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Abstract – Wireless Network is one of the Internet-of-Things 

(IoT) prototypes that come up with monitoring services, 

therefore, influencing the life of human beings. To ensure 

efficiency and robustness, Quality-of-Service (QoS) is of the 

predominant point at issue. Congestion in wireless networks will 

moreover minimize the anticipated QoS of the related 

applications. Motivated by this, a novel method called, Ornstein–

Uhlenbeck Transition and Cache Obliviousness Neural Adaptive 

(OUT-CONA) to improve congestion control of wireless mesh 

networks is presented. Adaptive actor-critic deep reinforcement 

learning scheme on Ornstein–Uhlenbeck State Transition 

scheduling model to address handovers during data transmission 

for IoT-enabled Wireless Networks is first designed. Here, by 

employing the  Ornstein–Uhlenbeck state transition scheduling 

model, both the advantages of the Gauss and Markov Processes 

are exploited, therefore reducing the energy consumption 

involved while performing the transition. Next, in the OUT-

CONA method, LSTM is imposed for learning the current state 

representation. The LSTM with the current state representation 

achieves the objective of controlling congestion with cache 

obliviousness. The Cache Obliviousness-based Congestion 

method is utilized for congestion control with obliviousness 

caching using coherent shielding among organized as well as 

disorganized data. Furthermore, the performance of the OUT-

CONA method is evaluated and compares the results with the 

performances of conventional techniques, adaptive aggregation 

as well as hybrid deep learning. The evaluation of the OUT-

CONA congestion control method attains better network using 

lesser misclassification rate, consumption of energy, delay as well 

as higher goodput using conventional methods in Wireless Mesh 

Networks. 

Index Terms – Wireless Mesh Network, Internet of Things, 

Ornstein–Uhlenbeck, Transition, Cache Obliviousness, Neural 

Adaptive, Congestion Control. 

1. INTRODUCTION 

In the present era of advancement, communication is taken as 

the most paramount requirement. Moreover, the notable surge 

necessitates better bandwidth, optimal resource distribution, 

as well as services in need for realizing the fundamental 

requirements. One of the distinguished examples is the swift 

advancement of technology transformation from 2G to 4G as 

well as the forthcoming 5G and 6G. Among the several 

challenges, systematic congestion control is contemplated as 

one of the pivotal factors that permit the operators in 
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executing numerous network instances for a better quality of 

services. 

An adaptive aggregation method was proposed by [1] based 

on the characteristics of IoT traffic to reduce network traffic 

congestion. Here, the aggregation model was applied to 

payload exchange as well as traffic networks for utilizing 

periodic networks, with which the performance of 

competence was said to be optimized. With the application of 

the adaptive aggregation model, the large amount of data was 

said to be reduced and also minimized the collision 

probability even in the case of a dense number of nodes and 

finally resulting in less traffic congestion. Due to this, the 

throughput along with collision probability was improved 

therefore reducing the network congestion 

Despite improvement observed in throughput and collision 

probability, the energy consumed while analyzing network 

traffic congestion towards data transmission was not focused. 

To address this issue, an Ornstein–Uhlenbeck State Energy-

efficient Transition scheduling employing Gauss and Markov 

Processes is utilized that with optimal transitions between 

sensors or devices not only minimizes energy consumption 

but also reduces the misclassification rate by addressing the 

handover.  

A deep learning method was presented in [2] consisting of 

LSTM as well as SVM. Here, a smart decision-making 

technique was designed so that load balancing was ensured 

for the incoming network traffic. Also, network slice failure 

was restricted with alternative slices provided in case of 

failure or during overload scenarios. Due to this, hybrid 

designing, accuracy was improved with minimum time 

consumption and misclassification rate.  

Despite improvement observed in terms of reducing the time 

consumption with optimal load balancing for incoming 

network traffic and hence avoiding congestion, the delay 

involved during the overall analysis was not focused, 

therefore compromising the rate of goodput. To address this 

issue and handle handovers for congestion control in the 

wireless network for IoT data transmission, the Cache 

Obliviousness-based Neural Adaptive Congestion Control 

model is designed. With the design of this Cache 

Obliviousness-based Neural Adaptive Congestion Control 

model goodput is improved using lesser delay.  

Despite IoT transforming unparalleled momentum, additional 

contemporary studies, as well as growth, concentrate on IoT 

transforming in connection with the regulation of enormous 

sensors. In analogous with this direction, enormous machine-

type communications to smooth transmission is the vision of 

fundamentals utilization to 5G mobile as well as wireless 

networks. Interrelation of devices in a group of issues, like 

efficient data collection, congestion, reliable transmission, and 

so on.  

Three novel mechanisms were proposed in [3] to ensure 

access according to the priority.  On the basis of these three 

5G new radio frame, OUT-CONA method enabled the 

devices on basis of device vicinity and distributes exclusive 

prologues for grouped devices for random access. With this, 

grant-free transmission was ensured. Despite improvement 

observed in managing the load, some side effects were found 

to be compromised like higher communication costs, delay, 

PLR, throughput etc.  

Dynamic Hop Selection Static Routing Protocol was designed 

in [4] to address load balancing issues with the selection of 

route paths within congestion. However, the above decision-

making processes frequently necessitate enormous data 

transmissions between sensors, that in turn necessitates data 

as well as correct data analyses performed on the basis of 

huge traffic data.  

Taking into consideration, large data-driven, as well as the 

nonparametric method, was proposed in [5] that obtained 

traffic outline based on time to precise as well as effective 

traffic flow prediction, therefore improving the prediction 

accuracy. However, according to the network situation 

transmission rate has to be managed. To focus on this aspect, 

a novel congestion control method was designed in [6] for 

ensuring high throughput. The designed meth failed to 

consider the smart city monitoring systems, and healthcare 

applications.  

Yet another method to reduce network power consumption 

while handling congestion was designed in [7].  Requirements 

for steady and effective data transmission are elevating owing 

to the continuing evolution of wireless data traffic globally. 

An advanced congestion control mechanism employed 

different margins by CoAP. In [8], a queuing delay was 

designed with the purpose of solving the utility maximization 

issues, via perfect scheduling and distributed scheduling. 

However, the network performance was not achieved by 

queuing delay.  

1.1. Problem Statement 

In IoT, dissimilar devices were focused on necessities such as 

communication speed, delay, and reliability. But, most of the 

IoT devices failed to consider the delay metric. Thus, data 

transmission is a challenging factor in communication. Traffic 

congestion control is a demanding task in 5G/6G wireless 

network technologies. It is a dangerous issue for mobile 

operators and commercial businesses for the next generation 

of communication technology. Despite significant advantages 

provided by WMN, its practical distribution to connect 

Internet of Things (IoT) networks caused very expensive 

congestion. Conventional forecasts as well as classification 

methods for controlling congestion for IoT-enabled wireless 

networks will not provide worthwhile achievement as well as 

precise outcomes.  

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_process
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To address the issue, in this work, a mechanism for accurate 

and robust controlling of congestion is developed. In IoT-

enabled WMN sensor-enabled network scenarios within IoT, 

the WMN technique uses radio sensors for the transmission of 

data. To reduce energy consumption and misclassification rate 

during data transition, the technique also calculate all sensors 

by Ornstein–Uhlenbeck State Transition and achieves 

transitions. Next, the Cache Obliviousness-based Neural 

Adaptive Congestion Control model is employed for 

controlling the congestion arising during data transmission 

1.2. Contributions  

The proposed work contributions are listed below.  

 Ornstein–Uhlenbeck State Transition is used to classify 

node status of IoT within administering strategies: 

Operative ‘O’, Idle ‘I’ and ‘B’ to flexible radio node 

scheduling scheme. It was a well-defined administering 

strategy that recognizes nodes possessing residual energy 

with minimum misclassification rate, particularly in idle 

mode. Node scheduling scheme was utilized in OUT-

CONA of data packets among nodes are transferred is 

stimulated. 

 To develop a Cache Obliviousness Neural Adaptive 

Congestion Control model to control congestion using 

cache obliviousness ensuring coherent shielding between 

the organized and disorganized flow of data packets. Then, 

congestion incurred is minimized using improved goodput 

as well as d delay. 

 Verifying the effectiveness of OUT-CONA in terms of 

energy consumption, misclassification rate, goodput as 

well as delay compared with conventional methods.  

1.3. Organization of the Paper 

The article is summarized by. Section 2 reviews explain IoT 

enabled congestion control method for WMN the proposed 

Ornstein–Uhlenbeck Transition and Cache Obliviousness 

Neural Adaptive (OUT-CONA) using wireless network 

system model, IoT enabled Data Communication Wireless 

Mesh Network scheme for providing congestion control 

model presented in Section 3. Section 4 describes the 

experimental assessment of proposed and existing methods. 

Section 5 explains the conclusion of the article. 

2. RELATED WORK 

With the inception of the third generation of mobile cellular 

and wireless networks, primary phase of wireless access is 

considered. However, it remains a certain amount of issues 

owing to the distinct nature and essentials of wireless 

networks. The motivation of congestion control is to make 

sure network stability and accomplish a considerately 

trustworthy administering of the network resources between 

the users.  

In [9], a novel traffic control method on the basis of data 

offloading method was designed by employing VCG as well 

as the Rubinstein bargaining game scheme. With these data 

offloading mechanism, IoT traffic congestion was avoided, 

and also enhanced the quality-of-service (QoS) accordingly. 

But, the delay was not reduced. 

Traffic prediction is predominant to make certain perpetual 

system competence and establish the quality of service for 

IoT, heavily depending on congestion, bandwidth allocation, 

and so on. In [10], an elaborate outline of the IoT traffic 

method employing time series as well as ANN was developed 

and the purpose of the prediction network was also utilized. 

The persistent data connections as well as transmissions of 

data were deliberately administered within prevailing 

networks, causing considerable issues for wireless networks. 

Also, the design algorithm failed to consider all dynamic 

parameters of the IoT environment. 

In [11], the traffic scheduling issue was addressed and also 

hybrid routing forwarding model along with the congestion 

control algorithm was designed to accomplish a practical 

solution. Here, the assignment of traffic was initially 

transformed into multi knapsack problem, followed by which 

Artificial Fish Swarm Algorithm (AFSA) was employed to 

ensure congestion control. Owing to the extensive data in 

materializing IoT, controlling congestion of traffic flow was 

essential for attaining explicit protection and QoS. However, 

in the event of a congested network, information is highly 

susceptible to packet drop, therefore, degrading the entire 

network.  

A Proportional Integrator Differentiator was developed by 

[12] congestion control rate, therefore, ensuring stability and 

packet delivery. However dynamic traffic characteristics still 

face issues while controlling congestion like high throughput 

and collision probability. To address these aspects, traffic 

aggregation techniques for IoT network was designed in [13] 

for investigating traffic parameters. Despite improvement 

observed in both throughput and collision measures, with a 

considerable amount of different data flows the computational 

cost in turn increased. To solve this issue, machine learning 

classification methods in [14] for predicting traffic control 

and accordingly congestion were also avoided based on 

differentiation mechanisms. Different types of sensors were 

integrated into automated and smart systems with the purpose 

of sensing, collecting, and transferring the data. But, 

computational complexity was higher. 

One of the emerging technologies that enhance both the 

observation and potentialities of smart systems is machine 

learning. In [15], an IoT enabled intelligent traffic congestion 

handling scheme was designed specifically for smart 

societies. The proposed method also sensed and notified the 

probable areas of congestion. But, Time delays were a vital 

issue and occur owing to poor collection of sensors or slow 
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connectivity of the network. Yet another method using a 

clustering mechanism was proposed in [16] employing a 

hierarchical mechanism. With this type of mechanism, both 

consumptions of energy and delay were reduced drastically. 

The designed mechanism failed to minimize the 

misclassification rate. 

CACC method specifically designed for lightweight 

constrained application protocol (CoAP) was proposed in 

[17]. The congestion control method here was designed by 

conventional mechanism recommended lightweight interface 

was also designed. With these design mechanisms, not only 

congestion was controlled but also retransmission was 

avoided to a greater extent. However, the energy involved in 

controlling the congestion was not focused.  

Path determination architecture was developed in [18] to 

achieve superior performance in terms of both energy and 

extending network lifetime by utilizing exponential 

smoothing. But, it failed to consider the high volume of data 

transmission. A game theory mechanism was introduced in 

[19] to mitigate the congestion by fine-tuning the sending 

rate. The packet loss rate was said to be minimized as well as 

network performance was said to be improved. However, the 

goodput was not measured. Improving the Congestion control 

mechanism of TCP was investigated in [20] to ensure 

throughput and minimize retransmission. But, the 

consumption of energy was not reduced.  

2.1. Issues and Challenges  

IoT smart city networks undergo difficult IoT traffic 

individuality by unstructured data types. Numerous 

aggregation methods have been developed with higher 

performance factors in smart city networks. The issues and 

challenges such as minimum throughput, maximum collision 

probability, a huge number of terminal devices by a varied 

number of transmissions at smart city traffic types, serious 

data traffic in several cases as the payload traffic type, 

maximum traffic congestion, as well as maximum overheads 

are considered in IoT data transmission. To overcome the 

issue, a deep neural adaptive method that is needed in IoT to 

control congestion towards data transmission in a wireless 

network with higher goodput and lesser energy consumption. 

3. ORNSTEIN–UHLENBECK TRANSITION AND 

CACHE OBLIVIOUSNESS NEURAL ADAPTIVE 

(OUT-CONA) CONGESTION CONTROL FOR 

INTERNET OF THINGS 

 

Figure 1 Block Diagram of Ornstein–Uhlenbeck Transition and Cache Obliviousness Neural Adaptive (OUT-CONA) Method 

https://www.sciencedirect.com/topics/engineering/collision-probability
https://www.sciencedirect.com/topics/engineering/collision-probability
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IoT consists of both confined and non-confined devices. 

These confined types of devices or nodes include power, 

processing of devices, memory-confined nature, and so on. To 

implement data transmission for IoT in WMN well in a 

confined environment, a congestion control mechanism must 

inspect these confinements. This is owing to the reason that 

the congestion in an IoT network during data transmission 

results brings about a deterioration in its quality of service 

(QoS). Also while performing data transmission, the 

occurrences or handover 

(i.e., data session transferred from one state to another 

without disconnecting the session) has to be handled. To 

address these aspects, an Ornstein–Uhlenbeck Transition and 

Cache Obliviousness Neural Adaptive (OUT-CONA) IoT-

enabled congestion control for efficient data transmission is 

developed. The detailed explanation of OUT-CONA is 

explained. Block diagram of Ornstein–Uhlenbeck Transition 

and Cache Obliviousness Neural Adaptive (OUT-CONA) 

method is shown in Figure 1. 

As given in the above section, the raw sensor readings 

collected in the laboratory from sensors obtained as input are 

provided to the Ornstein–Uhlenbeck State Transition model. 

Here, a smooth transition between different incoming data 

packets arriving from the host computer or the source node is 

modeled. With this, a smooth transition is ensured therefore 

addressing handover by means of the Percolation Centrality 

function. Second, a Cache Obliviousness Neural Adaptive 

Congestion Control model for smooth and fine-grained IoT 

data transmission between nodes or devices is provided via 

LSTM with a Cache Obliviousness function. 

3.1. Overview of Wireless Network System Model 

Congestion control is said to occur in the network layer due to 

an increase in the traffic generation pattern of each device in 

the network. With the increase in delay, the performance is 

said to be reduced, resulting in maximum handovers and 

therefore congestion, causing circumstances unpleasant. In 

this section, an IoT-enabled Data Communication Wireless 

Mesh Network model is first designed. Followed by which a 

detailed description of the method, Ornstein–Uhlenbeck 

Transition and Cache Obliviousness Neural Adaptive (OUT-

CONA) is provided. 

3.2. IoT Enabled Data Communication Wireless Mesh 

Network Model 

Wireless Mesh Network (WMN) comprises several radio 

nodes ‘𝑁 =  {𝑁1, 𝑁2, … , 𝑁𝑛}’ designed in the form of mesh 

topology that dispenses data packets ‘𝐷𝑃 =
 {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑛}’ between devices or radio nodes. The 

design of the OUT-CONA method is based on the 

diversified-control path algorithm. The network of OUT-

CONA method mesh routers is modeled via a Directed Graph 

‘𝐷𝐺 =  (𝑉, 𝐸)’. Here, ‘𝑉’ denotes the set of radio nodes (i.e. 

nodes) ‘𝑁 =  {𝑁1, 𝑁2, … , 𝑁𝑛}’ and ‘E’ denotes the pair of 

links ‘(𝑖, 𝑗)’ between two radio nodes ‘𝑁𝑖’ and ‘𝑁𝑗’. The 

connection and distribution of data packets in our work for 

IoT-enabled data transmission in WMN between several 

radio nodes are established via a routing table. The content of 

the routing table is provided in table 1. 

Table 1 WMN Routing Table Information 

S. No Fields Units 

1 Data ‘𝐷’ (KB) 

2 Data rate ‘𝐷𝑅’ (kbps) 

3 Start time ‘𝑆𝑇’ (second) 

4 Sampling period ‘𝑆𝑃’ (second) 

5 Delay constraint ‘𝐷𝐶’ (second) 

As provided in the above routing table, the raw sensor 

readings obtained from the IoT traffic generation patterns 

dataset, the actual data ‘𝐷’, the data rate ‘𝐷𝑅’, start time 

‘𝑆𝑇’, sampling period ‘𝑆𝑃’ and delay constraint ‘𝐷𝐶’ 

respectively are provided as input to the state transition 

model in the form of data packets for each node. Using the 

above contents in the routing table, an IoT-enabled 

congestion control method on the basis of the below system 

model is structured. 

3.3. Ornstein–Uhlenbeck State Energy-Efficient Transition 

Model 

With the swift growth of IoT devices more traffic generation 

is said to occur and therefore causes a stage of congestion on 

the Internet. Hence, a framework that ensures a congestion 

control mechanism to handle all demands of distinct devices 

for communication is required. In this section, the first 

Ornstein–Uhlenbeck State Energy-efficient Transition model 

to differentiate states of incoming data packets from the host 

computer or the source node is designed in WMN for IoT data 

transmission.  

With the deployment of the Ornstein–Uhlenbeck state 

transition, both the advantages of the Gauss Process and 

Markov Process are exploited, therefore reducing the energy 

consumption involved while performing the transition. In 

other words, the incoming data packets from the host 

computer with a stochastic pattern are based not only on the 

sequence of possible arrival rate at which the probability of 

incoming data packets depends on the state attained in the 

previous event (i.e., Markov Process) but also every finite 

collection of those random incoming data packets has a 

multivariate normal distribution (i.e., Gauss Process). Also, 

handover between devices is achieved by applying the 

Percolation Centrality. 

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_process
https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_process
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Gaussian_process
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Figure 2 Block Diagram of Ornstein–Uhlenbeck State Energy-Efficient Transition Model 

From the above figure 2, various radio nodes or nodes ‘𝑁 =
 {𝑁1, 𝑁2, … , 𝑁𝑛}’, are connected to the router ‘𝑅’ via IoT 

gateway node ‘𝐺𝑁’ for IoT-enabled congestion control in 

WMN for distinct data packets ‘𝐷𝑃 =  {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑛}’. 

The structuring of a node is designed in a clockwise manner, 

that a node possessing maximum or higher residual energy 

only has the potential to transfer to a lower residual energy 

node and not in an anticlockwise manner.  

Specifically, the Ornstein–Uhlenbeck State Energy-efficient 

Transition along with the Gauss and Markov processes are 

utilized in obtaining the probabilistic node state transitions 

based on the constraints of the available data packets in the 

routing table. Moreover, to minimize the congestion due to 

many IoT nodes in WMN, additional optimization of 

administering strategies is stopped upon the detection of the 

idle mode. In this manner, network effectiveness is attained in 

terms of both energy consumption and misclassification rate 

in IoT-enabled data communication.  

The Ornstein–Uhlenbeck process for the corresponding data 

packet ‘𝐷𝑃𝑡’ to be transmitted between nodes or the arrival of 

data packets is mathematically represented by the following 

equation (1).  

 𝑑𝐷𝑃𝑡 = −𝜃𝐷𝑃𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡  (1) 

From the above equation (1), the data packet ‘𝐷𝑃𝑡’ of the 

respective node contains the information provided in the 

routing table in addition to the continuous time stochastic 

arrival of data packets ‘𝑑𝑊𝑡’ respectively. However, with the 

random node positioning and topological changes observed in 

the network owing to different numbers of IoT sensors or 

nodes ready for transmission, the above continuous time 

stochastic arrival of data packets is modified and 

mathematically stated as given below.  

 
𝑑𝐷𝑃𝑡

𝑑𝑡
= −𝜃𝐷𝑃𝑡 + 𝜎𝜂(𝑡)  (2) 

From the above equation (2), ‘𝜂(𝑡)’ represent the noise factor 

(with a frequency range of 20 to 20000 hertz, depending on 

the arrival rate of data packets) involved during the arrival of 

data packets respectively. With the above Ornstein–

Uhlenbeck function, Gauss and Markov processes are utilized 

in obtaining the probabilistic node state transitions Gauss and 

Markov's processes are formulated for obtaining probabilistic 

node state transitions so that upon detection of idle mode, 

with the aid of Percolation Centrality function, data session 

transferred from one state to another without disconnecting 

the session, therefore reducing the residual energy. This 

robust handover is said to be attained therefore reducing the 

probability of misclassification rate also.  

The Gauss process with multiple approximations for different 

numbers of data packets obtained from distinct nodes (i.e., 

possessing different energy) in case of operative mode retains 

good accuracy, therefore, minimizing the misclassification 

rate while drastically reducing energy consumption rate. The 

time-continuous stochastic arrival of data packets is said to be 
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Gaussian if the indices or the collection of data packets 

‘𝑡1, 𝑡2, … , 𝑡𝑛’ in the index set ‘𝐼𝑆’ given as below. 

 𝐷𝑃𝑡1,𝑡2,…,𝑡𝑘
= (𝐷𝑃𝑡1

, 𝐷𝑃𝑡2
, … , 𝐷𝑃𝑡𝑘

) (3) 

From the above equation (3), On the other hand, the Markov 

process describes a sequence of probable data packets in the 

queue in which the probability of each arrival of a data packet 

depends only on the state attained in the arrival process in 

case of broadcasting mode. This is mathematically stated as 

given below. 

𝑃𝑟𝑜𝑏 (𝐷𝑃𝑛+1 = 𝑑𝑝| 𝐷𝑃1 = 𝑑𝑝1, 𝐷𝑃2 = 𝑑𝑝2, … . . , 𝐷𝑃𝑛 =
𝑑𝑝𝑛)                                            (4) 

From the above equation (4), the possible values of ‘𝐷𝑃𝑛’ 

forms the cardinality set referred to as the state space model. 

Finally, the Percolation Centrality function considers the 

source and target node state of each shortest route in 

estimating the weight. The Percolation Centrality function in 

our work is utilized as there arises a probability of changing 

the source and target node state as the data packets in the 

WMN propagates very fast, therefore compromising the 

classification rate. With the objective of reducing the 

misclassification rate Percolation Centrality function is 

employed in the proposed method. With the aid of this 

function, whether percolation is occurred or not are said to be 

obtained therefore reducing the misclassification rate.  

 𝑃𝐶𝑡(𝑣) =
1

𝑛
∑

𝛼𝑖𝑗(𝑣)

𝛼𝑖𝑗
 

𝐷𝑃𝑡
𝑇

∑[𝐷𝑃𝑖
𝑇]−𝐷𝑃𝑣

𝑇𝑖≠𝑗≠𝑣  (5) 

From the above equation (5), the result of the Percolation 

Centrality function ‘𝑃𝐶𝑡(𝑣)’ is arrived at based on the total 

shortest routes between node ‘𝑖’ and ‘𝑗’, ‘𝛼𝑖𝑗’, number of 

those routes that traverse through ‘𝑣’, ‘𝛼𝑖𝑗(𝑣)’, the 

percolation time of node ‘𝑖’ at time ‘𝑇’ ‘𝐷𝑃𝑖
𝑇’. The pseudo-

code representation of Ornstein–Uhlenbeck State Energy-

efficient Transition is given in Algorithm 1. 

Input: Dataset ‘𝐷𝑆’, nodes ‘𝑁 =  {𝑁1, 𝑁2, … , 𝑁𝑛}’, data 

packets ‘𝐷𝑃 =  {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑛}’ 

Output: Energy-efficient data transition 

Step 1: Initialize actual data ‘𝐷’, the data rate ‘𝐷𝑅’, start time 

‘𝑆𝑇’, sampling period ‘𝑆𝑃’ and delay constraint ‘𝐷𝐶’, time 

‘𝑇’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with nodes ‘𝑁’ and data 

packets ‘𝐷𝑃’ 

Step 4: Obtain arrival of data packets by utilizing Ornstein–

Uhlenbeck function as in equation (1) 

Step 5: Measure continuous time stochastic arrival of data 

packets as in equation (2) 

Step 6: Estimate Gauss process in case of operative mode as 

in equation (3) 

Step 7: Estimate Markov process in case of broadcasting 

mode as in equation (4) 

Step 8: Evaluate Percolation Centrality function as in equation 

(5) for handovers between operative mode and broadcasting 

mode  

Step 9: Return energy-efficient data packet transitions 

Step 10: End for  

Step 11: End 

Algorithm1 Ornstein–Uhlenbeck State Energy-Efficient 

Transition 

As given in the above (Algorithm 1) Ornstein–Uhlenbeck 

State Energy-efficient Transition algorithm, the objective 

remains in reducing the energy consumption and 

misclassification during transition according to the three 

distinct administering strategies for incoming data packets. 

With these objectives first, Ornstein–Uhlenbeck function is 

employed for analyzing various incoming data packets. 

Second, for operative and broadcasting modes, two distinct 

Gauss and Markov processes are employed separately, 

therefore reducing energy consumption owing to the 

avoidance of idle mode during operation. Finally, the 

Percolation Centrality function is applied to handle handovers 

between operative and broadcasting modes, therefore, 

reducing the misclassification rate involved where data 

sessions transferring between states without explicit 

disconnection. 

3.4. Cache Obliviousness Neural Adaptive Congestion 

Control Data Transmission Model 

With the optimized State Transition results, a robust 

congestion control model for smooth and fine-grained IoT 

data transmission has to be designed. In this section, LSTM is 

imposed for learning the current state representation. The 

LSTM with the current state representation achieves the 

objective of congestion control by means of the Cache 

Obliviousness function. The Cache Obliviousness function 

here takes the advantage of a processor cache without 

assigning the size of the cache as a definite parameter.  

The Cache Obliviousness-based Congestion mechanism is 

applied with the purpose of controlling congestion by means 

of obliviousness caching with coherent shielding between the 

organized and disorganized flow of data packets. In this 

manner, a robust congestion control with minimum end-to-

end delay and maximum goodput between nodes or devices is 

said to be ensured. The Cache Obliviousness Neural Adaptive 

Congestion Control Data Transmission model is composed of 

four layers. They are one input layer, one hidden layer, one 
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quantization layer, and the output layer respectively. Figure 3 

shows the block diagram of the Cache Obliviousness Neural 

Adaptive Congestion Control Data Transmission model. 

 

Figure 3 Block Diagram of Cache Obliviousness Neural Adaptive Congestion Control Data Transmission Model 

As shown in the above figure 3, in the Cache Obliviousness 

Neural Adaptive Congestion Control Data Transmission 

model, the overall processes are split into four layers, namely, 

one hidden layer, one hidden layer, one stochastic layer, and 

finally one output layer. Here, with the input states obtained 

and proceeding to the input vector layer, the hidden layer 

performs the actual rule formation for each state. Next, in the 

stochastic layer, the cache obliviousness mechanism is 

applied to minimize the delay involved in controlling the 

congestion. Finally, the resultant output is provided in the 

output layer by means of output vector, therefore, ensuring 

either data transmission in case of a congestion-free network 

or else discarding the data transmission process in case of 

congestion. With this high goodput minimum time is said to 

be ensured.  

At the time ‘𝑇’, the proposed OUT-CONA method state for 

the corresponding nodes ‘𝑁’ to be ready for sending data 

packets ‘𝐷𝑃’ with congestion control data transmission of a 
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mainstream ‘𝑚𝑠’ and sub-stream represented by ‘𝑠𝑠’ without 

disconnecting the session is ‘𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠 =

{𝑆𝑡𝑎𝑡𝑒𝑇
1,𝑠𝑠, 𝑆𝑡𝑎𝑡𝑒𝑇

2,𝑠𝑠, … , 𝑆𝑡𝑎𝑡𝑒𝑇
𝑛,𝑠𝑠}’ and ‘𝑆𝑡𝑎𝑡𝑒𝑇 =

{𝐶𝑊𝑆𝑇
𝑚𝑠,𝑠𝑠 , 𝐺𝑃𝑇

𝑚𝑠,𝑠𝑠, 𝑆𝑅𝑇
𝑚𝑠,𝑠𝑠}’ respectively.  

In addition, each ‘𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠’ is assigned with ‘𝐶𝑊𝑆𝑇

𝑚𝑠,𝑠𝑠
’, 

‘𝐺𝑃𝑇
𝑚𝑠,𝑠𝑠

’ and ‘𝑆𝑅𝑇
𝑚𝑠,𝑠𝑠

’ that represents the initialized 

congestion window size, goodput rate for congestion control 

data transmission, and sending rate of a mainstream ‘𝑚𝑠’ and 

sub-stream ‘𝑠𝑠’ respectively. Following this in the first layer 

(i.e., layer 1), an input state variable ‘𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠

’ is 

represented by each of the neurons within this layer. Finally, 

the state space of the entire network is progressed straightly to 

the input vector of the second layer. Second, layer 2 here 

represents the rule or the hidden layer. Each node of the 

second layer denotes the front end of an  Ornstein–Uhlenbeck 

state transition scheduling model. The Normal Gaussian 

distribution of the nodes of this hidden layer is represented as 

given below.  

 𝐻𝐿𝑚𝑠,𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠.𝑠𝑠) =

exp [−
{(𝑅𝑔𝑚𝑠−𝐴𝑣𝑔𝑚𝑠,𝑖(𝑆𝑡𝑎𝑡𝑒𝑇

𝑚𝑠,𝑠𝑠)}
2

2 𝑊𝑚𝑠,𝑖
2 ]   (6) 

From the above equation (6), ‘𝑅𝑔𝑚𝑠’ and ‘𝐴𝑣𝑔𝑚𝑠,𝑖(𝑆𝑡𝑎𝑡𝑒𝑇)’ 

represents the range of the entire network and the average 

value of Normal Gaussian distribution of the nodes within the 

mainstream ‘𝑚𝑠’ and sub-stream ‘𝑠𝑠’ for data transmission 

respectively. Then, for the state ‘𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠.𝑠𝑠’, for the 

mainstream ‘𝑚𝑠’ hidden layer, the Ornstein–Uhlenbeck Rule 

Stochastic is the Gaussian function product, represented as 

given below.  

 𝜑𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠) = 𝐻𝐿𝑚𝑠,𝑖(𝑆𝑡𝑎𝑡𝑒𝑚𝑠,𝑇) =

exp [−
{(𝑅𝑔𝑚𝑠,𝑇−𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑠,𝑖(𝑆𝑡𝑎𝑡𝑒𝑇

𝑚𝑠,𝑠𝑠)}
2

2 𝑊𝑚𝑠,𝑖
2 ]               (7) 

From the above equation (7), ‘𝜑𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠)’ represent the 

rule to be adopted during the handover between the operative 

and broadcasting model. Then, by means of Ornstein–

Uhlenbeck rule fitness, optimal handover between operative 

and broadcasting mode is said to be ensured, therefore 

reducing the misclassification rate. The third layer is also 

referred to as the Normalized Stochastic Layer. The prime 

significance of this third Normalized Stochastic Layer is the 

consistent estimation of the fitness of each rule and 

normalization of the same. Then, the Normalized Stochastic 

function for ‘𝑖 − 𝑡ℎ’ node is given below.  

𝜓𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠) =

𝜑𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠

)

∑ 𝜑𝑠𝑠(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠)𝑛

𝑠𝑠=1
  (8) 

From the above equation (8), the Normalized Stochastic Layer 

results ‘𝜓𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠)’ are arrived at based on the handover 

between operative and broadcasting model ‘𝜑𝑖(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠)’ 

with respect to ‘𝑖 − 𝑡ℎ’ mainstream and sub-stream node data 

(i.e., data packet) sending rate and the corresponding 

handover between operative and broadcasting model 

‘𝜑𝑠𝑠(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠)’ for ‘𝑛’ nodes respectively.  

Finally, the fourth layer refers to the output layer. The OUT-

CONA method output is made up of processor cache without 

possessing a predefined cache size for each block (i.e., each 

block representing a node's specified data packet at a time 

instance for transmission in the wireless network). Here, the 

node’s data packet for analysis is initially split into smaller 

and smaller sub-streams in the form of blocks ‘𝐵𝑙𝑜𝑐𝑘(𝐷𝑃1) =
𝐷𝑃11, 𝐷𝑃12, … , 𝐷𝑃1𝑛’. The value function ‘𝑉(𝑆𝑡𝑎𝑡𝑒𝑇

𝑚𝑠,𝑠𝑠)’ for 

the corresponding blocks denotes the output of the block 

network, which is shown as: 

𝑉(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠) →  𝐵𝑙𝑜𝑐𝑘(𝐷𝑃𝑖) = ∑ 𝑊𝑖𝑗𝜓𝑖(𝑆𝑡𝑎𝑡𝑒𝑇

𝑚𝑠,𝑠𝑠)𝑛
𝑖=1  

                                    (9) 

From the above equation (9), ‘𝑊𝑖𝑗’ denotes the weight 

between the cache output ‘𝑗 − 𝑡ℎ’and the hidden layer ‘𝑖 −
𝑡ℎ’ node.  In this manner, the above step is repeated by 

splitting the matrices in half and proceeding until the 

transpose of a matrix fits into the cache. In this manner, 

coherent shielding is said to be modeled between the 

organized and disorganized flow of data packets. Finally, the 

parameters obtained ‘𝑆𝑡𝑎𝑡𝑒𝑇’, ‘𝑊𝑖’ and ‘𝑊𝑖𝑗’ are utilized in 

updating the range ‘𝑅𝑔’ and average ‘𝐴𝑣𝑔’ of the ‘𝑖 − 𝑡ℎ’ 

hidden layer node in the OUT-CONA method is 

mathematically formulated as given below.  

𝑅𝑔𝑖(𝑡 + 1) = 𝑅𝑔𝑖(𝑡) +
𝛼𝑅𝑔𝑖

(1−𝜑𝑖) 𝑊𝑗𝑖(𝑆𝑡𝑎𝑡𝑒𝑇−𝑅𝑔𝑖(𝑡))

𝜎𝑖
2  10) 

𝐴𝑣𝑔𝑖(𝑡 + 1) = 𝐴𝑣𝑔𝑖(𝑡) +
𝛼𝐴𝑣𝑔𝑖

(1−𝜑𝑖) 𝑊𝑗𝑖(𝑆𝑡𝑎𝑡𝑒𝑇−𝑅𝑔𝑖(𝑡))

𝜎𝑖
2    (11) 

From the above equations (10) and (11), ‘𝛼𝑅𝑔𝑖
’, ‘𝛼𝐴𝑣𝑔𝑖

’ forms 

the learning rates for updating the range of the entire network 

and the average of nodes within mainstream ‘𝑚𝑠’ and sub-

stream ‘𝑠𝑠’ for data transmission. As a result, the output of 

the block network greater than or equal to one is said to be 

free with congestion nodes, therefore ensuring smooth 

transmission between nodes. On contrary, the output of the 

block network with less than or equal to one is said to be 

nodes with congested nodes, therefore stopping transmission 

between nodes due to congestion. The pseudo-code 

representation of Cache Obliviousness Neural Adaptive 

Congestion Control Data Transmission is given in Algorithm 

2. 

Input: Dataset ‘𝐷𝑆’, nodes ‘𝑁 =  {𝑁1, 𝑁2, … , 𝑁𝑛}’, data 

packets ‘𝐷𝑃 =  {𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑛}’ 

Output: congestion control-oriented robust goodput 

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_process
https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_process
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Step 1: Initialize time ‘𝑇’, learning rate ‘𝛼𝑅𝑔𝑖
= 0.02, 𝛼𝐴𝑣𝑔𝑖

=

90’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’, data packets ‘𝐷𝑃’ with nodes 

‘𝑁’ and energy-efficient data packet transitions 

//Layer 1 – input layer 

Step 4: For each mainstream ‘𝑚𝑠’ and sub-stream ‘𝑠𝑠’ 

Step 5: Formulate input state variable ‘𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠

’ 

Step 6: End for  

//Layer 2 – hidden layer 

Step 7: For each mainstream ‘𝑚𝑠’ and sub-stream ‘𝑠𝑠’ of the 

nodes ‘𝑁’ and data packets ‘𝐷𝑃’ 

Step 8: Formulate Normal Gaussian distribution of the nodes 

as in equation (6) 

Step 9: Evaluate Ornstein–Uhlenbeck rule fitness as in 

equation (7) 

Step 10: End for  

//Layer 3 – Normalized Stochastic Layer  

Step 11: For each mainstream ‘𝑚𝑠’ and sub-stream ‘𝑠𝑠’ of 

nodes ‘𝑁’ and data packets ‘𝐷𝑃’ with stochastic handover 

results to handle handover between operative and 

broadcasting model 

Step 12: Evaluate Normalized Stochastic function for ‘𝑛 

nodes as in equation (8) 

Step 13: End for  

//Layer 4 – congestion control by means of cache 

obliviousness  

Step 14: For each mainstream ‘𝑚𝑠’, sub-stream ‘𝑠𝑠’ of nodes 

‘𝑁’ and data packets ‘𝐷𝑃’ with normalized stochastic 

handover  

Step 15: Obtain the output layer result as in equation (9) 

Step 16: If ‘𝑉(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠) ≥ 1’ 

Step 17: No congestion 

Step 18: Data packet transmission between nodes or devices 

Step 19: Update updating the range ‘𝑅𝑔’ and average ‘𝐴𝑣𝑔’ 

of the ‘𝑖 − 𝑡ℎ’ hidden layer n as in equations (10) and (11) 

Step 20: Proceed with other nodes data packets  

Step 21: End if 

Step 22: If ‘𝑉(𝑆𝑡𝑎𝑡𝑒𝑇
𝑚𝑠,𝑠𝑠) < 1’ 

Step 23: Congestion is observed  

Step 24: No data packet transmission between nodes or 

devices 

Step 25: Proceed with other nodes 

Step 26: End if 

Step 27: End for  

Step 28: End for  

Step 29: End 

Algorithm 2 Cache Obliviousness Neural Adaptive 

Congestion Control Data Transmission 

As given in the above Cache Obliviousness Neural Adaptive 

Congestion Control Data Transmission algorithm with the 

objective of improving the goodput rate with minimum delay, 

a LSTM-based neural adaptive with Cache Obliviousness 

mechanism is designed. The LSTM-based neural adaptive 

with the aid of four layers performs smooth data transmission 

via the adaptive nature, therefore improving the goodput rate. 

Next, by employing the Cache Obliviousness mechanism 

caching is reduced. This is owing to the reason that the size 

of the cache is not known in advance, the blocks of data 

packets to be transmitted are split in a recursive manner with 

further subdivisions in the cache. By employing this split 

approach, a similar level of complexity is said to be arrived at 

for the overall matrix. With this goodput is said to be attained 

with minimum end-to-end delay. 

4. EXPERIMENTAL SETUP 

This section discusses the in-depth analysis of the proposed 

Ornstein–Uhlenbeck Transition and Cache Obliviousness 

Neural Adaptive (OUT-CONA) congestion control for 

Internet of Things and existing methods, adaptive aggregation 

[1], and hybrid deep learning [2] using four constraints, 

energy consumption, misclassification rate, goodput, and end-

to-end delay respectively. The proposed OUT-CONA method 

and the existing work were evaluated using Python tool by 

employing IoT Traffic Generation Patterns Dataset 

(https://www.kaggle.com/datasets/tubitak1001118e277/iot-

traffic-generation-patterns). The data from the IoT Traffic 

Generation Patterns Dataset have been obtained in the 

laboratory at Yasar University as part of The Scientific and 

Technological Research Council of Turkey (TUBITAK). 

Here, the first raw sensor readings were collected at the 

laboratory from sensors. Second, the data set for each such 

sensor has been transformed into bits with the purpose of 

forming the traffic generation pattern of each IoT device. 

Third and finally, the data set for 10,000 IoT devices have 

been modeled from the traffic generation patterns of these 

respective IoT devices. The IoT Traffic Generation Patterns 

Dataset consists of a structure array in the MATLAB structure 

format comprising 10001 rows and 5 fields. Here, the rows 

represent the IoT devices, where the first row is left empty 

https://www.kaggle.com/datasets/tubitak1001118e277/iot-traffic-generation-patterns
https://www.kaggle.com/datasets/tubitak1001118e277/iot-traffic-generation-patterns
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and in addition to each row, the following fields are provided 

in the table 2. 

Table 2 IoT Traffic Generation Patterns Dataset Description 

S. No Feature Description 

1 Data (KB) 

The data here represents the 

time-series data that represents 

the traffic generation pattern of 

respective device, measured in 

terms of kilobits. 

2 
Data rate 

(kbps) 

The data rate represents the 

corresponding IoT device rate 

of data whose unit is measured 

in terms of kilobits per second. 

3 
Start time 

(seconds) 

The start time offset refers to 

the corresponding IoT device 

starts generation. 

4 

Sampling 

period 

(seconds) 

The sampling period denotes 

the inter arrival time between 

traffic generation of 

corresponding IoT device. 

5 

Delay 

constraint 

(seconds) 

The delay constraint represents 

the IoT device that should send 

its traffic. 

4.1. Performance Analysis of Energy Consumption 

Energy consumption represents the amount of energy 

consumed for analyzing corresponding network traffic 

congestion toward robust data transmission. To be more 

specific, the energy consumption rate refers to the total 

amount of energy consumed towards ensuring congestion 

control data transmission between nodes or devices. Energy 

conservation in turn, therefore, results in more efficient 

mechanisms hence reducing the congestion in wireless 

networks.  

𝐸𝐶 = ∑ 𝐷𝑃𝑖
𝑛
𝑖=1 ∗ 𝐸𝐶 (

𝑑𝐷𝑃𝑡

𝑑𝑡
)  (12) 

From the above equation (12), energy consumption ‘𝐸𝐶’ is 

measured by means of data packets being ready for 

transmission in a wireless network and based on the data 

packets being sent by the devices or nodes ‘𝐷𝑃𝑖’ and the 

actual energy consumed for congestion control data 

transmission ‘𝐸𝐶 (
𝑑𝐷𝑃𝑡

𝑑𝑡
)’. It is measured in terms of joules 

‘𝐽’. Table 3 explains the energy consumption of various 

techniques. 

Table 3 Energy consumption using OUT-CONA, Adaptive 

aggregation [1] and Hybrid deep learning [2] 

Data 

Packets 

Energy Consumption (J) 

OUT-

CONA 

Adaptive 

Aggregation 

Hybrid Deep 

Learning 

25 0.875 1.075 1.225 

50 1.025 1.435 1.815 

75 1.345 1.825 2.135 

100 1.525 2.015 2.245 

125 1.845 2.234 2.855 

150 2.315 2.535 3.215 

175 2.455 2.815 3.535 

200 2.721 3.215 3.825 

225 2.945 3.455 4.155 

250 3.355 3.815 4.525 

Figure 4 illustrates energy consumption using 250 various 

data packets considered in the x-axis, calculated in joules. 

From the above figure, the number of data packets is found to 

be directly compared to energy consumption. While 

enhancing the data packets, state transitions between nodes or 

devices for transmission enhance as well therefore, energy 

consumption is enhanced. Consumption of energy is defined 

as the actual energy consumed for controlling traffic or 

congestion among nodes.  

An OUT-CONA technique illustrates minimal energy 

consumed compared with congestion control, Adaptive 

aggregation [1] as well as Hybrid deep learning respectively. 

To be more specific, the proposed OUT-CONA minimizes the 

energy consumption of data packets is lesser. Experimental 

evaluation of 25 data packets, energy consumption with OUT-

CONA is ‘0.875J’, ‘1.075J’, and ‘1.225J’ with [1] [2]. From 

the graph, the higher achievement using OUT-CONA of 

Ornstein–Uhlenbeck state energy-efficient transition 

significantly classifies radio node status (i.e., operative, idle, 

or broadcasting) based on various operating modes. Gauss 

and Markov's processes are utilized in obtaining the 

probabilistic node state transitions based on the probabilistic 

node state transitions via the Gauss process and multiple 

approximations made by means of Markov process, 

conditional distributions are attained. From this, the 

consumption of energy is said to be minimized by 18% and 

32% compared to [1] [2]. From the above results, it is inferred 

that the OUT-CONA SC method outcomes within a lesser 

packet drop rate for minimizing congestion or controlling the 

congestion significantly. 
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Figure 4 Analysis of Energy Consumption with Increasing Data Packet 

4.2. Performance Analysis of Misclassification Rate 

During handover i.e., between active and broadcasting modes, 

a certain amount of misclassification is said to take place (i.e., 

active mode is considered to be broadcasting mode and vice 

versa), therefore causing congestion.  

𝑀𝑅 = ∑
𝑁𝑂↔𝐵

𝑁𝑖
∗ 100𝑛

𝑖=1    (13) 

In (13), the misclassification rate ‘𝑀𝑅’ is calculated on nodes 

or the devices involved in the simulation of congestion 

control data transmission in wireless network ‘𝑁𝑖’ and the 

nodes in the handover stage ‘𝑁𝑂↔𝐵’ between operative ‘𝑂’ 

and broadcasting ‘𝐵’ mode respectively. It is measured in 

terms of percentage. Table 4 illustrates the misclassification 

rate with various techniques. 

Table 4 Misclassification Rate Using OUT-CONA, Adaptive 

Aggregation [1] and Hybrid Deep Learning [2] 

Nodes  Misclassification rate (%) 

OUT-CONA Adaptive 

Aggregation 

Hybrid Deep 

Learning 

50 88 92 94 

100 82.15 86.65 93.25 

150 82 86 92 

200 81.35 83.25 91.85 

250 78.55 86 91.35 

300 75.35 81.55 91 

350 73.25 80.35 90.45 

400 71.45 79 90 

450 71  79 88.35 

500 70.25 77 87.55 

Figure 5 given above shows the misclassification rate with 

respect to the increasing nodes ranging between 50 and 500. 

With x-axis represents the number of nodes or devices 

involved in the communication process, the y-axis denotes the 

misclassification rate involved in the analysis of congestion 

control during data transmission. From the above figure, the 

misclassification using the OUT-CONA method was found to 

be improved upon comparison with [1] and [2]. This is 

inferred from the simulation results, with 50 nodes involved 

in the simulation process, ‘47’ nodes performed the correct 

handover between operative ‘𝑂’ and broadcasting ‘𝐵’ mode 

using the OUT-CONA method, ‘46’ nodes performed the 

correct handover between operative ‘𝑂’ and broadcasting ‘𝐵’ 

mode using [1] and ‘44’ nodes performed correct handover 

between operative ‘𝑂’ and broadcasting ‘𝐵’ mode using [2]. 

This confirms the results. The reason behind the minimization 

of the misclassification rate using the OUT-CONA method 

was due to the application of the Ornstein–Uhlenbeck State 

Energy-efficient Transition algorithm. By applying this 

algorithm, first, operative and broadcasting modes were 

identified by means of Gauss and Markov processes 

separately. Next, the identified modes handover between 

operative and broadcasting were differentiated via the 

Percolation Centrality function. By applying this function, 

data sessions were only transferred between states without 

explicit disconnection, therefore reducing the 

misclassification rate using the OUT-CONA method by 7% 

and 15% compared to [1] [2]. 
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Figure 5 Analysis of Misclassification Rate with Increasing Nodes 

4.3. Performance Analysis of Goodput 

Goodput is similar to throughput in that it estimates the speed 

of data traveling the network from its starting point to its 

destination. Moreover, it estimates how fast and accurately 

data traverses the network and arrives at its desired location. It 

is evaluated by dividing the original or actual data divided by 

the transfer time. 

𝐺𝑃 =
𝐷𝑃𝑠𝑖𝑧𝑒

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇
     (14) 

From the above equation (14), the rate of goodput ‘𝐺𝑃’ is 

measured on the basis of the size of data packet ‘𝐷𝑃𝑠𝑖𝑧𝑒’ and 

the transfer time ‘𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇’. It is measured in terms of 

megabytes per second. For example, if a node consisting of 5-

megabyte file may require 300 kilobytes of header 

information as well as acknowledgments to be transferred 

through the data transfer procedure, goodput is said to be the 

original 5 megabytes separated with the transfer time. Table 5 

illustrates goodput values of various techniques. 

Table 5 Goodput Rate Using OUT-CONA, Adaptive 

Aggregation [1] and Hybrid Deep Learning [2] 

Nodes  Goodput (%) 

OUT-CONA Adaptive 

Aggregation 

Hybrid Deep 

Learning 

50 3.33 2.94 2.63 

100 3.85 3.15 2.85 

150 4.25 3.85 3.35 

200 4.95 4.15 3.55 

250 5.35 4.45 3.95 

300 6.15 4.85 4.15 

350 6.35 5.25 4.55 

400 6.95 5.35 4.95 

450 7.25 5.85 5.25 

500 7.55 6 5.85 

Figure 6 given above shows the goodput rate of OUT-CONA, 

Adaptive aggregation [1] as well as Hybrid deep learning [2] 

in accordance with the different numbers of nodes or devices. 

As shown in the above figure, increasing the number of 

nodes, higher numbers of nodes get collected within the cache 

as well as congestion. As a result, nodes are directly relative 

to the goodput rate. Increasing the number of nodes involved 

in the simulation process, considerably only a smaller amount 

of increase in goodput is said to occur. Experimental 

evaluation of 50 nodes, it was found that ‘1.5s’ were involved 

in the data transfer using OUT-CONA, ‘1.7s’ were involved 

in the data transfer using [1] and ‘1.9s’ were involved in the 

data transfer using [2]. With this, the rate of goodput was 

observed to be ‘3.33Mbps’, ‘2.94Mbps’, and ‘2.63Mbps’ 

using OUT-CONA, [1, 2] respectively. From the above 

results, it is inferred that the OUT-CONA attains better 

congestion control upon comparison with [1, 2]. The reason 

the OUT-CONA method combines factors is analyzed using 

the Cache Obliviousness-based Congestion mechanism. From 

utilizing an integrated algorithm, measures are focused as well 

hence ensuring a better rate of goodput. With this, the 

goodput rate using the OUT-CONA method was 

comparatively higher by 21% and 36% compared to [1] [2]. 

 

https://pc.net/glossary/definition/megabyte
https://pc.net/glossary/definition/kilobyte
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Figure 6 Analysis of Goodput Rate with Increasing Nodes 

4.4. Performance Analysis of End-to-End Delay 

It is defined as the time consumed to transfer the packet 

across the network (i.e. IoT-enabled wireless network) 

between the source and destination node. It is evaluated as 

given below. 

𝐸2𝐸𝐷 =  ∑ 𝐷𝑃𝑖 ∗ 𝑇𝑖𝑚𝑒 [𝑆 → 𝐷]𝑛
𝑖=1   (15) 

In equation (15), ‘𝐸2𝐸𝐷’ is evaluated on the basis of the 

number of data packets involved in the simulation towards 

congestion control data transmission in wireless network 

‘𝐷𝑃𝑖’ and time is taken for transmitting the data packets 

‘𝑇𝑖𝑚𝑒 [𝑆 → 𝐷]’ respectively. It is measured in terms of 

milliseconds (ms). Table 6 illustrates end-to-end delay values 

for various techniques. 

Table 6 End-to-End Delay Using OUT-CONA, Adaptive 

Aggregation [1] and Hybrid Deep Learning [2] 

Data 

Packets  

End-to-End Delay (ms) 

OUT-CONA Adaptive 

Aggregation 

Hybrid 

Deep 

Learning 

25 8.75 11.25 12.5 

50 10.45 13.35 17.55 

75 11.25 21.35 25.35 

100 13.55 25.25 31.35 

125 18.25 28.15 35.35 

150 19.35 30.35 40.55 

175 21.45 35.45 43.15 

200 23.25 38.25 48.25 

225 25 41.35 55.25 

250 28.55 45.55 60 

Figure 7 shows the delay observed for controlling congestion 

with OUT-CONA and Adaptive aggregation [1] as well as 

Hybrid deep learning [2] respectively. In the figure, data 

packet increase causes the involvement of better IoT-enabled 

nodes in a wireless network. Simulation evaluation of 25 data 

packets of delay was attained as ‘8.75 ms’ with OUT-CONA, 

‘11.25 ms’ with [1] as well as ’12.5 ms’ with [2].  

Experimental evaluation is attained for the OUT-CONA 

method to achieve the higher performance of the two methods 

in average delay. The enhancement is obvious as data packets 

shoot up, where time consumption of data packets traveling 

among source as well as a destination goes through the 

ceiling. As specified before, the OUT-CONA method takes 

into consideration of each data packet transmission.  

Though, Adaptive aggregation [1] schedules data packets on 

IoT traffic types, as the Hybrid deep learning [2] data packets 

on hybrid AI-based solution without considering the end-to-

end path situation. Owing to this reason, existing methods are 

more highly sensitive than OUT-CONA with a number of 

hops. It degrades the delay performance by 26% and 49% 

compared to [1] [2]. 

 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/218512                 Volume 10, Issue 1, January – February (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       82 

     

RESEARCH ARTICLE 

 

Figure 7 Analysis of End-to-End Delay with Increasing Data Packets 

5. CONCLUSION 

In this paper, an Ornstein–Uhlenbeck Transition and Cache 

Obliviousness Neural Adaptive (OUT-CONA) congestion 

control method for efficient data transmission in a wireless 

network is proposed. To start with, a novel Ornstein–

Uhlenbeck State Transition scheduling model is designed to 

differentiate between three distinct modes. Next, the Gauss 

and Markov Processes based Estimation of State Transition 

along with the Percolation Centrality function is applied to 

both reduce the energy consumption and misclassification 

rate. Next, the Cache Obliviousness Neural Adaptive 

Congestion Control Data Transmission algorithm is designed 

to solve the congestion by addressing overflow and providing 

via data sending rate and handover rates for IoT-enabled 

wireless networks. By utilizing blocks of data packets to be 

transmitted are split in a recursive manner with further 

subdivisions in the cache, therefore, improving the rate of 

goodput with minimum end-to-end delay. Simulation results 

verify and validate the efficiency of the proposed method in 

terms of energy consumption, misclassification rate, goodput, 

and end-to-end delay compared to the existing methods. 
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