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Abstract – The design of efficient routing strategies for 

Unmanned Aerial Vehicle (UAV) Networks is a multidomain 

task that involves analysis of node-level & network-level 

parameters, and mapping them with communication & 

contextual conditions. Existing path planning optimization 

models either showcase higher complexity or cannot be scaled 

for larger network scenarios. Moreover, the efficiency of these 

models also reduces w.r.t. the number of communication 

requests, which limits their scalability levels. To get a better 

result over these challenges, this article provides an idea to 

design an efficient Q-Learning model to improve the routing 

efficiency of UAV networks via bioinspired optimizations. The 

model initially collects temporal routing performance data 

samples for individual nodes and uses them to form coarse 

routes via Q-Learning optimizations. These routes are further 

processed via a Mayfly Optimization (MO) Model, which assists 

in the selection of optimal routing paths for high Quality of 

Service (QoS) even under large-scale routing requests. The MO 

Model can identify alternate paths via the evaluation of a high-

density routing fitness function that assists the router in case the 

selected paths are occupied during current routing requests. 

This assists in improving temporal routing performance even 

under dense network conditions. Due to these optimizations, the 

model is capable of reducing the routing delay by 8.5%, 

improving energy efficiency by 4.9%, and reducing the routing 

jitter by 3.5% when compared with existing routing techniques 

by taking similar routing conditions. 

Index Terms – UAV, Routing, Delay, Energy, Mayfly, 

Optimization, Jitter, efficiency, Complexity. 

 

1. INTRODUCTION 

Due to the continual movement of vehicles, the UAV 

(Unmanned Aerial Vehicle) routing protocol must deal with a 

variety of issues, including unequal node distribution, 

topological changes, and changes in the surrounding 

environment via Energy-aware Collaborative Routing (ECoR) 

[1, 2, 3, 4]. Q-learning (QL) was included to make UAV 

routing [5, 6] more adaptable and sensitive to the dynamic 

environment. Traditional reinforcement learning is referred to 

as Q-learning, and it is distinguished by the lack of a state 

transition model in favor of an assessment of the value of 

state-action pair combinations. The following are the five 

components of Q-learning: s, a, R, where s represents the state 

set of RL, a represents the action set of RL, and R and R 

represent the attenuation factor of future reward and the rate 

of learning in case of reinforcement learning [7, 8, 9], 

respectively. If an "a" operation is performed in a certain 

state, the hope will upgrade its state value table by inserting 

equation (1), where s is the succeeding state (Q-value table). 

Equation (1) tells about the updated and succeeding state of 

the Q-Learning table. Following a definite no. of repetitions, 

the Q-table will determine the optimal action for each state. 

This operation will guarantee that the node in question gets 

the maximum reward available for the current set of 

iterations. 

𝑄(𝑠, 𝑎) =  (1 −  𝛼)𝑄(𝑠, 𝑎)

+  𝛼(𝑅 +  𝛾 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎 )) … (1) 
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The research contribution of the proposed Q Learning model 

could lead to improve routing efficiency in UAV networks 

which could have various advantages in terms of throughput, 

latency, and energy consumption. By incorporating 

bioinspired optimization Q Learning model gives better 

performance than normal. The performance can also measure 

in terms of the number of states required to take the action, 

which reduces the complexity of the model as well as increase 

the scalability of the model. The proposed research work 

contributes to the field of UAV networks by giving novel 

mechanisms to improve performance and also to make 

efficient use of resources used. Overall contribution can vary 

as per real-time application requirements such as logistics, 

surveillance, etc. The proposed model used unique 

characteristics of the network in terms of dynamic topology 

and energy consumption. The q-Learning model is a 

reinforcement algorithm that can handle every situation from 

its learning database. The model can take decisions even if the 

condition does not belong to his data base. It can work for 

stochastic transition. This paper presents an efficient Q 

Learning Model for improving routing efficiency in UAV 

networks.  

In section 2 literature work has been done in which various 

latest techniques have been discussed in detail to show the 

strength of the proposed model. In section 3 proposed 

methodology is discussed by using continuous pattern 

analysis of dynamic collision-aware UAV networks. The 

building of an effective Q-Learning model to increase the 

routing efficiency of UAV networks using bioinspired 

optimizations is suggested in section 3 of this article as a 

solution to efficiency during the collision. In section 4, the 

suggested model's performance was assessed using large-scale 

network scenarios and compared to that of conventional 

routing models. This paper concludes with some network-

specific observations regarding the suggested model and 

suggestions for ways to further enhance its functionality in 

various network scenarios in section 5. 

2. LITERATURE WORK 

The paper [32] proposed a strategy to select optimal path 

selection using the Q learning model for the UAV network. 

The state space of the proposed model is temperature, 

humidity, and energy used. The author used the Voronoi 

diagram to the partition urban environment, where each 

partition represents a cell and the cell becomes a city for a 

region. The author has given weight to each cell based on 

building density and calculated the future courses of possible 

action. The result of the proposed method is evaluated in 

simulation in the urban environment and has been found that 

gives better performance in terms of energy consumption. But 

the main challenge of this proposed model was the 

dependency on accurate input data e.g. building density, 

temperature, humidity, etc. Due to incomplete or inaccurate 

input data proposed model will not give a better result. 

Secondly proposed model is only valid for the urban area but 

there can need for other types of environments. Lastly, the use 

of the Voronoi diagram and assignment of weight to each cell 

is also a computational task that increases complexity and can 

lead to latency when the urban area becomes denser.  

In the paper [33] author provides a deep insight into the Q 

learning model by considering position-aware routing 

protocols. The individual use of the Q learning model has 

some disadvantages in it like sensitivity and accurate position 

information. So to get better performance in terms of routing 

efficiency and energy consumption one has to use another 

model with the Q learning model to make it efficient in the 

adversarial environment too. 

In the paper [34] authors proposed an algorithm to optimize 

the path by finding the optimal energy consumption method 

with the given condition like the limited battery life of the 

device and complex dynamic environment. The proposed 

model has been a combination of two techniques MACO 

(Multi-Objective Ant Colony Optimization) and MEA (Multi-

Objective Evolutionary Algorithm). Here MACO is used to 

optimize path planning and MEA is used to optimize energy 

consumption. Both MACO and MEA use the graph to check 

the tradeoff between flight time and safety. Author evaluated 

the proposed model using experimental and theoretical 

grounds. On the theoretical ground proposed model 

outperforms and on the experimental ground model 

significantly reduces energy consumption. The main 

challenge of this proposed model is computational complexity 

because the generation of the graph and the hybrid 

combination of the two models made this model a bit lengthy 

and complex. Secondly, convergence issues, where sometimes 

an algorithm fails to find an optimal solution and ended at a 

suboptimal solution. 

The paper [35] proposed a novel deep learning approach to 

optimize the communication between two nodes. The author 

used DBS (Drone Base Station) mechanism with the Q 

learning model to improve the efficiency of the network by 

considering parameters like network topology, link quality, 

etc. The author simulates the result and found that model 

gives a significantly better result in terms of energy 

consumption. The main challenge of this method was training 

complexity. In this proposed method Q learning model has 

been trained which can be time consuming and 

computationally intensive. The proposed model is tested in 

simulation so there can be a chance that the model cannot 

outperform in real time applications where training is required 

in high volume.   

The paper [36] presented a systematic review of the classical 

approach used for the optimization of path and energy 

consumption in UAV networks. The authors compared the 

classical approach with the reinforcement learning approach 
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by considering their strengths and weakness. The authors 

reviewed that classical techniques like ant colony 

optimization, particle swarm optimization, etc can be used to 

optimize path and energy consumption. But the techniques 

like the Q learning model and deep Q learning can add more 

advantages to classical techniques in terms of adapting the 

change in the environment. The author concluded that the 

hybrid approach could give better results under various 

conditions in an adversarial environment.  

The paper [37] provides descriptive knowledge about various 

path planning existing techniques used in UAV networks. 

Various approaches have been used like geometric, sampling 

based, machine learning based, etc. whereas in paper [38] 

provides challenges that occurred in UAV networks. In this 

paper Classification of UAVs, and networks have been done 

by considering their multiple parameters like navigation info, 

flight time, flight angle, etc. Connectivity and Coverage have 

been discussed in detail as a challenge to UAV networks.    

To achieve the objectives of reinforcement learning, the set of 

neighbor nodes is considered, and the base stations (BS) is 

treated as the fixed destination node that broadcasts hello 

packets regularly via the use of Q -learning-based topology-

aware routing (QTAR) [10, 11, 12, 13, 14]. By the 

aforementioned principles, the receiving node is required to 

update the Q-value table of its device: the higher the Q-value, 

the closer the device is to RS. When this method is used, the 

routing to static destination nodes is enhanced.  

The work in [15, 16, 17, 18] utilizes the conventional Adhoc 

on Demand Multipath Distance Vector (AOMDV) routing 

protocol in addition to the Q-learning approach. The hopes 

can upgrade the Q-value information stored in their respective 

local memory by exchanging the hello and RREQ packets that 

need their route information. Using the AODV routing 

algorithm established in [19, 20], an excellent degree of 

performance was achieved in a case with restricted mobility. 

In [21, 22, 23, 24], unmanned aerial vehicles (UAVs) have 

been used to aid VANET (Vehicular Adhoc Networks) in 

determining the most efficient route for data transmission. 

However, the following are some of the most common 

problems that emerge with such routing systems: Each node 

on the ground is responsible for keeping its Q-value table, 

regardless of whether it has neighbors or not. Because (1) 

ground nodes only employ locally stored information to 

decide the next hop [25, 26, 27, 28] and (2) both the size of 

the Q-value info and the stored info are subject to rapid 

change [29, 30, 31], this leads in increased bandwidth use and 

a slower convergence speed of Q-values & their alternatives. 

As a result, conventional route optimization techniques either 

have increased complexity or are not saleable for situations 

involving bigger networks. Additionally, these models' 

efficiency declines as the number of communication requests 

increases, which restricts the extent of their scalability. 

3. PROPOSED HYBRID BIOINSPIRED MODEL WITH 

CONTINUOUS PATTERN ANALYSIS FOR 

DYNAMIC COLLISION-AWARE ROUTING IN UAV 

NETWORKS 

As per the review of existing routing models that are used for 

UAV Networks, it has been found that existing path planning 

optimization models provide and showcase higher complexity 

or cannot be scaled for larger network scenarios. Moreover, 

the efficiency of these models reduces w.r.t. the number of 

communication requests, which limits their scalability levels. 

To get rid of these challenges, section 3 discusses the design 

of an efficient Q-Learning model to improve the routing 

efficiency of UAV networks via bioinspired optimizations. As 

per Figure 1, it has been found that the model begins with 

collecting temporal routing performance data samples for 

individual nodes, and uses them to form coarse routes via Q-

Learning optimizations. These routes are further processed by 

a Mayfly Optimization (MO) Model, which assists in the 

selection of optimal routing paths for high Quality of Service 

(QoS) even under large-scale routing requests. The MO 

Model can identify alternate paths via the evaluation of a 

high-density routing fitness function that assists the router in 

case the selected paths are occupied during current routing 

requests. This assists in improving temporal routing 

performance even under dense network conditions. 

Thus, the model initially uses Q-Learning to identify different 

routes between a given source & destination pair of nodes. 

Equation (2) calculate the optimal distance between the 

source and destination. This is done by initially calculating a 

reference distance between these nodes via equation (2), 

𝑑𝑟𝑒𝑓 = √
(𝑥𝑠𝑟𝑐 − 𝑥𝑑𝑒𝑠𝑡)2 + (𝑦𝑠𝑟𝑐 − 𝑦𝑑𝑒𝑠𝑡)2

+(𝑧𝑠𝑟𝑐 − 𝑧𝑑𝑒𝑠𝑡)2 … (2) 

Where, 𝑥, 𝑦 & 𝑧 are the Cartesian locations of these nodes, 

while 𝑠𝑟𝑐 & 𝑑𝑒𝑠𝑡 are the IP addresses of source & destination 

nodes. 

Now, based on the calculated distance between the source and 

destination, select all nodes that satisfy equation (3), 

𝑑𝑠𝑟𝑐,𝑖 < 𝑑𝑟𝑒𝑓  & 𝑑𝑖,𝑑𝑒𝑠𝑡 < 𝑑𝑟𝑒𝑓 … (3) 

Where, 𝑑𝑠𝑟𝑐,𝑖  is the distance between the selected node & the 

source node, while 𝑑𝑖,𝑑𝑒𝑠𝑡  represents the distance between 

selected & destination node sets. For all these nodes, evaluate 

their Q values via equation (4), 

𝑄 = ∑
∑ 𝑁𝐶𝑖

∑ 𝐿𝑄𝑖

𝑁𝑝

𝑖=1

… (4) 
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This Q value is updated via equation (5), where this Q value 

gives an idea about that how well an action is taken at a 

particular instance based on its previous state. 

𝑄(𝑁𝑒𝑤) = 𝑄(𝑂𝑙𝑑) + 𝐿𝑟 ∗
𝑁𝐶

𝑀𝑎𝑥(𝑁𝐶)
+ 𝑀𝑎𝑥(𝑄) … (5)  

Where 𝑁𝑝 represents the number of nodes in the current path, 

𝐿𝑟 is a stochastic learning rate, while 𝑁𝐶 & 𝐿𝑄 are the node 

communication metric and link quality metric, which is 

estimated via equations 6 & 7 as follows. Equation (6) and (7) 

helps to find communication quality by considering 

optimization parameter to make use of randomness using a 

Bioinspired algorithm like Mayfly. 

 

Figure 1 Proposed Routing Model for UAV Networks 

𝑁𝐶 =
1

𝑁ℎ

∑ 𝑑𝑖−1,𝑖 ∗ [
𝑇𝐻𝑅𝑖−1

𝑀𝑎𝑥(𝑇𝐻𝑅)
]

𝑁ℎ

𝑖=2

… (6) 

Where, 𝑑 is the distance, while 𝑇𝐻𝑅 is the temporal 

throughput, which is evaluated via equation (8), while 𝑁ℎ is 

the total number of hops used for the routing operations. The 

output of the function and routing operation performed as per 

the number of hops used is calculated by equation (8).  

𝐿𝑄 =
1

𝑁ℎ

∑
100

𝑃𝐷𝑅𝑖

+
𝑒𝑖

𝑀𝑎𝑥(𝑒)

𝑁ℎ

𝑖=1

… (7) 

Where, 𝑃𝐷𝑅 & 𝑒 represent the packet delivery ratio and 

energy consumption during previous communications which 

are estimated at equations (9) & (10), which are updated after 

individual routing operations. 

𝑇𝐻𝑅 = ∑
𝑁𝑁(𝑡)

𝑀𝑎𝑥(𝑁𝑁) ∗ (𝑡2 − 𝑡1)
… (8)

𝑡2

𝑡=𝑡1

 

Where 𝑁𝑁(𝑡) represents the total number of packets passed 

during the given time intervals. 

𝑃𝐷𝑅 = ∑
𝑁𝑁(𝑡)

𝑁𝑁𝑑(𝑡) ∗ (𝑡2 − 𝑡1)
… (9)

𝑡2

𝑡=𝑡1

 

Where 𝑁𝑁𝑑 represents the total number of packets dropped 

during the given time intervals. 
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𝑒 = ∑
𝑒𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

(𝑡2 − 𝑡1)
… (10)

𝑡2

𝑡=𝑡1

 

Where 𝑒𝑠𝑡𝑎𝑟𝑡  & 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  are the energy levels of the nodes 

during the routing process. These Q values are sorted in 

descending order, and then 𝑁 stochastic nodes are selected 

from this list via equation (11),  

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑁𝑛, 𝑁𝑛) … (11) 

Where, 𝑁𝑛 represents the total no. of hopes used in the list, 

while 𝐿𝑟 is estimated (𝐿𝑟 is a stochastic learning rate) via 

equation (12), 

𝐿𝑟 =
𝑁𝑛

𝑁𝑡

… (12) 

Where 𝑁𝑡 represents the total number of nodes in the network 

that are deployed in the UAV network sets. Based on this 

process, a set of 𝑁𝑀 Mayflies (routes) are generated, and 

optimized via the following Mayfly Optimization (MO) 

Model process, 

From the set of Q learning solutions, 𝑁 stochastic solutions 

are selected via equation (13), 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑀 ∗ 𝑁𝑀, 𝑁𝑀) … (13) 

Where 𝐿𝑀 is the learning metric for the MO Model process. 

For each of these solutions, a fitness value function is 

calculated via equation (14), 

𝑓 =
1

𝑁𝑀
∑ 𝑄𝑖

𝑁𝑀

𝑖=1

… (14) 

This process is repeated for 𝑁𝑀 different Mayflies, and then a 

fitness threshold is estimated via equation (15), 

𝑓𝑡ℎ =
1

𝑁𝑀
∑ 𝑓𝑖 ∗ 𝐿𝑀

𝑁𝑀

𝑖=1

… (15) 

Mayflies with 𝑓 > 𝑓𝑡ℎ are discarded & reproduced in the next 

iteration, while others crossover to the next set of iterations. 

These Mayflies are regenerated for NI iterations, and the 

Mayflies with the lowest fitness levels are selected for routing 

the UAV nodes. The selected Mayfly will contain multiple 

routing configurations, out of which the configuration with 

minimum fitness is selected for routing operations. In case the 

current route is busy or the path is not available, then the next 

higher fitness path is selected to route the UAV Nodes. Due to 

this, the model can optimize routing delay, energy, 

throughput, and packet delivery ratios during real-time route 

formation operations. The performance during routing is 

updated in the database, and the process is repeated for 

consecutive routing processes. This assists in the continuous 

improvement of routing performance under real-time 

scenarios. This performance was validated under different 

network conditions and compared with other models in the 

next section of this text. 

4. STATISTICAL ANALYSIS 

The proposed QMRNB model collects temporal routing 

performance data samples for individual nodes and uses them 

to form coarse routes through Q-Learning optimizations. 

These routes are then processed by a Mayfly Optimization 

(MO) Model, which aids in the selection of optimal routing 

paths for high Quality of Service (QoS) even when large-scale 

routing requests are being processed. The MO Model is 

capable of identifying alternate paths through the evaluation 

of a high-density routing fitness function, which assists the 

router if the selected paths are occupied during current routing 

requests. This helps to enhance temporal routing performance 

even in dense network environments. To validate its 

performance, the model was evaluated under a standard set of 

UAV configurations in Network Simulator 2 (NS 2.34), with 

the network parameters indicated in Table 1 as follows: 

Table 1 Set of Simulation Configurations for Emulating 

Different Network Scenarios 

Parameters for the UAV 

Network 

Values used for the 

parameter sets 

UAV propagation model 
Wireless with inter-layer 

routing 

MAC Model 802.16a 

Queue Type 
Priority queues with drop-

tailing operations 

Total UAV Nodes 5000 

Size of the UAV Network 4 kms x 4 kms 

Energy Model 

Idle: 5 mW 

Receive: 10 mW 

Transmit: 15 mW 

Sleep: 1 mW 

Transition: 2.5 mW 

Transition Delays 0.01 s 

Energy set during 

initialization of UAV Nodes 
2500 mW 

Based on these configurations, the delay needed for routing 

was estimated via equation (16), 

𝐷 =
1

𝑁𝑀
∑ 𝑡𝑠𝑟𝑒𝑎𝑐ℎ − 𝑡𝑠𝑠𝑡𝑎𝑟𝑡

𝑁𝑀

𝑖=1

… (16) 
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Where 𝑡𝑠𝑟𝑒𝑎𝑐ℎ  & 𝑡𝑠𝑠𝑡𝑎𝑟𝑡 are the timestamps for reaching the 

destination and starting the routing process. This delay 

performance was evaluated w.r.t. different Number of 

Movements (NM), which were varied between 2k to 40k, and 

compared with ECOR [3], QL [5], & QTAR [14] in table 2 as 

follows: 

Table 2 The Average Delay for Different Numbers of Routing 

Evaluations 

NM 

D (s) 

ECOR 

[3] 

D (s) 

QL [5] 

D (s) 

QTAR 

[14] 

D (s) 

QM RNB 

2k 15.95 17.09 18.03 12.23 

4k 18.13 19.62 20.74 14.10 

6k 20.96 22.79 24.09 16.39 

8k 24.42 26.54 28.00 19.04 

10k 28.42 30.73 32.33 21.96 

12k 32.77 35.27 37.00 25.06 

14k 37.21 39.94 41.79 28.19 

16k 41.46 44.53 46.53 31.23 

18k 45.39 48.91 51.06 34.11 

20k 48.94 52.98 55.30 36.81 

25k 52.22 56.79 59.26 39.33 

28k 55.27 60.26 62.89 41.69 

30k 58.17 63.53 66.31 43.93 

35k 61.50 67.18 70.10 46.45 

38k 64.98 70.94 74.02 49.07 

40k 68.71 74.96 78.19 51.84 

 

 
Figure 2 The Average Delay for Different Numbers of 

Routing Evaluations 

Based on this estimation and its visualization in Figure 2, it 

has been found that the proposed model can reduce the delay 

needed for routing by 9.5% when compared with ECOR [3], 

14.5% when compared with QL [5], and 18.9% when 

compared with QTAR [14], which makes it very important 

and critical for various real-time routing applications. This 

delay is reduced due to the use of distance levels, and 

temporal delay performance during the selection of routing 

paths. Similarly, the energy needed during these routing 

operations was evaluated via equation (17) as follows, 

𝐸 =
1

𝑁𝑀
∑ 𝐸𝑠𝑟𝑐(𝑠𝑡𝑎𝑟𝑡)𝑖 − 𝐸𝑠𝑟𝑐(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)𝑖

𝑁𝑀

𝑖=1

… (17) 

Where 𝐸(𝑠𝑡𝑎𝑟𝑡) & 𝐸(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) are the energy levels of the 

source node during the start & completion of the routing 

process. This energy consumption can be observed in Table 3 

as follows: 

Table 3 Average Energy Consumed During the Different 

Number of Routing Evaluations 

NM 

E (mW) 

ECOR 

[3] 

E (mW) 

QL [5] 

E (mW) 

QTAR 

[14] 

E (mW) 

QM RNB 

2k 37.05 48.33 29.84 21.96 

4k 38.98 50.78 31.34 23.06 

6k 40.83 53.27 32.88 24.21 

8k 42.75 55.90 34.50 25.40 

10k 44.77 58.64 36.18 26.63 

12k 46.87 61.46 37.90 27.89 

14k 49.08 64.33 39.62 29.14 

16k 51.34 67.17 41.32 30.37 

18k 53.60 69.94 42.97 31.56 

20k 55.80 72.61 44.57 32.71 

25k 57.93 75.21 46.13 33.84 

28k 60.01 77.80 47.70 34.99 

30k 62.05 80.41 49.30 36.14 

35k 64.09 83.10 50.92 37.33 

38k 66.15 85.78 52.56 38.53 

40k 68.22 88.48 54.20 39.72 

Based on this estimation and its visualization in Figure 3, it 

has been found that the proposed model can reduce the energy 

needed for routing by 15.9% when compared with ECOR [3], 
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19.2% when compared with QL [5], and 14.5% when 

compared with QTAR [14], which makes it very critical for 

various low-energy routing applications. This energy is 

reduced due to the use of distance levels, and temporal energy 

performance during the selection of routing paths. Similarly, 

the throughput during these routing operations can be 

observed from Table 4 as follows: 

 
Figure 3 Average Energy Consumed During the Different 

Number of Routing Evaluations 

Table 4 Average Throughput During Different Routing 

Operations 

NM 

THR 

(vpm) 

ECOR [3] 

THR 

(vpm) 

QL [5] 

THR 

(vpm) 

QTAR 

[14] 

THR (vpm) 

QM RNB 

2k 112.86 86.32 92.25 138.86 

4k 113.71 87.11 93.00 140.00 

6k 114.86 87.63 93.75 141.14 

8k 116.00 88.42 94.50 142.29 

10k 116.86 89.21 95.25 143.43 

12k 117.71 89.74 96.00 144.57 

14k 118.57 90.53 96.75 145.71 

16k 119.43 91.32 97.50 146.86 

18k 120.57 92.11 98.25 148.00 

20k 121.71 92.89 99.00 149.14 

25k 122.57 93.68 99.75 150.29 

28k 123.43 94.47 100.50 151.43 

30k 124.29 95.00 101.50 152.57 

35k 125.10 95.79 102.34 153.71 

38k 126.15 96.50 103.12 154.86 

40k 127.15 97.12 103.84 156.00 

 

Figure 4 Average Throughput During Different Routing 

Operations 

Based on this estimation and its visualization in Figure 4, it 

has been found that the proposed model can improve the 

routing throughput by 8.5% when compared with ECOR [3], 

15.4% when compared with QL [5], and 12.5% when 

compared with QTAR [14], which makes it very important for 

multiple high data rate routing applications. This throughput 

is increased due to the use of packet delivery levels, and 

temporal throughput performance during the selection of 

routing paths. Due to these optimizations, the proposed model 

is capable of deployment for a wide variety of real-time UAV 

routing scenarios. 

5. CONCLUSION AND FUTURE SCOPE 

The proposed QMRNB model gathers samples of temporal 

routing performance data for individual nodes and uses Q-

Learning optimizations to form coarse routes. A Mayfly 

Optimization (MO) Model then processes these routes, 

helping to choose the best routing paths for high Quality of 

Service (QoS) even when numerous routing requests are 

being handled simultaneously. If the chosen paths are already 

taken by current routing requests, the MO Model can find 

alternative routes by evaluating a high-density routing fitness 

function. This helps the router. Even in environments with 

dense network traffic, this aids in improving temporal routing 

performance. Based on the evaluation of routing speed, it can 

be seen that the proposed model can reduce the delay required 

for routing by 9.5% when compared to ECOR [3], 14.5% 

when compared to QL [5], and 18.9% when compared to 

QTAR [14], making it very useful for various real-time 

routing applications. The use of distance levels and the 

performance of the temporal delay during the selection of 

routing paths both help to reduce this delay. According to 

energy evaluation, the proposed model can reduce the energy 
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required for routing by 15.9% when compared to ECOR [3], 

19.2% when compared to QL [5], and 14.5% when compared 

to QTAR [14], making it extremely useful for a variety of 

low-energy routing applications. Due to the use of distance 

levels and temporal energy performance during the selection 

of routing paths, this energy is reduced. Based on the data-rate 

evaluation, it can be seen that the proposed model can 

increase routing throughput by 8.5% when compared to 

ECOR [3], 15.4% when compared to QL [5], and 12.5% when 

compared to QTAR [14], making it extremely useful for a 

variety of high data rate routing applications. The use of 

packet delivery levels and temporal throughput performance 

during routing path selection has increased this throughput. 

The proposed model can be used in real-time UAV routing 

scenarios as a result of these optimizations. 

In the future, the performance of this model should be cross 

checked on larger UAV Networks and can be upgraded via 

the merging of low-complexity bio-inspired models including 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), etc. The performance can also be improved via the 

integration of transformer models that can predict collisions 

during routing, and enhance efficiency even under large-scale 

network scenarios. 
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