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Abstract – CR (cognitive radio) technology has become an 

attractive field of research owing to the increased demand for 

spectrum resources. One of the duties of this technology is 

spectrum sensing which involves the opportunistic identification 

of vacant frequency bands for occupation by unlicensed users. 

Various traditional and state of art Machine-Learning 

algorithms have been proposed for sensing these vacant 

frequency bands. However, the common drawbacks of the 

proposed traditional techniques are degraded performance at 

low signal-to-noise ratios (SNR) as well as the requirement for 

prior information about the licensed user signal characteristics. 

More so, several Machine-Learning / Deep Learning techniques 

depend on simulated, supervised, and static (batch) spectrum 

datasets with synthesized features, which is not the case with 

real-world networks. Hence, this study aims to optimize real-

time and dynamic spectrum sensing in wireless networks by 

establishing and evaluating a K-means-LSTM novice model 

(artifact) that is robust to low SNR and doesn’t require a 

supervised spectrum dataset.  Firstly, the unsupervised spectrum 

dataset was collected by an RTL-SDR dongle and labelled by the 

K-means algorithm in MATLAB. The labelled spectrum dataset 

was utilized for training the LSTM algorithm. The resultant 

LSTM model’s performance was evaluated and compared to 

other commonly used spectrum detection models. Findings 

revealed that the proposed model established from the K-Means 

and LSTM algorithms yielded a Pd (detection probability) of 

94%, Pfa (false-alarm probability) of 71%, and an accuracy of 

97% at low SNR such as -20 dB, a performance which was 

superior to other models' performance.  Using our proposed 

model, it is possible to optimize real-time spectrum sensing at 

low SNR without a prior supervised spectrum dataset. 

Index Terms – Spectrum Sensing, Cognitive Radio, K-Means-

LSTM, SNR, Signal–to–Noise Ratio, Detection Probability, Pfa 

(False-Alarm Probability), Optimization. 

 

1. INTRODUCTION 

The global demand for wireless communication services has 

seen an unprecedented increase due to factors like the 

expansion of wireless networks such as 5G, IoT, mobile 

devices, and disruptive technologies [1]. However, this surge 

in demand has created a significant shortage of available 

frequency bands, known as spectrum resources, which are 

essential for wireless networks to function. The scarcity of 

spectrum resources was recognized as a major challenge for 

the future of wireless communications by the International 

Telecommunication Union (ITU), a specialized agency of the 

United Nations [1]. In their report "The State of Broadband 

2019," the ITU highlighted that over 50% of the global 

population still lacks internet access due to limited spectrum 

availability [1]. This was confirmed by [2] who revealed that 

frequency bands are underutilized since the licensed users do 

not utilize the allocated spectrum to maximum capacity. 

Spectrum scarcity is primarily caused by government 

regulatory bodies rigidly allocating the available frequency 

bands to licensed operators. Surprisingly, despite this 

shortage, most of the spectrum allocated to licensed users 

remains underutilized.  In the context of Africa where this 

research was conducted, spectrum scarcity has been reported 

to be an issue by the Independent Communications Authority 

of South Africa (ICASA) due to the shortage of techniques for 

spectrum management [2]. ICASA emphasized the need for 

dynamic spectrum management techniques to support the 

country's digital transformation and stimulate economic 

development. The limited availability of spectrum resources 

hinders the expansion of wireless services, especially in rural 

areas, and fails to meet the growing demand for data 

connectivity. The CR (Cognitive radio) technology has gained 

remarkable popularity as a solution to the spectrum shortage 
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problem. It incorporates spectrum sensing, which involves 

opportunistically detecting unoccupied frequency bands for 

data transmission.  

1.1. Problem Statement 

The efficient utilization of spectrum has become an 

increasingly important issue in the field of wireless 

communication. With the ever-growing demand for wireless 

services and the limited availability of spectrum resources, 

there is a critical need to explore the proposed spectrum 

sensing novel techniques. Various spectrum sensing 

technologies and techniques have been proposed and 

investigated for optimizing dynamic spectrum utilization. 

However, some limitations still need to be addressed such as 

the degraded performance of energy detection at low SNR, 

the requirement for prior information about the licensed user 

signal characteristics by both the cyclostationary feature-

based and the matched filter-based detectors, the utilization of 

mostly static labelled datasets for developing and evaluating 

the proposed machine learning (ML) and deep learning (DL) 

techniques, which are not reflective of real-world scenarios. 

Based on these limitations, this research focused on 

optimizing spectrum sensing in wireless networks by 

evaluating a novel hybrid model that was robust at low SNR 

and is entirely blind (doesn’t require prior licensed user 

information / labelled spectrum datasets). The proposed 

hybrid model developed from the K-means and LSTM (K-

means-LSTM) algorithms was validated using a real-world 

spectrum dataset for real-time spectrum sensing.  

1.2. Aim and Study’s Objectives  

This study aimed at evaluating the performance of an entirely 

blind (doesn’t necessitate prior licensed user information / 

supervised spectrum datasets) K-means-LSTM hybrid model, 

using a real-world dataset for spectrum sensing optimization. 

The study accomplished the following objectives. 

1. To identify the limitations of the existing traditional and 

machine learning spectrum-sensing techniques in 

wireless networks. 

2. To propose an artifact (model) for optimizing spectrum-

sensing in wireless networks using machine learning 

algorithms. 

3. To analyze (evaluate) the performance of the proposed 

spectrum-sensing model in spectrum-sensing 

optimization. 

Efficient techniques should be in place to optimize spectrum 

sensing (SS). This study’s remaining part is as follows: 

Section 2 covers the study’s background and related studies, 

the study’s methods are articulated in Section 3, the findings 

are presented in Section 4, and Section 5 presents the 

discussion of the results. Section 6 addresses the limitations 

inherent to the study. Section 7 concludes the study. 

2. RELATED WORK 

2.1. Spectrum Sensing 

Spectrum sensing, also known as spectrum detection, enables 

unlicensed users to gain information about a wireless network 

by detecting the presence of signals from licensed users 

(primary users) and deciding whether they can transmit within 

the same frequency band [3]. Spectrum detection (sensing) is 

represented as follows: 

𝑥(𝑛) = {
𝑎(𝑛) 𝐻0: 𝑙𝑖𝑐𝑒𝑛𝑠𝑒𝑑 𝑢𝑠𝑒𝑟 is absent 

𝑦 ∗ 𝑠(𝑛) + 𝑎(𝑛), 𝐻1: 𝑙𝑖𝑐𝑒𝑛𝑠𝑒𝑑 𝑢𝑠𝑒𝑟 is present  
   (1) 

𝑛  from Equation (1) depicts the sample of spectrum operators 

[4]. The state 𝐻1  signifies the licensed user’s presence, 

whereas 𝐻0   denotes the absence. From Equation (1), 𝑥(𝑛) 

denotes the signal that the unlicensed (secondary) user 

received, and 𝑠(𝑛) denotes the signal that the licensed user 

propagates. The additive (mixed) noise signal to the 

propagated signal 𝑠(𝑛) is denoted by 𝑎(𝑛). The gain for the 

transmission channel, for instance, a transmission antenna is 

signified by 𝑦 . The licensed user signal’s presence is 

determined by comparing the output of the detector, (often 

termed the test statistic), and the predetermined threshold [4]. 

The decision is calculated as shown in Equation (2): 

  {
 if 𝑇 ≥ 𝑡, 𝐻1

 if 𝑇 < 𝑡, 𝐻0

                                                  (2) 

Where 𝑡 denotes the threshold and T presents the spectrum 

detector's test statistic. The “Probability of detection/𝑃𝑑” as 

well as the  “Probability of false alarm/ 𝑃𝑓𝑎” are the metrics 

to assess the detector’s performance [4]. 

From Equation (3), 𝑃𝑑   is the possibility that T accurately 

determines 𝐻1 

 𝑃𝑑 = 𝑃{ detector's output = (𝐻1/𝐻1)} = 𝑃 {𝑇 >
𝑡

𝐻1
}      (3) 

From Equation (4), 𝑃𝑓𝑎  is the possibility that T determines 

𝐻0 as 𝐻1 

𝑃𝑓𝑎 = 𝑃{ detector's output = (𝐻1/𝐻0)} = 𝑃{𝑇 > 𝑡/𝐻0}(4) 

There are two categories of spectrum sensing which are non-

collaborative (co-operative) and collaborative (co-operative) 

sensing approaches [4]. The non-cooperative sensing 

approach, involves one user scanning the frequency bands and 

making a decision on vacant or occupied frequency bands. On 

the other hand, the cooperative approach involves multiple 

users cooperating to achieve a common decision. The 

predominant traditional techniques in spectrum sensing 

encompass MF (matched-filter detection), autocorrelation 

detection energy detector, and wavelet detection [4]. 

Considering the energy detector shown in Figure 1, the energy 

of the received signal is computed as the squared magnitude 

of the fast Fourier transform (FFT) over N unique samples. 
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This value, when averaged over the sample set, is compared 

with a pre-determined threshold to infer the sensing decision.  

If the computed energy surpasses this threshold, the licensed 

operator is inferred to be present. Conversely, if the energy is 

found to be below the threshold, the licensed operator is 

considered absent. Figure 1 indicates the energy detection 

approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The Energy Detection Approach [5] 

This technique is easy to apply because we do not need any 

prior knowledge about the licensed user (supervised dataset) 

as opposed to other techniques [4]. Nonetheless, this 

approach’s performance is poor at low SNR (signal-noise 

ratios).  

The matched filter shown in Figure 2, matches the received 

unknown signals with the test primary user signals, convolves 

them over N samples, and compares the output with the 

predefined threshold. The licensed user is present if the 

predefined threshold is lower than the convolution output [5]. 

The licensed user is deemed absent if the threshold value 

exceeds the convolution output. At low SNR, this technique 

performs well relative to the energy detector although 

increasing the sample degrades the performance.  

The drawback of the matched filter is it necessitates prior 

knowledge concerning the licensed user. In practice, this 

previous information on the licensed users is not always 

available, rendering this technique impractical and unreliable. 

Figure 2 presents the matched filter process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The Matched Filter Detection [5] 

The cyclostationary detection (autocorrelation detector) 

shown in Figure 3 computes a correlation function using a 

time-shifted form of the N samples for the signal it received 

[6].  

If the correlated function's output exceeds the predefined 

threshold, the licensed user signal’s presence is portrayed; 

otherwise, the licensed user’s signal is absent if the threshold 

value exceeds the correlated function [6].  

However, this technique is computationally complex as 

opposed to other traditional techniques. The waveform 

detection (wavelet-based) method presented in Figure 4 is one 

of the most reliable traditional spectrum detection techniques 

[7]. This method functions by correlating the reference and 

incoming signals' waveforms [7].  

The drawback of this method is highly accurate information 

on licensed operators is required. Nevertheless, this is a 

mammoth task in reality since the licensed users have no prior 

knowledge concerning these licensed operators’ signals. 
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Figure 3 The cyclostationary Detection Approach [5] 

2.2. Related Studies on Spectrum Sensing 

A related study by [8] adopted a novel energy detector 

incorporating multiple antennas and a dynamic threshold 

selection to optimize spectrum detection performance. The 

authors evaluated the performance of their proposed approach 

through extensive simulations. They compared their approach 

with an existing energy detection technique in terms of Pfa 

and Pd. Their findings delineated that the proposed method 

displayed a significant detection accuracy, in conditions 

characterized by noise uncertainty and fading channels where 

two or more antennas were adopted. Despite yielding the Pd 

of 1 at SNR below -15 dB, the evaluation of the proposed 

method was solely based on simulation results, which may not 

fully represent real-world scenarios. The work by [9] 

improved the traditional energy detector by integrating it with 

the matched filter detector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Wavelet-Based Spectrum Detection [5] 

The ROC curves, Pd, accuracy, and the Pfa false-alarm 

probability were adopted for evaluating the model’s detection 

performance. Their findings revealed that the enhanced 

energy detector was superior to the traditional energy detector 
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at diminished SNR levels. Degraded energy detection’s 

performance at very low SNR and the requirement of the 

licensed user information by the matched filter detector were 

the study’s drawbacks, [10] introduced a matched filter 

detector with a dynamic threshold to optimize spectrum 

sensing. The proposed matched filter was compared to other 

techniques, including the autocorrelation technique and 

energy detection. The evaluation was conducted based on two 

metrics: Pd and Pfa. The results showed that the proposed 

matched filter outperformed the other techniques. It achieved 

a detection probability of 0.5, whereas the autocorrelation 

technique and the matched filter detector achieved 0.15 and 

0.12, respectively. Simulation findings pinpointed that the 

energy detector was easy to implement and did not require 

prior information about the licensed user. However, its 

performance degraded at low signal-to-noise ratios (SNRs) 

such as -20 dB and -15 dB, leading to increased false alarm 

probability. The dynamic threshold employed in the matched 

filter showed reliability at low SNRs. However, it had the 

drawback of requiring previous information on the occupied 

frequency bands of the licensed user, which is not practically 

feasible in wireless networks [11]. Argued that hybrid 

techniques outperform single-existing techniques when it 

comes to spectrum sensing. The authors combined two 

detection techniques, the cyclostationary, and the energy 

detector, for bolstering the spectrum sensing capabilities. 

Cyclostationary detection was adopted in low SNR 

environments for compensating the energy detection’s poor 

performance at low SNR. The authors also adopted a time 

domain cyclostationary detector, which had a simpler 

structure and lower computational complexity compared to a 

frequency domain detector. The findings of their study 

revealed that the proposed hybrid detector outperformed both 

the cyclostationary and energy detection-based schemes in 

terms of Pd and Pfa. The authors also evaluated cooperative 

(collaborative) spectrum sensing (CSS) using the hybrid 

method and demonstrated its superior performance compared 

to CSS using only cyclostationary or energy detection-based 

schemes.  While the study highlighted the simulation results 

to evaluate the proposed approach, the absence of real-world 

validation or experimental validation with hardware as well as 

the requirement of prior data about the licensed user limits the 

assessment of its practicality under real-world conditions. A  

related study by [12] introduced a ResNet model for spectrum 

classification. The authors implemented normalization to the 

received signal for removing irregularities. The simulation 

results indicated that the proposed ResNet method 

outperformed traditional approaches in terms of both Pd and 

Pfa. However, It is worth noting that the model was 

established upon simulated signals rather than real-world 

ones. This limitation should be taken into account when 

considering the applicability of the findings in practical 

scenarios. Hybrid models that integrate various techniques 

have been proposed to address the limitations of individual 

methods for the optimization of spectrum sensing [13]. 

Argued that hybrid techniques were superior to single 

techniques for optimizing spectrum sensing. The study 

employed a non-cooperative spectrum sensing technique that 

integrated the cyclostationary feature and energy detectors. 

MATLAB was adopted to simulate the spectrum dataset and 

the proposed algorithm. The findings presented a higher Pd 

and a lower Pfa as opposed to traditional techniques. Despite 

promising findings from this study, the study focused only on 

MATLAB simulations, lacking real-world validation. A 

related study by [14] echoed the argument by [13] by 

combining a clustering technique with reinforcement learning 

and expected maximization (EM) techniques. The proposed 

approach sought to optimize the sensing performance at low 

SNR. The authors argued that their proposed hybrid approach 

minimized energy consumption in spectrum sensing and 

enhanced the spectrum allocation efficiency. While simulation 

findings revealed that the established hybrid model 

outperformed the existing traditional techniques at low SNR 

values, the absence of real-world experiments restricted the 

approach’s evaluation outside of simulation environments. 

The study by [15] conducted a comparative analysis of the 

SVM as well as the KNN for spectrum detection. The authors 

applied Pd and  Pfa to evaluate the techniques’ detection 

performance. The KNN demonstrated superior detection of 

vacant frequency bands as opposed to the SVM. However, 

one limitation of their study was the lack of emphasis on the 

models' performance in unsupervised (unlabelled) datasets. 

The study by [16] sought to optimize spectrum sensing by 

proposing the CNN-LSTM hybrid approach. The CNN was 

adopted for feature extraction and the LSTM was for learning 

the licensed user activity and detecting whether frequency 

bands were occupied or vacant. The study evaluated the 

efficiency of the CNN-LSTM detector through extensive 

simulations conducted in scenarios without and with noise 

uncertainty. Simulation findings showed that the proposed 

hybrid model was superior to the existing spectrum sensing 

detectors. The findings presented that the detector's ability to 

extract spatial and temporal features improved the detection 

probability at low SNR. Although the hybrid CNN-LSTM 

detector performed well at low SNR, its drawback was that it 

focused on evaluating its performance through extensive 

simulations but did not provide real-world validation. Their 

study was deficient in empirical data from practical 

deployments of the CNN-LSTM detector. 

The review of the related studies revealed that spectrum 

sensing plays a crucial role in enabling efficient spectrum 

utilization and dynamic spectrum access. However, several 

limitations still need to be addressed including, the degraded 

performance of energy detection at low SNR, the requirement 

for previous information about the licensed user signal 

characteristics by both the cyclostationary feature-based and 

the matched filter-based detectors, the evaluation of most 
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proposed ML and DL techniques using static labeled 

(supervised) datasets which are not available in real-world 

scenarios and the lack of real-world validation by widely 

proposed hybrid techniques. Based on these limitations, this 

research focuses on establishing a novel K-means-LSTM 

hybrid model that is robust at low SNR and is entirely blind 

(doesn’t require prior licensed user information / labeled 

spectrum datasets).  

The proposed approach will be validated using a real-world 

spectrum dataset for real-time spectrum sensing. To the best 

of our understanding, no related work has explored these 

techniques for the optimization of spectrum sensing. LSTM 

automatically selects features and reduces detection error, 

therefore reducing noise. The K-means algorithm does not 

require primary user information before spectrum detection 

since it learns from unsupervised data. 

2.3. Contribution 

Three key contributions were made by this study. To begin, it 

offered a novel K-Means-LSTM hybrid model that did not 

rely on prior licensed user signal information or supervised 

spectrum data, hence full blind operation. Furthermore, even 

at low SNR settings, our model displayed robust detection 

ability. Second, rather than using simulated data, the hybrid 

model was developed with a real-world spectrum dataset 

received from the RTLSDR dongle.  

The application of this dataset increased the applicability and 

realism of the study. Third, utilizing the aforementioned real-

world spectrum dataset, the study performed real-time 

spectrum sensing to test the performance of the proposed K-

means-LSTM model. This validation process was a 

significant improvement compared to most related studies’ 

approaches. 

3. METHODS 

This research proposed a novice model (artifact) that was 

robust at low SNR and doesn’t necessitate prior licensed user 

information (supervised spectrum dataset) from the K-means 

and LSTM algorithms, for optimizing spectrum sensing. 

Algorithm 1 presents the pseudocode for implementing the 

proposed model. K-Means is an unsupervised learning 

technique that divides an unlabelled dataset into classes [17].  

The algorithm starts with an unlabelled spectrum dataset, 

divides it into k clusters, and then repeats till it does not 

identify the best clusters [17]. LSTM a variant of RNN 

possesses a capacity to learn extended sequences [18]. Every 

LSTM network consists of three gates that regulate 

information flow and cells that store information. The cell 

shown in Figure 5 carry information from the beginning to the 

end of the time step without vanishing.  Figure 6 presents the 

design framework of the proposed model. The 

implementation steps are discussed in the following 

subsections:  

3.1. Data Collection 

Firstly, the unsupervised spectrum dataset was gathered using 

the RTL-SDR dongle Sandton, Johannesburg. Figure 7 

presents the data collection setup. The dongle was connected 

to the antenna that was used to capture the spectrum dataset. 

The antenna receives the radio signals and then transmits 

them to the RTL-SDR Dongle. For this study, an RTL-SDR 

scanner was utilized for scanning the frequency bands. The 

RTL-SDR scanner is a spectrum analyzer that was used for 

scanning, capturing, and analyzing radio signals. The 

spectrum analyzer which was open source was installed in the 

Proline desktop with 2GB RAM, a core i3 processor, and 

500GB storage. The spectrum dataset was saved in CSV 

format for analysis. 

 

Figure 5 LSTM cell [18] 
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START 

K-means 

Input: unsupervised spectrum dataset 

Output: labelled spectrum dataset 

Step 1: Choose k to determine the number of clusters from the unsupervised spectrum dataset 

Step 2: At random, select k instances, then assign them to the clusters. 

                Categorize the dataset using k instances. 

Step 3: The centrorids for the clusters can be computed 

Step 4: Repeat the next steps till the best centroid is identified, which involves the assignment of instances to non-varying 

clusters. 

a. Firstly, squared distances sum between the data instances and the centroids would be computed. 

b. Each instance is assigned to the cluster nearest to others. 

c. Lastly, the clusters’ centroids is computed from the clusters’  all of the data instance average. 

LSTM 

Input: spectrum dataset labelled by the K-means 

Output: spectrum sensing (vacant and occupied frequency bands) 

Step 5: procedure TRAIN(Epochs, Batch size, normalised X, normalised y, 𝛼)     X is an independent variable and y is a 

dependent variable of the lablelled spectrum dataset 

Step 6: for 𝑖 ← 1 to Epochs do 

Step 7:  spectrum_sensing, label ← extract(Dataset, Batch_size)  

Step 8: Random training examples are extracted according to the batch size. 

Step 9:  Output ← Forward Propagate (LSTM_model, spectrum_sensing)  [19]. 

Step 10: Error ← Backward Propagate (LSTM_model, label, output)  [19]. 

Step 11: Parameters ← Update(error, LSTM_model, 𝛼)      𝛼  is the learning rate. 

Algorithm 1 Proposed K- Means-LSTM Model 

3.2. Data Description 

Table 1 Presents an Overview of the Spectrum Dataset 

Time (UTC) Frequency(MHz) Power/ dB 

1388354774.95 400.000000 -102.74 

1388354774.95 400.009765 -104.23 

1388354774.95 400.019531 -103.44 

1388354774.95 405.029296 -102.92 

1388354774.95 407.039026 -103.57 

The sample spectrum dataset presented in Table 1 which 

consisted of 1700 frequencies at various amplitudes (power) 

was considered for this study. It consisted of 1700 rows and 3 

attributes. Rows contained the frequency band instances. 

Frequency ranged from 400 MHz to 700 MHz. The attributes 

were Time (UTC), Frequency (MHz), and Power (dB). The 

Time (UTC) was dropped in Microsoft Excel as it was not 

used by the models for frequency band detection. Table 1 

presents an overview of the spectrum dataset. After dropping 

the UTC attribute, the dataset remained as shown in Table 2. 

Table 2 Spectrum Dataset after Dropping the Time (UTC) 

Column in Microsoft Excel 

Frequency(MHz) Power/ dB 

400.000000 -102.74 

400.009765 -104.23 

400.019531 -103.44 

405.029296 -102.92 

407.039026 -103.57 

410.048828 -102.60 

411.058593 -102.74 

417.078125 -103.70 

415.068359 -103.37 
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Figure 6 Proposed K-Means-LSTM Model Framework 
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Figure 7 Indicating the Setup for Data Collection 

3.3. Dataset Preprocessing 

This stage, included spectrum data normalization, signal 

smoothing, transforming attributes, and splitting the dataset.  

The spectrum dataset was imported into MATLAB for 

analysis. The noise signal in the range of -20 dB to 20 dB, 

mixed with the imported spectrum dataset was emulated using 

MATLAB’s awgn() function. After importing the spectrum 

dataset, the average moving filter of length (window size) 10 

was applied for signal smoothing (to remove 

outliers/irregularities in the dataset). The imported dataset was 

normalized for features (Power and Frequency) to have a 

uniform scale (values in the same range). Normalization was 

an essential procedure for improving the model’s accuracy in 

detecting vacant frequency bands. Pseudocode 1 shows the 

implementation of the average moving filter and data 

normalization.  

3.4. Training the K-Means Algorithm 

Initially, the K-means clustering algorithm was applied for 

labelling the frequency bands since the spectrum dataset was 

unsupervised. This algorithm classified unsupervised dataset 

by analyzing the dataset’s patterns such as the power and 

frequency thresholds. The motive behind adopting this 

algorithm for labelling the spectrum dataset as it does not 

require prior supervised spectrum dataset/ licensed user 

information. The algorithm classified the spectrum dataset 

into two classes: occupied and vacant. The K-means 

algorithm classified the spectrum dataset mixed with noise by 

using a power threshold. Figure 8 shows the spectrum density 

of the normalized smoothed signal. The frequency bands with 

power exceeding the threshold power of 0.6 were possibly 

occupied. The labelled dataset was exported in CSV format 

for later training of the LSTM algorithm. 

type = 'linear'; 

window size = 10; 

data = movavg(data,type, windowSize); % 

apply the moving average filter using a 

linear window of size 10 

normalized_spectrum = (data-

mean(data))/std(data);  % z score 

expression for data normalisation 

n_data = 

normalized_spectrum/max(abs(normalized_sp

ectrum)); 

Pseudocode 1: Implementation of the Average Moving Filter 

and Data Normalization 

3.5. Evaluation of the K-Means Algorithm 

Evaluation is the process of checking/testing the capacity of 

the algorithm to meet the objectives [20]. The widely used 

evaluation metric for unsupervised ML/Machine Learning 

algorithms is the silhouette coefficient (value) [20]. The 

silhouette value measured if frequency bands were correctly 

classified (belong to their clusters). The silhouette coefficient 

ranges from -1 to 1. The values near 1 suggest that the 

frequency bands were correctly classified (in the correct 

cluster). Values close to -1 indicate that the frequency bands 

were wrongly classified. 

3.6. Splitting the Spectrum Dataset 

It was essential to split the spectrum dataset in training as well 

as testing datasets. The training dataset was utilized to build 

the spectrum-sensing model from the algorithms. A testing 

portion was for assessing (evaluating) the model’s 

performance. To avoid bias in the resultant spectrum detection 

model, the spectrum dataset was stochastically partitioned 

into 70% training and 30% testing proportions [21]. 

3.7. Training the LSTM Algorithm 

Modeling is the process of developing models by 

implementing algorithms on a prepared dataset [22]. This 

stage involves training the LSTM algorithm with 70% of the 

labelled train dataset. This algorithm was adopted in this 

research because of its noise-reduction ability. 

3.8. Evaluation of the Resultant LSTM Mode1 

This involved testing the model with the test dataset to check 

its performance. The metrics such as accuracy, learning 

curves, Pd , Pfa  from ROC curves, precision-recall curve, 

and training time were adopted for assessing the performance 
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of the resultant LSTM model and comparing it with other 

widely adopted spectrum-sensing models.  The proposed 

model was compared to the matched filter and energy 

detector, ANN/ artificial neural network, ensemble (random 

forest), and the support vector machine. The 30% of the 

spectrum dataset was utilized for evaluation. 

3.9. Implementing the Hybrid K-Means-LSTM for Real-

Time Spectrum Sensing 

To assess the hybrid KMeans-LSTM model’s performance, its 

implementation was carried out in Python to facilitate real-

time spectrum sensing. For this purpose, the pyrtlsdr library, 

which is a wrapper, was employed to establish interaction 

with the RTL-SDR dongle. The rtlsdr() function from the 

pyrtlsdr library was utilized to configure the dongle within the 

Python environment. Several parameters were configured to 

ensure the appropriate functioning of the setup. The sample 

rate was set to 2.4 MHz, the center frequency to 800 MHz, 

and the gain to automatic. Pseudocode 2 presents the RTL-

SDR dongle setup in Python. A while loop was adopted to 

implement real-time spectrum sensing, enabling the 

continuous execution of the sensing process at regular 

intervals of 5 minutes (this can be modified). The 

implementation of this real-time spectrum sensing framework 

is demonstrated in Pseudocode 3. 

 

 

Figure 8 Visualization of the Normalized Spectrum Dataset in MATLAB 

!pip install pyrtlsdr 

from rtlsdr import RtlSdr 

# Set up RTLSDR scanner 

sdr = RtlSdr() 

sdr.sample_rate = 2.4e6 

sdr.center_freq = 800e6 

sdr.gain = 'auto' 

Pseudocode 2 RTL-SDR Device Setup in Python 

# Perform real-time spectrum sensing 

while True:   # Starts an infinite loop for continuous spectrum 

sensing 

 # Acquire spectrum dataset from the RTLSDR scanner 

device 

samples = sdr.read_samples(256*1024)              # Reads  

256,000 sample from the RTL-SDR device 
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power = np.abs(samples) ** 2                      # Compute the 

power of the acquired samples 

# Reshape data for LSTM input 

X = np.column_stack((np.arange(len(power)), power)) 

X = X.reshape(X.shape[0], 1, X.shape[1]) 

# Normalize input features 

X = scaler.transform(X.reshape(-1, X.shape[-

1])).reshape(X.shape) 

# Predict cluster labels 

y_pred = model.predict(X) 

# Extract vacant frequency bands (unoccupied clusters) 

vacant_bands = np. unique(frequency[y_pred.flatten() < 

0.6])          # Extracting the frequency bands predicted to be 

unoccupied (labels below the threshold, 0.6) 

# Display vacant frequency bands 

print("Vacant frequency bands:") 

print(vacant_bands) 

# Wait for 5 minutes 

time.sleep(600) 

Pseudocode 3 Implementation of Real-Time Spectrum 

Sensing 

4. RESULTS AND DISCUSSIONS 

4.1. Findings from an Evaluation of the K-Means Algorithm 

The silhouette coefficient (value) was applied to assess this 

algorithm’s performance. The silhouette value measured if 

frequency bands were correctly classified. This was done by 

checking the ability of the algorithm to classify the 

unsupervised frequency bands into occupied (cluster 1) and 

vacant (cluster 2) using the dataset’s attributes. It can be noted 

from Figure 9 that the two clusters had silhouette values (0.6 

or greater), indicating that the clusters were well separated by 

the K-Means algorithm. Cluster 1 is for the 

vacant/unoccupied frequency bands from the spectrum 

dataset. On the other hand, Cluster 2 with few instances is for 

the occupied frequency bands. This shows that most of the 

frequency bands were underutilized. This validates related 

studies which presented that most of the available frequency 

bands are underutilized. 

4.2. Learning Curves (Accuracy and Loss curves) for the 

LSTM Model 

The spectrum dataset labelled by the K-means algorithm was 

the input for the LSTM algorithm. The learning curves were 

applied to check the model’s performance over increased 

samples. Figure 10 shows the learning curves of the 

established LSTM model. The loss curves gradually 

decreased upon increasing the number of iterations and 

converged at 180 iterations. This is an indication that 

increasing the number of iterations was not improving the 

model’s performance on the validation (unseen) dataset. 

Contrastingly, the accuracy curves gradually increased until 

converging at 200 iterations. This is an indication that 

iterating after this point was not improving the model. The 

learning curves gradually decreased to a point of equilibrium 

with a minimal gap between the two. This, therefore, implies 

that the above model was ideal for spectrum sensing since it 

was neither overfitting nor underfitting. 

4.3. Comparison of the Models’ Accuracy 

To benchmark the performance of the proposed model, the 

LSTM model’s accuracy was compared with other spectrum 

sensing models proposed in literature such as energy and 

matched filter detectors, support-vector machines, random 

forests, and artificial neural networks. Table 3 presents the 

comparison of the models’ accuracy. At the lowest SNR for 

example, -20 dB, it can be noted that the LSTM outperformed 

other techniques by yielding an accuracy of 0.9677. The 

random forest came second with an accuracy of 0.8728, the 

ANN (Artificial-Neural Network) had the third-best accuracy 

of 0.8517, and the SVM (Support Vector Machine) came 

fourth with an accuracy of 0.8463 at a low SNR of -20 dB. 

The matched filter had the fifth-best accuracy of 0.5135. The 

energy detector’s accuracy of 0.4845 was the lowest. Notably, 

these findings indicate that at low SNR, the established LSTM 

model outperformed other spectrum sensing techniques. 

4.4. Models’ Pd at Different SNR (Signal-Noise-Ratios) 

The Pd is the possibility of the model correctly detecting the 

frequency band as occupied when the frequency band is 

occupied. Maximum Pd  implies the highest spectrum 

detection performance. Figure 11 presents the plot of  Pd at 

varying SNR. Generally, it can be noted that increasing SNR, 

also increases the Pd , thus improving the model’s 

performance. At low SNR, the performance of the traditional 

methods (matched filter and energy detectors) was 

significantly the poorest. For example, at -20 dB the Pd for the 

matched filter and energy detector was 0 respectively. This 

means that at low SNR, these traditional models did not have 

a discriminative ability for spectrum detection using unseen 

spectrum datasets. The models were incorrectly classifying 

the frequency bands. Such models are not ideal when dealing 

with real-world spectrum datasets that are exposed to noise. 

On the other hand, machine learning techniques outperformed 

the traditional methods in spectrum sensing as they yielded 

higher Pd  at low SNR. Notably, the proposed LSTM model 

was the best technique, followed by the SVM, random forest, 

and lastly the ANN. For example, at -15 dB, the detection 

probabilities for LSTM, SVM, random forest, and ANN were 

approximately 0.94, 0.79, 0.7, and 0 respectively. That being 

said, this reveals that the performance of the ANN was similar 

to the matched filter and energy detector’s performance (poor 
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performance) at the lowest SNR. This validates the findings 

by [10] that the ANN’s classification ability at high noise 

levels is weak. Above 5 dB the Pd for the matched filter and 

ANN detectors gradually increased, thus increasing 

performance at increasing SNR levels. The energy detector’s 

curve was straight from -20 dB to 20 dB. This reveals that the 

energy detector was randomly guessing from the spectrum 

dataset (not learning from the spectrum dataset). This 

indicates the limitation of this technique that it performs well 

using simulated datasets and not when using real spectrum 

datasets. Even so, at high SNR for example, 5 dB, the 

detection probabilities for the LSTM, SVM, random forest, 

ANN, energy detector, and matched filter detector were 

approximately 0.94, 0.94, 0.85, 0.87, 0.55, and 0.9 

respectively. Again, the performance of the proposed LSTM 

model came first which shows that this model is capable of 

optimizing spectrum sensing at low SNR. 

 
Figure 9 Presents the Classification of the Unsupervised Spectrum Dataset 

 
Figure 10 Learning Curves 
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Table 3 Comparison of the Models’ Accuracy at Various 

SNR/dB Matched filter Energy 

detector  

LSTM Random 

Forest 

SVM ANN 

-20 0.5135 0.4845 0.9677 0.8728 0.8463 0.8517 

-15 0.5182 0.4870 0.9725 0.8755 0.8480 0.8545 

-10 0.5299 0.4915 0.9740 0.8772 0.8523 0.8612 

-5 0.5669 0.5423 0.9810 0.8795 0.8587 0.8521 

 5 0.5669 0.5435 0.9825 0.8891 0.8612 0.8522 

10 0.5675 0.5547 0.9828 0.8895 0.8688 0.8523 

15 0.5690 0.5602 0.9840 0.8905 0.8750 0.8524 

20 0.5752 0.5655 0.9855 0.9157 0.8825 0.8725 

 

 

Figure 11 Pd   by SNR 

4.5. Models’ Pfa  at Different SNR 

The Pfa or the false positive rate is the possibility that the 

model correctly detects the frequency band occupied when it 

is vacant. A high number of false alarms indicates that several 

frequency bands are being misclassified, hence to optimize 

the performance of the model, Pfa should be minimized. The 

plot of Pfa at various signal-to-noise ratios is shown in Figure 

12. It can be noted that the Pfa gradually decreases as the 
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SNR levels increase, hence the model’s performance 

increasing. The Pfa for the energy detector, matched filter, 

ANN, random forest, SVM, and LSTM at the lowest SNR of -

20 dB were approximately 0.98, 0.98, 0.78, 0.74, 0.73, and 

0.71 respectively. Maximum Pfa at low SNR for the matched 

filter and energy detectors reveals that these traditional 

techniques were misclassifying the majority of frequency 

bands at low SNR. This supports the findings by [7-9] whose 

traditional techniques’ performance at low SNR was poor. In 

contrast, the machine-learning techniques were superior to the 

traditional techniques as they had lower Pfa at low SNR. At -

20 dB, the proposed LSTM has the lowest Pfa of 0.71, which 

implies that the proposed model was correctly classifying 

most of the frequency bands than other models. This is 

because of the LSTM’s noise reduction ability and its 

capability to learn from time series data over a long time. 

Even at the highest SNR of 20 dB, the proposed LSTM had 

the lowest probability of false alarm of 0.25 relative to the 

random forest, SVM, ANN, energy, and matched filter 

detectors’ Pfa of 0.28, 0.32, 0.35, 0.45, and 0.42 respectively. 

 

Figure 12 Pfa by SNR 

4.6. Comparison of the Models’ Precision-Recall Curves 

Precision is the proportion of total occupied frequency bands 

that were occupied. Recall is the portion of the occupied 

frequency bands that were correctly classified as occupied.  

Figure 13 presents the comparison of the spectrum detection 

(sensing) techniques using PR curves. The LSTM 

outperformed other commonly adopted spectrum sensing 

models with the area under the PR (AUPR) curve of 0.79978. 

This indicates the technique's highest sensing performance as 

it correctly classified the majority of the occupied spectrum. 

The SVM/support vector machine came second best with an 

AUPR of 0.77345. This presents a decent performance in 

detecting the occupied spectrum. Again, the energy detector 

achieved an AUPR of 0. This implies that the energy detector 

was misclassifying the majority of the frequency bands. Such 

a model is not reliable for spectrum sensing using real-world 

spectrum datasets at high noise levels (low SNR). The 

matched filter detector’s AUPR was 0.1768. Again, this 

model shows poor performance at high noise levels. 

4.7. The Comparison of the Models’ Training Time 

This metric was the time required by the models to predict 

from the spectrum dataset. An ideal model is one with 

minimum training time and Pfa at low SNR. Such a model is 

known to be effective and less computationally complex. As 

shown in Table 4, the energy detector required a training time 

of 0.007097 seconds. This was the shortest spectrum-sensing 

time. This was due to the less computational complexity of 

the technique as indicated by [7] that the energy detector has 

the shortest sensing time because it is less computationally 

complex. The second-best was the matched filter detector 

which required 0.016567 seconds of training time. The 

random forest was third with a training time of 0.075173 

seconds. The Support Vector Machine was fourth with a 

training time of 0.12897 seconds. The ANN/artificial neural 

network was fifth and it required 0.23906 seconds. The 

proposed model which is the LSTM took the longest training 

time of 1.7144 seconds. The ANN and the LSTM required 

more training times than the other techniques because of their 

complex hyperparameters. It was a decent compromise to 

have more training time for the LSTM which outperformed 

other models at low SNR. 

Table 4 Training Times 

Spectrum-sensing 

model  

Training time/ seconds 

ANN 0.23906 

Random Forest 0.075173 

LSTM 1.7144 

Support Vector 

Machine 

0.12897 

Matched filter detector 0.016567 

Energy detector 0.007097 

4.8. Real-Time Spectrum Sensing 

The proposed hybrid Kmeans-LSTM model displayed the 

vacant frequency bands at 5-minute intervals to emulate a 

real-world cognitive radio. It can be shown from Figure 14 

that the maximum accuracy attained by the model at the last 

epoch was 0.9947 (99.4%). On the other hand, the model 

yielded the least loss of 0.0716 (7.16%) at the last epoch. This 

revealed that the proposed hybrid model was reliable for 

optimizing real-time spectrum sensing using real-world 

spectrum dataset collected by the RTL-SDR dongle. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223421                 Volume 10, Issue 5, September – October (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       759 

     

RESEARCH ARTICLE 

 
Figure 13 Comparison of the Models’ Precision-Recall Curves 

 

Figure 14 Real-Time Spectrum Sensing 
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5. DISCUSSION 

The proposed hybrid K-means-LSTM model outperformed 

other models with the highest accuracy of 97%, Pd of 0.94, 

and the lowest Pfa of 0.70 at low SNR. This revealed that our 

proposed model was reliable for enhancing the spectrum 

sensing capability as opposed to its counterparts. 

Furthermore, the model yielded a maximum accuracy of 

99.4% and a loss of 7.16% for real-time spectrum sensing. 

This validates the model’s efficacy for real-time spectrum 

sensing using a real-world spectrum dataset Moreover, the 

findings revealed that increasing SNR, increased the Pd thus 

improving the model’s performance. This is in line with the 

notion by [23] who articulated that the Pd was directly 

proportional to the SNR. Compared to [23] deep learning 

model's detection probability of 0.85 at -15 dB and [24] 

proposed model's Pd of 0.81 at -14 dB, our proposed model 

yielded a consistently higher detection probability of 0.94 at 

low SNR within the range -20 dB to -10 dB. More so, our 

findings generally showed that Pfa gradually decreased as the 

SNR increased, validating the findings by [25], which 

indicated that increasing the SNR decreases the Pfa. This is 

validated by our model whose Pfa was 0.7 at -15 dB, relative 

to the model by [25] that yielded a probability of false alarm 

of 1 at -15 dB. The study’s findings generally indicated that 

Machine-Learning (ML) models exhibited a superior 

performance as opposed to the traditional techniques such as 

the matched filter as well as the energy detection at low SNR 

levels, such as -20dB and -15 dB. This was presented by 

higher accuracy and  Pd achieved by ML algorithms at low 

SNR. This was due to their ability to leverage the statistical 

properties of the received signal and their capacity to learn 

from spectrum dataset features. This supports the findings in 

related studies whose proposed state-of-the-art Machine-

Learning algorithms outperformed the conventional 

techniques at low SNR in terms of probability of detection 

and probability of false alarm. Therefore, we can conclude 

that the Pfa was inversely proportional to SNR. In light of 

this, Machine-learning models were found to yield lower Pfa 

at high SNR levels as opposed to the energy and matched 

filter detectors.  However, it was found that achieving the 

highest Pd at low SNR came at the expense of longer training 

time. The resultant LSTM model, in particular, had the 

longest sensing time of 1.7144 seconds compared to other 

techniques, which was attributed to its complex 

hyperparameters.  Of course, this was expected, as this echoed 

a study by [26] that postulated that spectrum sensing 

optimization at diminishing SNR levels is at the expense of 

longer training times. Furthermore, the findings corroborate 

the findings by [27] who highlighted that the accuracy of their 

proposed model was at the expense of high computational 

complexity. In summary, the proposed artifact established 

from the K-Means and LSTM algorithms optimized 

spectrum-sensing in wireless networks without necessitating a 

supervised spectrum dataset. 

6. LIMITATIONS 

The scope of the study was inferior to the utilization of a low-

cost RTL-SDR dongle which was limited to collecting the 

spectrum dataset within the range of 25 MHz to 1.7 GHz.  

Hence the proposed model was not evaluated on high-

frequency signals within the 4G to 6G range. In addition, the 

study assumed the non-cooperative sensing approach, in 

which one antenna scans the frequency bands and makes a 

decision on vacant or occupied frequency bands. The study 

could have presented the performance of the proposed artifact 

on cooperative sensing where multiple antennas cooperate to 

reach a spectrum-sensing goal. Despite the scope being 

inferior to limited frequency range and non-cooperative 

sensing the results of this study are valid and do not 

compromise the overall conclusions of the study. 

7. CONCLUSION 

This research aimed to optimize spectrum sensing in wireless 

networks by developing a model that did not require a prior 

supervised dataset (prior information about the occupied 

frequency bands) and yielded a high level of spectrum 

detection. Performance at low SNR. The results showed that 

the proposed model established from the K-Means and LSTM 

algorithms was robust at low SNR. This implies that using the 

proposed model, it is possible to optimize spectrum sensing at 

low SNR without a prior supervised spectrum dataset. The 

empirical findings underscored that machine learning models 

are superior to traditional (conventional) models such as 

matched filter and energy detectors in terms of Pfa and PD. 

Generally, the established K-Means-LSTM outperformed 

other models when all the metrics were considered. However, 

this high level of performance was at a cost of longer training 

time due to the complex hyperparameter of the model. Based 

on our findings, there is a lot of room for future research. A 

low-cost RTL-SDR dongle limited to collecting the spectrum 

dataset within the range of 25 MHz to 1.7 GHz was utilized in 

this study.  Future research includes the application of an 

advanced antenna or RTLSDR dongle to collect the spectrum 

dataset within the 4G to 6G range and evaluate the proposed 

model in real time. Furthermore, this study assumes the non-

cooperative sensing approach. In the future, co-operative 

sensing where multiple antennas (users) cooperate over a 

large geographical area to reach a spectrum-sensing goal can 

be implemented. 
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