be captured by an equation where 𝐸𝑖 

denotes the energy level associated with the state 𝑠𝑖 and 𝑃𝑖𝑗  is 

the transition probability between the corresponding states. 

𝑑𝐸𝑖

𝑑𝑡

= 𝑃𝑖𝑗  
(8) 

Eq.(8) reflects the temporal changes in energy levels, 

indicating how transitions between states influence the overall 

energy dynamics. Integrating energy-aware routing into the 

MC-DSR framework enhances the protocol’s capacity to 

make adaptive routing decisions, consider the energy 

constraints of individual nodes, and promote sustainable 

network operation. 

3.2.6. Route Maintenance and Repair 

This step applies MC concepts to the route maintenance 

phase, guiding the protocol to repair an existing route or 

discover a new one based on transition probabilities. The 

decision-making process involves assessing the likelihood of 

successful route maintenance or repair, ensuring the 

network’s adaptability to changes. The route maintenance and 

repair process can be expressed mathematically in Eq.(9). 

𝑃(𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)
∝ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑆𝑡𝑎𝑡𝑒 𝑠𝑖) 

(9) 

Where (𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)  denotes the 

probability of selecting route action ai given the current 

network state. This probability is proportional to the 

likelihood of transitioning to a state 𝑠𝑖  within the MC. The 

route maintenance and repair mechanism adapts to the 

dynamic changes in network conditions, optimizing decisions 

for maintaining or repairing routes. 

The temporal changes in route conditions within the MC can 

be represented by an equation where 𝑅𝑖  denotes the route 

condition associated with the state 𝑠𝑖 and 𝑃𝑖𝑗 is the transition 

probability between the corresponding states. 

𝑑𝑅𝑖

𝑑𝑡

= 𝑃𝑖𝑗 (10) 

Eq.(10) captures how transitions between states influence the 

temporal evolution of route conditions. Integrating route 

maintenance and repair into the MC-DSR framework 

enhances the protocol’s ability to intelligently manage and 

adapt routes based on the probabilistic modeling of network 

dynamics. 

3.2.7. Periodic Markov Chain Updates 

The Periodic Markov Chain Updates contain the regular 

adjustment of MC parameters based on real-time observations 

or network monitoring. The periodic updates allow the MC-

DSR protocol to adapt to changing network conditions, which 

can be represented mathematically with Eq.(11). 
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𝑃(𝑈𝑝𝑑𝑎𝑡𝑒 = 𝑢𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)
∝ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑆𝑡𝑎𝑡𝑒 𝑠𝑖) 

(11) 

Where  𝑃(𝑈𝑝𝑑𝑎𝑡𝑒 = 𝑢𝑖|𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)  signifies the 

probability of selecting update ui given the current network 

state. This probability is proportional to the likelihood of 

transitioning to a state 𝑠𝑖 within the MC. The periodic update 

mechanism adapts the MC to reflect the evolving dynamics of 

the network, ensuring its relevance and accuracy. The 

temporal changes in MC parameters can be represented by an 

equation where 𝑀𝑖 denotes the MC parameter associated with 

the state 𝑠𝑖  and 𝑃𝑖𝑗  is the transition probability between the 

corresponding states. 

𝑑𝑀𝑖

𝑑𝑡

= 𝑃𝑖𝑗  (12) 

Eq.(12) depicts how transitions between states influence the 

temporal evolution of Markov Chain parameters. The 

integration of periodic Markov Chain updates into the MC-

DSR framework enhances the protocol’s ability to continually 

adapt and optimize its probabilistic modeling in response to 

the dynamic nature of the wireless network. 

InitializeStates() 

- Create a set of abstract states representing network 

conditions. 

BuildTransitionMatrix() 

- Define a matrix P for transition probabilities between states. 

InitializeMarkovChain() 

- Set initial distribution probabilities π based on current 

network conditions. 

AdaptiveRouteDiscovery() 

- During route discovery: 

- Use Markov Chain probabilities to adapt route selection 

dynamically. 

LinkQualityAssessment() 

- Assess link quality: 

- Use Markov Chain probabilities for interpreting link state 

changes. 

EnergyAwareRouting() 

- Adapt routing based on energy state transitions: 

- Use Markov Chain probabilities to optimize for energy 

efficiency. 

RouteMaintenanceAndRepair() 

- During route maintenance: 

- Apply Markov Chain principles to decide whether to repair 

or discover a new route. 

PeriodicMarkovChainUpdates() 

- Periodically update Markov Chain parameters: 

- Adapt the model to changing network conditions, ensuring 

relevance. 

Pseudocode 1 Markov Chain-Based Dynamic Source Routing 

(MC-DSR) 

The pseudocode 1 summarises the MC-DSR algorithm in a 

step-by-step manner. It starts with initializing states to 

represent various network conditions. The matrix P is 

established to denote transition probabilities between these 

states. The initialization of the MC involves setting initial 

distribution probabilities based on current network conditions. 

The algorithm dynamically adapts route selection during route 

discovery using Markov Chain probabilities.  

Link quality assessment interprets link state changes based on 

these probabilities. Energy-aware routing optimizes decisions 

for energy efficiency, guided by Markov Chain transitions. 

Route maintenance decisions leverage Markov Chain 

principles, and periodic updates ensure the model adapts to 

the changing network conditions. 

3.3. Hummingbird Optimization 

The Hummingbird Optimization Algorithm (HOA) emulates 

the foraging strategies of hummingbirds in search of nectar-

rich flowers. It dynamically adjusts solutions to optimize 

objective functions, combining local search and global 

exploration. With memory structures aiding in learning from 

past experiences, HOA employs a parallel search strategy for 

enhanced efficiency.  

Adapting to changing conditions and striking a balance 

between intensification and diversification, this versatile 

algorithm finds applications in engineering, logistics, and 

scheduling, converging efficiently towards optimal solutions 

by drawing inspiration from the hummingbird’s adeptness in 

navigating dynamic environments. 

3.3.1 Features of HOA 

a) Foraging Behavior Simulation: HOA replicates the 

foraging behavior of hummingbirds in searching for 

nectar-rich flowers. The algorithm models the process of 

hummingbirds dynamically adjusting their flight paths to 

find optimal routes between flowers. 

b) Dynamic Movement and Exploration: Similar to 

hummingbirds exploring a diverse landscape for nectar, 

HOA involves dynamic movement and exploration of the 

solution space. The algorithm iteratively adjusts its 

solutions to optimize the objective function. 
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c) Local Search and Global Exploration: HOA combines 

local search capabilities with global exploration. It 

exploits promising regions near current solutions while 

maintaining the ability to explore new and uncharted 

areas of the solution space. 

d) Memory and Learning: The algorithm incorporates 

memory structures to remember information about 

previously visited solutions. This memory allows HOA to 

learn from past experiences and adapt its search strategy 

accordingly. 

e) Parallel Search Strategy: Hummingbird Optimization 

employs a parallel search strategy similar to that of 

hummingbirds, simultaneously exploring multiple 

flowers for nectar. It enhances the algorithm’s ability to 

examine various solutions concurrently. 

f) Adaptability to Changing Conditions: HOA dynamically 

adapts to changes in the optimization landscape, 

responding to shifts in the fitness landscape to enhance its 

efficiency. This adaptability is inspired by the 

hummingbird’s ability to adjust its flight paths based on 

environmental conditions. 

g) Balance between Intensification and Diversification: The 

algorithm seeks a balance between intensification 

(exploitation of known solutions) and diversification 

(exploration of new solutions). This balance is crucial for 

efficiently navigating the solution space. 

h) Versatility: HOA is a versatile optimization algorithm 

applicable to many optimization problems. It has been 

employed in engineering design, logistics, scheduling, 

and other domains where finding optimal solutions is 

essential. 

i) Efficiency and Convergence: The primary goal of HOA 

is to converge towards optimal solutions efficiently. The 

hummingbird’s adeptness at finding nectar efficiently in a 

dynamic environment inspires the algorithm. 

3.4. Adaptable Hummingbird Optimization 

“Adaptable Hummingbird Optimization (AHO)” is an 

optimization approach that reflects hummingbirds’ flexible 

and dynamic foraging behavior. This method incorporates 

adaptability into the optimization process, allowing real-time 

adjustments based on changing environmental conditions. The 

algorithm iteratively refines solutions, combining local search 

and global exploration strategies. Memory structures capture 

insights from past experiences, and a parallel search approach 

enhances efficiency. This adaptable optimization is well-

suited for scenarios requiring resilience to fluctuations, 

making it valuable in applications such as dynamic resource 

allocation, responsive scheduling, and evolving system 

configurations. The term emphasizes the optimization 

algorithm’s capacity to gracefully adapt to diverse and 

shifting conditions. AHO is developed with several functional 

phases. The phases of  

3.4.1. Dynamic Initialization 

The dynamic initialization step in Adaptable Hummingbird 

Optimization (AHO) involves generating initial solutions 

dynamically, setting the foundation for an optimization 

process capable of adapting to changing conditions. This step 

ensures that the algorithm begins with diverse potential 

solutions, mimicking the adaptability observed in 

hummingbirds within varied environments. 

Let 𝑋𝑖 represent the position of hummingbird 𝑖 in the solution 

space. The dynamic initialization is expressed in Eq.(13). 

𝑋𝑖 = 𝑋𝑚𝑖𝑛 + rand(0,1) ∙ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (13) 

Where 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  denote the minimum and maximum 

boundaries of the solution space. 

The fitness of each hummingbird is evaluated using the 

objective function∫(𝑋𝑖), capturing the solution’s performance 

is mathematically expressed with Eq.(14). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = ∫(𝑋𝑖) (14) 

Initialize the memory of each hummingbird to store 

information about visited solutions, essential for adaptive 

learning throughout the optimization process is shown in 

Eq.(15). 

𝑀𝑒𝑚𝑜𝑟𝑦𝑖 = 𝑋𝑖 (15) 

Calculate the initial velocity 𝑉𝑖  of each hummingbird, it is 

influencing its movement in the solution space. 

𝑉𝑖 = rand(0,1) ∙ 𝑉𝑚𝑎𝑥  (16) 

Where in Eq.(16), 𝑉𝑚𝑎𝑥 represents the maximum velocity. 

Determine the probability 𝑃𝑖  of each hummingbird, guiding its 

potential to exploit or explore solutions. 

𝑃𝑖 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑁
𝑗=1

 (17) 

Where in Eq.(17), 𝑁  represents the total number of 

hummingbirds in the population. 

Dynamic learning rate 𝛼𝑖 for each hummingbird, influencing 

the magnitude of adjustments during the optimization process 

represented mathematically with Eq.(18). 

𝛼𝑖 = rand(0,1) ∙ 𝛼𝑚𝑎𝑥  (18) 

Where 𝛼𝑚𝑎𝑥 denotes the maximum learning rate. 

The dynamic initialization step in AHO orchestrates the 

generation of hummingbird positions, velocities, and memory, 

considering fitness evaluation and probabilities.  
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 3.4.2. Real-Time Adjustment 

The real-time Adjustment phase in AHO involves real-time 

adjustments to the hummingbirds’ positions and velocities. 

This dynamic adaptation allows the algorithm to swiftly 

respond to changing conditions in the optimization landscape, 

akin to the agile adjustments observed in hummingbirds 

during flight. 

Update the position of each hummingbird 𝑖  based on its 

current position 𝑋𝑖  and velocity 𝑉𝑖  over a given time 

step 𝑡𝑠𝑡𝑒𝑝. 

𝑋𝑖 = 𝑋𝑖 + 𝑉𝑖 ∙ 𝑡𝑠𝑡𝑒𝑝 (19) 

Eq.(19) captures the continuous movement of each 

hummingbird in the solution space. 

Adjust the velocity of each hummingbird based on its 

previous velocity, the best solution in its memory, and a 

stochastic term is shown mathematically in Eq.(20). 

𝑉𝑖 = 𝜔 ∙ 𝑉𝑖 + 𝑐1 ∙ rand(0,1) ∙ (𝑀𝑒𝑚𝑜𝑟𝑦𝑖 − 𝑋𝑖) + 𝑐2

∙ rand(0,1) ∙ (𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 − 𝑋𝑖) 
(20) 

Where 𝜔  is the inertia weight, 𝑐1 and 𝑐2  are acceleration 

constants, 𝑀𝑒𝑚𝑜𝑟𝑦𝑖  is the best solution remembered by 

hummingbird 𝑖 , and 𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦  is the best solution 

across the entire population. 

Re-evaluate the fitness of each hummingbird 𝑅𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖  based 

on its updated position, mathematically represented in 

Eq.(21). 

𝑅𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = ∫(𝑋𝑖) (21) 

Update the memory of each hummingbird to retain the best 

solution encountered during its exploration, shown 

mathematically in Eq.(22). 

𝑀𝑒𝑚𝑜𝑟𝑦𝑖

= {
𝑋𝑖 ,

𝑀𝑒𝑚𝑜𝑟𝑦𝑖 ,

𝑖𝑓  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑀𝑒𝑚𝑜𝑟𝑦𝑖)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(22) 

It ensures that each hummingbird remembers the best solution 

it has found during its optimization journey. 

Recalculate the probability 𝑅𝑃𝑖  of each hummingbird based 

on its updated fitness shown in Eq.(23). 

𝑅𝑃𝑖 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑁
𝑗=1

 (23) 

This probability guides the potential for each hummingbird to 

exploit or explore solutions in the next iteration. 

Adjust the dynamic learning rate 𝑅𝛼𝑖  to influence the 

magnitude of adjustments in the subsequent iterations shown 

in Eq.(24). 

𝑅𝛼𝑖 = rand(0,1) ∙ 𝛼𝑚𝑎𝑥 (24) 

The continuous adjustment of hummingbird positions, 

velocities, fitness values, memory, and probabilities 

characterizes the real-time adaptation in AHO. This dynamic 

process ensures that the algorithm remains responsive to 

changes, enhancing its agility in navigating the optimization 

landscape. 

3.4.3. Local Search and Global Exploration 

The step involves combining local search capabilities with 

global exploration strategies. This balanced approach ensures 

that each hummingbird navigates the solution space 

efficiently while retaining the ability to explore new and 

uncharted regions. 

To enhance local search, update the position of each 

hummingbird 𝑖 by considering its previous position, a random 

term, and the best solution remembered by the hummingbird 

represented with Eq.(25). 

𝑋𝑖 = 𝑋𝑖 + 𝑐1 ∙ rand(0,1) ∙ (𝑀𝑒𝑚𝑜𝑟𝑦𝑖 − 𝑋𝑖) (25) 

Where 𝑐1  is a constant controlling the influence of local 

search. 

Simultaneously, it facilitates global exploration by adjusting 

the position of each hummingbird based on a random term 

and the best global solution. 

𝑋𝑖 = 𝑋𝑖 + 𝑐2 ∙ rand(0,1) ∙ (𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 − 𝑋𝑖) (26) 

In Eq.(26), the constant 𝑐2  modulates the impact of global 

exploration on the hummingbird’s movement. 

Re-evaluate the fitness of each hummingbird after the position 

updates, which is clearly shown in Eq.(21). Update the 

memory of each hummingbird to retain the best solution 

encountered during the local search, as shown in Eq.(27). 

𝑀𝑒𝑚𝑜𝑟𝑦𝑖

= {
𝑋𝑖 ,

𝑀𝑒𝑚𝑜𝑟𝑦𝑖 ,

𝑖𝑓  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐿𝑜𝑐𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦𝑖)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(27

) 

It ensures that hummingbirds remember the best solution 

found during their local search. 

Update the memory of each hummingbird to capture the 

global best solution encountered. 

𝑀𝑒𝑚𝑜𝑟𝑦𝑖

= {
𝑋𝑖 ,

𝑀𝑒𝑚𝑜𝑟𝑦𝑖 ,

𝑖𝑓  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦𝑖)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(28

) 

Eq.(28) reflects the hummingbirds’ ability to remember the 

best global solution. 

Continuing from the previous step, adjust the dynamic 

learning rate 𝑅𝛼𝑖  to influence the magnitude of adjustments 

during subsequent iterations, as shown in Eq.(24). The local 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/20                         Volume 11, Issue 3, May – June (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       325 

     

RESEARCH ARTICLE 

search and global exploration steps in AHO synergize to 

allow hummingbirds to exploit promising regions while still 

being able to explore new areas. This balance between local 

and global movements ensures the algorithm’s adaptability 

and effectiveness in navigating the diverse optimization 

environment. 

3.4.4. Memory Integration 

This Memory Integration phase involves the integration of 

memory structures to facilitate adaptive learning and informed 

decision-making throughout the optimization process. To 

enhance local memory, update the memory of each 

hummingbird 𝑖  by retaining the best solution encountered 

during local search represented in Eq.(27). It ensures that each 

hummingbird remembers the best local solution found during 

its optimization journey. To update the memory to capture the 

best solution encountered globally, as shown in Eq.(28), it 

reflects the hummingbirds’ ability to remember the best 

solution during their exploration. 

Integrate local and global memory to determine the 

comprehensive memory of each hummingbird, incorporating 

the influence of local and global factors, which is represented 

mathematically in Eq.(29). 

𝑇𝑜𝑡𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦𝑖 = 𝑀𝑒𝑚𝑜𝑟𝑦𝑖 + 𝐺𝑙𝑜𝑏𝑎𝑙𝑚𝑒𝑚𝑜𝑟𝑦 (29) 

Where the 𝑇𝑜𝑡𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 accounts for both local and global 

insights. 

To Recalculate the probability 𝑅𝑃𝑖   of each hummingbird 

based on its updated fitness shown in Eq.(23). This 

probability guides the potential for each hummingbird to 

exploit or explore solutions in the next iteration, influenced by 

the integrated memory. To adjust the dynamic learning rate 

𝑅𝛼𝑖  to influence the magnitude of adjustments during 

subsequent iterations, shown in Eq.(24). Integrating memory 

structures in AHO consolidates local and global experiences, 

fostering adaptive learning among hummingbirds. This 

comprehensive memory, recalculated probabilities, and 

dynamic learning rate adjustments contribute to the 

algorithm’s ability to make informed decisions and adapt to 

varying optimization conditions. 

3.4.5. Parallelized Search Strategy 

Implementing a parallelized search strategy, allowing multiple 

hummingbirds to explore diverse regions of the solution space 

concurrently. 

Update the position of each hummingbird 𝑖  in parallel, 

considering local and global factors. 

𝑋𝑖 = 𝑋𝑖 + 𝑐1 ∙ rand(0,1) ∙ (𝑀𝑒𝑚𝑜𝑟𝑦𝑖 − 𝑋𝑖) + 𝑐2

∙ rand(0,1)
∙ (𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 − 𝑋𝑖) 

(30) 

Where Eq.(30) shows that parallel execution allows 

hummingbirds to update their positions independently and 

simultaneously. The fitness of each hummingbird is re-

evaluated in parallel after the position updates using the re-

evalu function. 

Update the memory of each hummingbird in parallel, 

considering both local and global experiences. The parallel 

execution ensures that each hummingbird independently 

updates its memory based on its evaluation. Integrate local 

and global memory in parallel for each hummingbird. This 

parallelized approach allows hummingbirds to calculate their, 

contributing to their individual learning experiences 

independently. Recalculate the probability 𝑅𝑃𝑖 , in parallel 

based on its updated fitness. The parallel execution ensures 

that probabilities are calculated independently for each 

hummingbird, contributing to a distributed exploration 

strategy. Adjust the dynamic learning rate 𝑅𝛼𝑖, in parallel to 

influence the magnitude of adjustments during subsequent 

iterations. 

3.4.6. Adaptive Parameter Tuning 

Dynamically adjusting algorithmic parameters to optimize 

performance based on the evolving characteristics of the 

optimization landscape. Adapt the inertia weight 𝜔 

dynamically to balance exploration and exploitation. The 

update considers the hummingbird’s previous inertia weight, 

fitness, and the globally best fitness encountered 

mathematically represented in Eq.(31). 

𝜔𝑖 =
𝑤𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

1 + 𝑒−𝛽(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
+ 𝜔𝑚𝑖𝑛 

(31) 

Where 𝑤𝑚𝑎𝑥  and 𝜔𝑚𝑖𝑛, represent the maximum and minimum 

inertia weights, 𝛽 is a tunable parameter controlling the rate 

of adaptation, and 𝐺𝑙𝑜𝑏𝑎𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠  is the best fitness found 

globally. 

Dynamically adjust the acceleration constants c1 and c2 to 

modulate the influence of local and global factors on the 

hummingbird’s movement. The updates consider the 

hummingbird’s fitness, the globally best fitness, and a tuning 

parameter γ: 

𝑐1𝑖 =
𝑐1𝑚𝑎𝑥 − 𝑐1𝑚𝑖𝑛

1 + 𝑒𝛾(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑟𝑛𝑒𝑠𝑠)
+ 𝑐1𝑚𝑖𝑛  (32) 

𝑐2𝑖 =
𝑐2𝑚𝑎𝑥 − 𝑐2𝑚𝑖𝑛

1 + 𝑒𝛾(𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠−𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖)
+ 𝑐2𝑚𝑖𝑛  (33) 

where in Eq.(32) and Eq.(33) contains 𝑐1𝑚𝑎𝑥  , 𝑐1𝑚𝑖𝑛, 𝑐2𝑚𝑎𝑥 , 

and 𝑐2𝑚𝑖𝑛 are the maximum and minimum values for 𝑐1 and 

𝑐2, and 𝛾 controls the rate of adaptation. 

Adjust the dynamic learning rate 𝛼  based on the 

hummingbird’s fitness, the globally best fitness, and a tuning 

parameter 𝛿 shown in Eq.(34). 
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𝛼𝑖 =
𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛

1 + 𝑒𝛿(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
+ 𝛼𝑚𝑖𝑛 (34) 

Where, 𝛼𝑚𝑎𝑥  and 𝛼𝑚𝑖𝑛  are the maximum and minimum 

learning rates, and 𝛿 controls the rate of adaptation. 

It incorporates the dynamically tuned parameters into the 

position update equation to maintain a balance between 

exploration and exploitation, mathematically represented in 

Eq.(30). The dynamically adapted parameters ensure the 

algorithm can adapt its search strategy to varying landscape 

characteristics, promoting efficient exploration and 

exploitation. Recalculate the probability 𝑅𝑃𝑖  of each 

hummingbird based on its updated fitness shown in Eq.(23). 

The dynamically tuned parameters influence the probability 

calculation, aligning it with the adaptive nature of AHO. 

Adaptive parameter tuning in AHO ensures that algorithmic 

parameters dynamically respond to the evolving optimization 

landscape, enhancing the algorithm’s adaptability and 

performance across different scenarios. 

3.4.7. Resilient Convergence 

Resilient Convergence focuses on achieving resilient 

convergence, ensuring the algorithm maintains convergence 

robustness and stability in dynamic optimization landscapes. 

Dynamically adjust the convergence speed 𝛽𝑐𝑜𝑛𝑣  based on the 

hummingbird’s fitness and the globally best fitness 

encountered: 

𝛽𝑐𝑜𝑛𝑣𝑖
=

𝛽𝑐𝑜𝑛𝑣𝑚𝑎𝑥
−  𝛽𝑐𝑜𝑛𝑣𝑚𝑖𝑛

1 + 𝑒η(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
+ 𝛽𝑐𝑜𝑛𝑣𝑚𝑖𝑛

 (35) 

Where in Eq.(35), 𝛽𝑐𝑜𝑛𝑣𝑚𝑎𝑥
 and 𝛽𝑐𝑜𝑛𝑣𝑚𝑖𝑛

 represent the 

maximum and minimum convergence speed values, and η 

controls the rate of adaptation. 

Adapt the inertia weight w dynamically to balance 

convergence and exploration during optimization. The update 

considers the hummingbird’s previous inertia weight, its 

fitness, and the globally best fitness encountered, is shown in 

Eq.(36). 

𝜔𝑖 =
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

1 + 𝑒ξ(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
+ 𝜔𝑚𝑖𝑛  (36) 

Where 𝜔𝑚𝑎𝑥  and 𝜔𝑚𝑖𝑛  represent the maximum and minimum 

inertia weight values, and ξ controls the rate of adaptation. It 

incorporates the dynamically adjusted inertia weight into the 

position update equation to balance exploration and 

exploitation, which is represented in a mathematical format in 

Eq.(30). The dynamically tuned inertia weight ensures a 

resilient balance between exploration and exploitation 

throughout the optimization process. 

To Adjust the dynamic learning rate 𝛼  based on the 

hummingbird’s fitness and the globally best fitness is shown 

in Eq.(37). 

𝛼𝑖 =
𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛

1 + 𝑒ξ(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑛𝑡𝑒𝑠𝑠) 
+ 𝛼𝑚𝑖𝑛  (37) 

Where 𝛼𝑚𝑎𝑥 and 𝛼𝑚𝑖𝑛 represent the maximum and minimum 

learning rates, and ξ  controls the rate of adaptation. To 

Recalculate the probability 𝑅𝑃𝑖  of each hummingbird based 

on its updated fitness in the context of resilient convergence 

shown mathematically in Eq.(23). The dynamically tuned 

parameters, including convergence-adapted learning rates, 

contribute to probability recalculations aligned with the 

resilient convergence objective. This resilient convergence in 

AHO introduces dynamic adjustments to convergence-related 

parameters, promoting stability and robustness in changing 

optimization landscapes. The adaptive tuning ensures that the 

algorithm converges while maintaining the flexibility to adapt 

to dynamic conditions. 

3.4.8. Responsive Optimization Metrics 

This phase of AHO emphasizes the importance of responsive 

optimization metrics, enabling the algorithm to dynamically 

adapt its evaluation criteria based on the evolving 

optimization landscape. 

Adapt the fitness evaluation dynamically by incorporating the 

responsiveness parameter 𝜌 . This parameter influences the 

evaluation process by considering the hummingbird’s fitness, 

and the global best fitness is represented in Eq.(38). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
𝜌 ∙ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖

1 + 𝑒𝜃(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
 (38) 

Where 𝜃  modulates the sensitivity of the dynamic fitness 

evaluation to changes in the optimization landscape. 

The influence of local memory on the fitness evaluation to 

capture the impact of the hummingbird’s historical 

experiences. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 − λ ∙ Memory𝑖  (39) 

Where in Eq.(39), the parameter 𝜆  controls the degree of 

influence local memory has on the fitness evaluation. 

Incorporate global information by including the globally best 

fitness in the fitness evaluation process represented with 

Eq.(40) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 + 𝛾 ∙ 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (40) 

Where the parameter 𝛾  governs the impact of global 

information on the fitness evaluation. To recalculate the 

probability 𝑅𝑃𝑖  of each hummingbird based on the 

dynamically adjusted fitness. The responsive optimization 

metrics influence the probability calculation, ensuring that 

probabilities align with the adaptive fitness evaluations. To 

adjust the dynamic learning rate 𝛼𝑖  based on the 

hummingbird’s updated fitness and the globally best fitness 

shown in Eq.(34). 
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To integrate all responsive optimization metrics, including 

dynamic fitness evaluation, memory influence, global 

information, adaptive probability calculation, and learning 

rate adjustment, into the AHO algorithm’s overall fitness 

assessment. This comprehensive integration ensures that the 

algorithm responds adeptly to changes in the optimization 

landscape, fostering adaptability and robust convergence. The 

responsive optimization metrics in AHO encompass dynamic 

fitness evaluation, memory considerations, global information 

integration, and adaptive probability calculations. These 

metrics collectively contribute to the algorithm’s ability to 

navigate diverse optimization landscapes effectively and 

converge resiliently towards optimal solutions. 

3.4.9. Continuous Monitoring 

Continuous Monitoring of AHO focuses on continuous 

monitoring, where the algorithm dynamically adjusts its 

parameters based on real-time feedback from the optimization 

process. To implement a dynamic convergence check to 

assess the convergence status of the algorithm. Apply a 

convergence threshold 𝜖 that adapts based on the difference 

between the best fitness of the current iteration. 

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and the previous iteration 

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  is represented mathematically in 

Eq.(41). 

𝜖 =
𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛

1 + 𝑒−𝜑(𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

+ 𝜖𝑚𝑖𝑛 

(41) 

Where 𝜖𝑚𝑎𝑥  and 𝜖𝑚𝑖𝑛  represent the maximum and minimum 

convergence thresholds, and 𝜑 controls the rate of adaptation. 

Dynamically adjust the exploration threshold 𝜏 based on the 

hummingbird’s fitness and the globally best fitness. The 

adaptive exploration threshold influences the algorithm’s 

exploration behavior, as shown in Eq.(42). 

τ𝑖 =
𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛

1 + 𝑒χ(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
+ 𝜏𝑚𝑖𝑛 (42) 

Where 𝜏𝑚𝑎𝑥  and 𝜏𝑚𝑖𝑛  represent the maximum and minimum 

exploration threshold values, and 𝜒 controls the rate of 

adaptation. 

To adjust the frequency of memory updates η𝑈𝑝𝑑𝑎𝑡𝑒 

dynamically based on the hummingbird’s fitness and the 

globally best fitness. This parameter influences how 

frequently local memory is updated during the optimization 

process. 

η𝑈𝑝𝑑𝑎𝑡𝑒𝑖
=

η𝑚𝑎𝑥 − η𝑚𝑖𝑛

1 + 𝑒ψ(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖−𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠)
+ η𝑚𝑖𝑛 (43) 

Where in Eq.(43), η𝑚𝑎𝑥 and η𝑚𝑖𝑛  represent the maximum and 

minimum memory update frequencies, and 𝜓 controls the rate 

of adaptation. 

To adjust the maximum number of iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

dynamically based on the hummingbird’s fitness and the 

globally best fitness. This adaptation ensures that the 

algorithm continues to iterate as long as meaningful 

improvements are observed, as depicted in Eq.(44). 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒

= 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑎𝑠𝑒

+ ⌊ξ. Fitness𝑐𝑢𝑟𝑟𝑒𝑛𝑡⌋ 

(44) 

Where 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑎𝑠𝑒  represents the base maximum 

iterations, and 𝜉  controls the adaptation rate based on the 

current fitness. This continuous monitoring in AHO enables 

the algorithm to adapt its convergence criteria, exploration 

behavior, memory update frequency, and iteration count in 

real time. This adaptability ensures that the algorithm remains 

responsive to the dynamics of the optimization landscape, 

promoting efficient convergence and adaptability. 

3.4.10. Iterative Adaptation 

In the final phase of AHO, the algorithm dynamically refines 

its parameters during each iteration to enhance performance 

continually. Iteratively adjust the dynamic learning rate αi 

based on the hummingbird’s fitness and the globally best 

fitness. The iterative adaptation ensures that the learning rate 

constantly refines its impact on the optimization process 

mathematically depicted in Eq.(34). To continuously refine 

the exploration threshold 𝜏  based on the hummingbird’s 

fitness and the globally best fitness. The iterative adaptation 

ensures a nuanced adjustment of the exploration threshold, 

influencing exploration behavior specified in Eq.(42). 

To refine the frequency of memory updates η𝑈𝑝𝑑𝑎𝑡𝑒 based on 

the hummingbird’s fitness and the globally best fitness. This 

iterative adaptation ensures a fine-tuned adjustment of the 

memory update frequency during the optimization process, 

which is depicted mathematically in Eq.(43). This iterative 

adaptation in AHO ensures that critical parameters such as 

learning rate, exploration threshold, and memory update 

frequency undergo continuous refinement during each 

iteration. This iterative refinement contributes to the 

algorithm’s ability to fine-tune its behavior, promoting 

adaptability and responsiveness to the optimization landscape. 

3.5. Combination of MC-DSR with AHO 

Enhanced Dynamic Source Routing with Markov Chain 

Algorithm (MC-DSR) and Adaptable Hummingbird 

Optimization (AHO) synergistically create a robust dynamic 

and adaptive routing framework in wireless networks. MC-

DSR introduces intelligent decision-making by incorporating 

Markov Chain modeling into the DSR algorithm. The states in 

the Markov Chain represent varying network conditions, 

enabling dynamic route adaptation based on link quality, node 

mobility, and energy levels. This probabilistic approach 

enhances the protocol’s resilience to network changes. The 
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overall flow of MC-DSR-AHO in M-WSN is pictorially depicted in Figure 1. 

 

 

Figure 1 MC-DSR-AHO in M-WSN 
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AHO inspired by the foraging behavior of hummingbirds, 

contributes adaptive optimization to the framework. AHO 

dynamically adjusts its parameters iteratively, incorporating 

real-time feedback to refine learning rates, exploration 

thresholds, and memory update frequencies. This iterative 

adaptation ensures continuous optimization, finely tuning the 

algorithm’s behavior in response to evolving environmental 

conditions. The integration of MC-DSR and AHO, forming 

MC-DSR-AHO, results in a novel protocol adept at 

navigating the challenges posed by dynamic wireless 

environments. During route discovery in MC-DSR, AHO’s 

dynamic exploration and exploitation strategies guide the 

protocol towards stable and efficient paths. The Markov 

Chain’s probabilistic modeling, coupled with AHO’s 

adaptability, extends to route maintenance and repair, 

ensuring robustness in the face of link failures or degradation. 

MC-DSR’s periodic Markov Chain updates with AHO’s 

continuous monitoring creates a comprehensive approach to 

handling dynamic network conditions. The constant 

adaptation of both algorithms, driven by probabilistic 

modeling and bio-inspired optimization, provides a holistic 

solution for efficient and adaptive routing in wireless 

networks. MC-DSR-AHO is a testament to the synergy 

achieved by integrating Markov Chain modeling and 

adaptable optimization strategies. This amalgamation 

facilitates intelligent decision-making, adaptability to 

changing network dynamics, and efficient route optimization, 

making it a promising solution for dynamic wireless 

environments. 

Procedure InitializeNetwork(): 

InitializeGraph() 

InitializeMarkovChain() 

InitializePheromoneMatrix() 

InitializeParameters() 

Procedure CommunicationEvent(node_source, 

node_destination): 

If RandomEvent() < P(AdaptiveRouteDiscovery): 

AdaptiveRouteDiscovery(node_source, node_destination) 

If RandomEvent() < P(LocalSearch): 

LocalSearch() 

If RandomEvent() < P(EnergyAwareRouting): 

EnergyAwareRouting() 

If LinkFails(): 

RouteMaintenanceAndRepair() 

If IterationEvent(): 

IterativeAdaptation() 

Procedure MainAlgorithm(): 

InitializeNetwork() 

Loop: 

Repeat for each time step: 

PeriodicMarkovChainUpdates() 

ContinuousMonitoring() 

For each communication event: 

node_source, node_destination = RandomlySelectNodes() 

CommunicationEvent(node_source, node_destination) 

MainAlgorithm() 

Algorithm 1 MC-DSR-AHO in M-WSN 

In Algorithm 1, the MC-DSR-AHO algorithm for MSWN 

initializes the network, periodically updates Markov Chain 

states, and continuously monitors events. During 

communication events, it adapts routes, conducts local 

searches, performs energy-aware routing, handles link 

failures, and iteratively adapts parameters, ensuring 

adaptability in dynamic environments.  

3.6. Advantages of the Combination of MC-DSR and AHO 

The fusion of MC-DSR and AHO contributes to a 

comprehensive and intelligent routing protocol, providing a 

robust and adaptive solution for wireless sensor networks in 

dynamic scenarios. 

 Adaptability: Combining the probabilistic modeling of 

MC-DSR with AHO’s dynamic parameter adjustment 

enhances adaptability to changing network conditions. 

 Efficiency: The fusion optimizes route discovery and 

maintenance, improving communication efficiency in 

dynamic environments. 

 Energy-Awareness: Integrating energy-aware routing from 

MC-DSR with AHO’s adaptability extends the network’s 

lifetime by optimizing energy consumption. 

 Robustness: The algorithm’s adaptability to link failures 

and iterative adaptation enhances robustness, ensuring 

reliable communication in challenging scenarios. 

 Global Exploration: AHO’s global exploration capability 

complements MC-DSR, allowing the algorithm to 

discover efficient paths in uncharted areas of the solution 

space. 

 Versatility: The fused algorithm is versatile and applicable 

to various optimization problems in wireless sensor 
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networks, showcasing its adaptability across diverse 

scenarios. 

 Continuous Monitoring: Continuous monitoring from 

AHO and periodic updates from MC-DSR ensures a real-

time and adaptive response to evolving network 

conditions. 

 Balanced Exploration and Exploitation: Achieving a 

balance between exploration and exploitation enhances the 

algorithm’s effectiveness in navigating the solution space. 

 Intelligent Routing: The integration enables intelligent 

routing decisions, leveraging both probabilistic modelling 

and bio-inspired optimization to address the challenges of 

dynamic wireless environments. 

4. RESULTS AND DISCUSSIONS 

Network Simulator 3, or NS3, is a prominent open-source 

discrete-event network simulator. Renowned for its accuracy 

and extensibility, NS-3 facilitates the simulation of complex 

network scenarios, aiding researchers and developers in 

comprehending network behaviors and testing protocols. 

Operating primarily through C++ and Python, NS-3 offers a 

flexible and modular framework. Its diverse range of available 

modules covers various networking aspects, from wireless 

and Internet protocols to devices and applications. NS-3 

fosters a deeper understanding of network dynamics, enabling 

the assessment of diverse networking protocols and 

technologies. Its open-source nature encourages collaborative 

development, making it an invaluable tool for academia and 

industry professionals seeking to advance network research 

and innovation. Table 1 contains the simulation setting and its 

parameter values used to simulate. 

Table 1 Simulation Setting 

Setting/Metric Value/Description 

Network Size 70 nodes  

Simulation Time 100 seconds 

Mobility Model 
Random Walk 2D Mobility 

Model 

Mobility Trace 
Enabled, with trace file 

“mobility_trace.tr” 

Network Protocol 

Implementations 
AHO and MC-DSR 

Application Layer 
Data generation and 

transmission applications. 

Simulation Stop Time 100 seconds. 

Tracing Enabled for mobility. 

Bandwidth 97 Hz 

Boundary of Network 850m x 850m x 850m 

Data Transmission Rate 21 kbps 

Initial Energy per Node 1 Joule 

Idle State Power 164 mW 

Layer Width ≤150m 

MAC Protocol CW-MAC 802.11 DCF 

Number of Nodes 400 

Node Voltage 3.0V 

Number of Sinks ≥4 

Runtime 300 seconds 

Size of Packet 78 bytes 

These simulation parameters specify the network topological 

values such as bandwidth, Data Transmission Rate, and 

Number of nodes in a network. The results and discussions 

derived from simulations using NS-3 provide insightful 

observations into network behavior and protocol performance. 

The simulator’s accuracy and modularity allow researchers to 

scrutinize diverse scenarios, contributing to a nuanced 

comprehension of network dynamics. In evaluating wireless 

protocols, NS-3’s results shed light on packet loss, latency, 

and throughput, guiding the refinement of communication 

strategies.  

4.1. Packet Delivery and Packet Loss Ratio  

Simulations involving Internet protocols reveal intricate 

interactions, fostering a deeper understanding of how data 

traverses networks. 

The commendable performance of AHODSR consistently 

surpasses both ECOG and MERT across all node 

configurations. This underscores the robustness of AHODSR 

in maintaining higher packet delivery efficiency. The 

superiority of AHODSR becomes particularly pronounced as 

network density increases. These findings highlight 

AHODSR’s efficacy in addressing the complexities of packet 

delivery in MWSNs. They position it as a promising protocol 

for enhancing reliability and efficiency in dynamic and 

resource-constrained environments. The Packet Drop Ratio 

results exhibit significant variations across different node 

counts, as shown in Figure 2, shedding light on the 

performance of ECOG, MERT, and AHODSR protocols in 

MWSN. A discernible trend emerges when the node count 

increases, revealing the impact on packet drop efficiency. 

AHODSR consistently outperforms ECOG and MERT, 

showcasing its effectiveness in minimizing packet drops. 

AHODSR demonstrates a substantially lower packet drop 
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ratio, indicating its resilience in maintaining data integrity 

even as network density escalates. These findings underscore 

the robustness of AHODSR in mitigating packet loss, 

emphasizing its potential as a reliable protocol for ensuring 

data integrity and communication reliability in MWSNs. 

 

 

Figure 2 Packet Delivery / Packet Loss Ratio 

4.2. Throughput 

 

Figure 3 Throughput 
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Throughput is a critical metric in network performance 

assessment that measures the amount of data successfully 

transmitted over a network within a given timeframe. Figure 3 

showcases the throughput values for different protocols—

ECOG, MERT, ICSOP, and AHODSR—across varying node 

counts in a mobile wireless sensor network. 

AHODSR consistently demonstrates the highest throughput 

levels, indicating its efficiency in data transmission. When the 

node count increases, AHODSR maintains a superior 

throughput, surpassing other protocols. This emphasizes 

AHODSR’s capability to handle increased network traffic and 

deliver higher data transmission rates. These findings 

underscore AHODSR’s prominence in ensuring effective and 

efficient data transfer, positioning it as a promising protocol 

for enhancing network performance. 

4.3. Delay 

Delay, in the context of network performance, refers to the 

time it takes for data to travel from the source to the 

destination. Figure 4 presents the delay values for ECOG, 

MERT, and AHODSR protocols at different time instances. 

AHODSR consistently exhibits the lowest average delay, 

indicating its efficiency in minimizing the time it takes for 

data transmission. 

As the time instances progress, AHODSR consistently 

outperforms ECOG and MERT, showcasing its ability to 

reduce communication delays. Lower delay values are 

generally desirable, as they signify quicker data transfer and 

more responsive communication within the network. These 

findings highlight AHODSR’s effectiveness in optimizing 

delay performance in MWSN. 

 

Figure 4 Delay 

4.4. Energy Consumption 

 
Figure 5 Energy Consumption 
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Energy consumption is crucial in evaluating wireless sensor 

network protocols, measuring the energy expended during 

communication. Figure 5, outlines the energy consumption 

values for ECOG, MERT, and AHODSR protocols across 

various instances. 

AHODSR consistently exhibits the lowest energy 

consumption, reflecting its efficiency in maintaining 

communication with minimal energy expenditure. Lower 

energy consumption values are desirable, indicating more 

energy-efficient protocols. These findings underscore 

AHODSR’s efficacy in optimizing energy consumption 

within a mobile wireless sensor network, making it a 

promising choice for scenarios where energy efficiency is 

critical. 

5. CONCLUSION 

The integration of MC-DSR and AHO within M-WSNs 

presents a robust and adaptive routing protocol, denoted as 

MC-DSR-AHO. This amalgamation seamlessly combines the 

probabilistic modeling capabilities of MC-DSR with the 

adaptive optimization inspired by AHO, yielding a 

comprehensive solution for dynamic and resource-constrained 

environments. The simulation results showcase MC-DSR-

AHO’s prowess in key performance metrics, including packet 

delivery, drop ratio, throughput, delay, and energy 

consumption. Remarkably, the protocol demonstrates 

resilience in maintaining high packet delivery rates, 

minimizing drops, ensuring efficient data transmission, 

optimizing communication delays, and conserving energy 

resources. Its adaptability to varying network conditions is 

evident through consistent outperformance across diverse 

node counts, emphasizing scalability. This research 

contributes a versatile and reliable routing solution to M-

WSNs. It underscores the synergy of probabilistic modeling 

and bio-inspired optimization in enhancing the adaptability 

and efficiency of routing protocols. MC-DSR-AHO is a 

significant advancement, promising practical applicability and 

providing valuable insights for future research in the dynamic 

realm of M-WSNs. 
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