
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 350

RESEARCH ARTICLE

A Container Migration Technique to Minimize the

Network Overhead with Reusable Memory State

Gursharan Singh

Department of Computer Science and Engineering, Lovely Professional University, Punjab, India

gursharan.16967@lpu.co.in

Parminder Singh

Department of Computer Science and Engineering, Lovely Professional University, Punjab, India

parminder.16479@lpu.co.in

Received: 05 May 2022 / Revised: 06 June 2022 / Accepted: 17 June 2022 / Published: 28 June 2022

Abstract – Cloud computing is a new computing technique for

massive data centers that keeps computational resources online

rather than on local machines. As cloud computing grows in

popularity, so does the need for cloud resources. Container

placements on physical hosts in Infrastructure-as-a-Service data

centers are constantly tuned in response to the usage of host

resources. When a container is migrated, a huge amount of data

is transferred between hosts, and in some cases when it migrates

back then the same amount of data is transmitted again. In this

paper, the proposed approach for container migration to

migrate back to the same host is described. Container migration

enables load balancing, system maintenance, and fault tolerance,

among other things. In some cases, the container will migrate

back to the same host. The original image kept on the source

host can be reused in such cases. The memory pages similar to

the source image will not be sent back; only the updated pages

will be transferred. This approach helps in reducing the amount

of data transmission over the network. Furthermore, if the

container image is kept on the source host, it will provide

demand paging and help recover from failure at the destination

host. The result shows the average rate of reduction in the data

transfer over the network by 60.68% compared to standard pre-

copy and 52.30% compared to advanced pre-copy.

Index Terms – Container Migration, Pre-Copy, Dump Reusing,

Page Recovery, Network Overhead, Memory Prediction.

1. INTRODUCTION

The need for cloud computing has eased the dynamic

deployment of computing, networking, and storage resources

to provide on-demand services [1]. Traditionally, directly

executing on the operating systems has been the core piece for

hosting the service by employing the resources [2]. With the

advancement of virtualization, one of the vital virtualization

technologies used to host cloud services, virtual computers

(containers) may share processing, networking, and storage

resources from real machines. Due to its flexibility and tiny

footprint, the container, on the other hand, is the growing

virtualization instance to offer a more elastic services

architecture [3]. Under various Service Level Agreements

(SLAs), application providers can lease virtualized instances

(containers) from cloud providers of several types. The

instances are then initialized by the container or container

administrators. The cloud broker or orchestrator chooses the

best possible placement based on the available resources and

the allocation rules [4].

Figure 1 Categories of Container Migration

The live migration of processes, virtual machines, containers,

and storage is a critical component in cloud computing for

supporting dynamic resource management. It can migrate and

synchronize the operating state of an instance of a container

from one host to another without affecting services. [5]. Live

migration provides a general solution that does not require

application-specific configuration or administration.

Many studies have been conducted on resource utilization

through live migration, such as fault tolerance, load

balancing, system upgrade, hardware and software

maintenance, etc. AWS, Azure, Google, IBM, RedHat, and

mailto:gursharan.16967@lpu.co.in
mailto:parminder.16479@lpu.co.in

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 351

RESEARCH ARTICLE

other cloud service providers have begun to integrate live

container migration.

1.1. Background

It is critical for migration management to reduce migration

costs and maximize migration performance while meeting

resource utilization goals. Live migration and virtualization

are the leading performance factors of cloud computing [6].

Virtualization is achieved with the live migration of container

instances, where the type of migration and the amount of data

transfer are the two main factors [7]. The types of migration

are illustrated in Figure 1 and further discussed in detail in

Section 1.3.

The solutions for migration management and problems since

dynamic resource management necessitates several instances

of migrations to fulfill the objectives is highlighted. In

addition, we examine relevant state-of-the-art works and

identify future research opportunities.

1.2. Virtualization

Figure 2 System Configuration and Container Placement

when Source Host is Idle

The virtual machine and the container are the two industry-

standard solutions for virtualization used in live migration.

This part introduces the container runtimes and the memory

tracking method that enables isolation and virtualization of

resources. The container runtime is software that generates

and maintains containers on a computing node. Apart from

Docker, many others include containers, Container Runtime

Interface (CRI), and low-level container runtime (runc). Live

container migration standards are Checkpoint and Restore in

Userspace (CRIU) [8]. It uses Process Trace (ptrace) to

capture processes and inject parasite code that dumps the

process’s memory pages into the image file using its address

space. Additionally, the state of the task assigned, registry

entries, linked files, and the credentials are captured and

preserved in the container’s dump files. While a process tree

is being checked, CRIU produces checkpoint files for each

linked child process. CRIU uses information from the dump

files created during checkpointing to restore processes on the

destination host.

If a system is in the ideal situation, then it can handle the

containers. When a system is overloaded then it will initiate

the migration process of some instances (containers) to

transfer them to another available host. This can happen in

some other situations as well like fault tolerance, load

balancing, system upgrade, etc.

Figure 3 System Configuration and Container Placement

when Source Host is Overloaded

As shown in Figure 2, "Host A" is managing all the containers

from C1 to C6. But when the Host system is overloaded for

may be due to any other reason, then it will start migrating the

containers to other available Hosts. The scenario after the

migration is shown in Figure 3.

1.3. Migration Types

Migration allows you to access the resources, processes, and

containers virtually. The migration of instances and storage

may be classified as "cold" and "live" migration. There are

three types of live migration: pre-copy, post-copy, and hybrid

migration [9]. The system design of live migration and its

continual adjustment and refinement aims to reduce total

migration time and the amount of data transmission. The time

when the container service is not available due to

synchronization requirements is counted as downtime. The

migration time for a single instance is between the start of the

pre-dump phase and the completion of the post-migration

phase during which the instance is operating on the

destination host [10]. A memory transfer of the container may

be classified into three phases to do a performance trade-off

analysis:

1) The push phase, during which the instance continues to

execute on the source host and the related memory and data is

pushed to the destination host across the network.

2) A stop-and-copy phase in which the instance is first

stopped and then memory and data is transferred over the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 352

RESEARCH ARTICLE

network to the destination. The instance will continue at the

destination after the conclusion of the phase.

3) The pull phase, during which the new instance operates

while retrieving faulty memory pages.

Cold Migration: In comparison to live migrations, it includes

the transfer of a single copy of memory and disc or a dump

file for a single container checkpoint from the source to the

destination host. In other words, this category includes stop-

and-copy approach. While cold migration is more

straightforward than live migration. The amount of data

transfer and the migration time directly depends on the nature

of the task and the amount of data assigned.

Pre-copy migration: It transfers the container memory in

multiple iterations. A single page is migrated many times

depending on the number of iterations. Optimized pre-copy

on the transfer of the modified pages in these iterations.

During this process, the container is running [11]. It is

classified into the following phases:

1) Initialization: The first step is to select the target host to

expedite subsequent migrations.

2) Reservation: configures the shared file server (optional)

and initializes an instance container on the destination host for

the reserved resources.

3) Iterative pre-copy migration: It transfers the modified

pages to the destination host. In the initial round, the initial

memory states are duplicated.

4) Stop-and-Copy: When this process meets the threshold

value in terms of the number of iterations or the amount of

data transfer, that is the last iteration.

5) Commitment: The sync of the source host will get the

destination host’s commitment to the successfully cloned

instance.

6) Activation: The new instance is allocated reserved

resources.

The post-copy container migration technique suspends the

instance at the source and restarts the same instance on the

destination host by transferring the container execution states

and remaining pages. If any page is unavailable at the

destination host, the page fault occurs, and the same page will

be accessed from the source host. The service will also break

if the running instance fails, since the originating host does

not have a running instance with its memory set. Compared to

pre-copy migration, a post-copy technique can significantly

reduce the migration process's time. The main reason for the

decrease in performance is the regular demand for memory

pages from the source copy.

To strike a balance between the three phases of live migration,

hybrid post copy [12] uses a hybrid approach. Pre-copy and

post-copy migrations can also be used as an optimization

approach. It all starts with the pre-copy approach, which

copies dirty pages repeatedly. If the memory copy iteration

fails to attain a specific percentage increase over the previous

iteration, the post-copy migration will be activated. The

migration time will be reduced in some cases, but the

downtime will be somewhat higher. There are certain

downsides to post-copy migration, such as slower processing

speeds and the possibility of container reboots if the network

is unstable when extracting faulty pages.

This paper is organized as follows: Section 2 describes the

literature review and the research gap. The problem

identification, along with the objective of the study, is

discussed in Section 3. The tools and techniques used in the

proposed system and the memory reusing model are discussed

in Section 4. The experimental setup is discussed in Section 5.

In Section 6, the evaluation of the system model is elaborated

in detail and concluded in Section 7.

2. LITERATURE REVIEW

Virtualization in cloud computing has dramatically improved

due to the development of containers. When compared to

virtual machines, container migration is much more efficient.

Cloud services are now migrating to a container environment,

necessitating new research to improve this technique.

Karhula et.al. have examined the notion of function as a

service for IoT edge devices. The checkpointing method to

conserve resources on resource-constrained devices to halt

long-running blocking functions is used [13]. Additionally,

the live container migration using CRIU is demonstrated. The

assessment demonstrates good results for IoT device

checkpoints capability. In IoT systems, these building pieces

can be used for the fault-tolerant, offload resources, and boost

efficiency and availability at the IoT edge. For the purpose of

freezing a running container, Jiaxin Feng et. al.[14] Describe

the CRIU. Compared to the re-deployment technique, the

restored container takes stateful migration to retain its state

after being frozen. The CSS approach selects and migrates the

container with a capacity of 512MB. The container migration

time is 48 seconds, significantly faster than the time required

for standard minute-level wireless reconfiguration.

Load balancing is presented using the migration method based

on the two options. Compared to the conventional wireless

reconfiguration technique, the migration mechanism may

preserve the DU/state CU’s while requiring minimal service

interruption. It is to handle memory properly. Janaina

Schwarzrock et al. highlighted the concept of virtual memory,

like page faults and TLB, which increases control switching

between hosts and affects the overall performance. The

transition overhead establishes a reliance between various

local setups and should be considered in online techniques

[15].

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 353

RESEARCH ARTICLE

Ranjan Sarpangala et al. described the development and

operation of VAS CRIU, a novel technique for reducing

memory checkpoint and restore time utilizing task address

space [16]. After their first launch phase, applications may be

snapshotted into a VAS and then immediately restored into

fresh container instances. Additionally, the snapshot might

contain information about popular pages, which could be used

for page pre-copying. A system that monitors containers'

performance and the hosts on which they run. Analyzing,

describing, and developing forecast models can benefit from

this data. Microservices and NFVs are two use cases that are

considered. They have fine-tuned resource provisioning

techniques by analyzing data from the monitoring system to

establish a cloud provisioning platform that enhances

container workload utilization and implementation through

live migration. All the details of our lightweight resource

monitoring tool, which allows for the offline and real-time

examination of active migration workloads, along with the

impact on their hosts, are described [17].

Florian Hofer et al. propose a migration architecture and

demonstrate that containerized apps may run on shared

resources without jeopardizing planned execution within

specified time restrictions via a custom-built orchestration

tool [18]. They investigate the boundaries of three system

configurations using latency and computational performance

studies and write a summary. Using Layrub, a data placement

approach for GPU-accelerated deep learning. DNN models of

all shapes and sizes may be trained using Layrub’s

extraordinary memory optimization. Experimentation has

shown that Layrub can reuse a consistent amount of memory

space no matter how deep the network is. The authors further

highlight the advantages of Layrub by comparing it favorably

with GeePS, vDNN, MXNet, and TensorFlow on several

DNN models and datasets. Using Layrub might help you keep

your memory as efficient as possible [19].

Evangelos Vasilakis et al. provide a novel data migration

technique for hybrid memory systems that accounts for the

overheads mentioned above and significantly increases

migration efficiency and effectiveness [20]. It is based on

discovering that migrating memory segments stored in the last

level cache reduce migration load. Their solution is based on

the current status of the last level cache to forecast reuse and

prioritize memory segments for transfer. Thus, when

segments are present in the last level cache, they are

transferred at a lower cost. The results demonstrate that our

technique beats existing state-of-the-art migration designs by

12.1% in terms of system performance and 13.2% in-memory

system dynamic energy reduction.

Mathematical modeling, heuristic, machine learning, and

meta-heuristic are the four basic types of container scheduling

algorithms. Machine Learning is the ideal solution for

anticipating workloads and performance indicators because of

its great capacity to validate the system to anticipate outputs

based on prior data and training. In complex work contexts,

such a view helps schedulers with better resource allocation

while dealing with shifting user request rates [21].

Gundall et al. provides a unique paradigm is offered that relies

on both existing migration methodologies and virtualization

technologies, with the primary goal of reducing service

downtime. A test set is also used to examine the notion. The

results suggest that the proposed strategy can achieve a

reduced downtime. Furthermore, the overall migration time

for the maximum performance option is in milliseconds [22].

Terneborg et al. expand container migration with a proposed

method that supports fail-over and live migration, which

means it might be incorporated into existing container tools.

Furthermore, evaluation results are supplied, which may be

used to compare to an existing migration approach [23]. They

have also discussed the current migration methodologies and

metrics for assessing different migration approaches. They

have accomplished a lower total migration time and downtime

similar as of pre-copy migration [24].

Zhi et al. intend to save cost on resources by using as few

machine resources as feasible by using a suitable dynamic

container migration capability, therefore cluster-scale layout

of container has been the topic of this paper. A method is

presented to decrease fragmentation, hence improving

machine resource efficiency and achieving the cost-cutting

aim. Experiments indicate that the method efficiently prevents

fragmentation and reduces resource consumption in container

layouts on a wide scale [25].

Zheng et al. offer a scheduling technique for a two-level

approach for container real-time resources. To decide on

container migration, LTSM is utilized to estimate resource

use and select the environment. In addition, for simulation

trials, they used CloudSim, an open-source program. The

results demonstrate that the method may increase the global

resource utilization of containers while lowering data center

energy usage [26].

Yang et al. An online prediction approach called user

trajectories is given to address the challenge in prediction

accuracy. A scheduling algorithm is designed to identify

servers based on user movement speeds and latency to reduce

duplicate network traffic. The results of our tests indicate that

the proposed prediction methods outperform the usual

technique. It reduces network traffic by 65\% while meeting

task delay standards. Furthermore, it adapts to changes in the

user's journey speed and surroundings to ensure service

stability [27].

Chen et al. In the container migration, the PSO is used for

hyper-parameter adjustment in order to enhance the model's

prediction performance. The findings of the experiments

suggest that autonomous hyper-parameter adjustment can

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 354

RESEARCH ARTICLE

increase prediction accuracy. Meanwhile, in MSE, R2, and

MAE, the prediction performance is better than the previous

system without managing hyper-parameters by 19.3\%, 4\%,

and 11.7\%, respectively, compared to the existing system

without managing hyper-parameters. Furthermore, the PSL

beats other algorithms like as RNN, GRU, and LSTM in

terms of prediction performance [28].

Dai et al. \cite{dai2021deep} predicting failure before it

occurs is critical for making the cloud service more effective.

The ability to forecast defective nodes allows service to be

migrated to healthy nodes, increasing service availability. To

successfully handle this problem, proactive fault prediction

approaches to forecast future failures can be employed. In this

research, using time series data to forecast the failure in a

cluster using the bidirectional LSTM model [29].

Prediction of memory changes is the core component of pre-

copy container migration. It should be chosen wisely

according to pre-copy migration's pre-dump, iterative, and

final dump phases. A prediction scheme or set of multiple

methods should be applied to the memory pages to be

migrated to the destination host to improve the prediction

mechanism. Some of the popular schemes available are

Particle Swarm Optimization (PSO) based prediction

schemes, Long Short-Term Memory (LSTM) based schemes,

and Artificial Neural Network (ANN) based schemes.

3. PROBLEM FORMULATION

With the increasing popularity of containers in cloud

computing the data transmission also increases over the

network, which leads to high network traffic. Although the

container helps to minimize the migration size compared to

VMs, it can still be reduced further. The primary disadvantage

of existing live migration approaches is that they need

extensive data transfer to relocate a container. Transferring a

huge volume of data introduces two complications:

1) The migration process results in memory accesses that

decrease the performance of containerized apps.

2) Consolidating several containers onto a single host

simultaneously congests the host’s network and slows the

consolidation.

A memory reuse approach to minimize the quantity of data

exchanged during live migration is suggested. A container

may migrate back to the host on which it was previously

operated. When the container migrates away from the host,

the memory image is retained on the host, and the image is

reused when the container migrates back to the host later. The

reduced data volume results in a faster migration time and

enhanced optimization via container placement algorithms.

The container migration technique used in this method is pre-

copy, and in the case of the pre-copy migration technique, the

process is divided into three phases. These phases are called

pre-dump, iterative dump, and final dump. As mentioned

earlier, this method comes after all three of these three phases.

The memory is reused in the event of container migration to

reduce the data transmission over the network.

Figure 4: (a) The Process of Transferring the Complete Set of

Memory Pages from Source to Destination Host During

Container Migration and (b) Shows the Process of

Transferring Highlighted Pages Back to the Source Host

As you can see in Figure 4(a), it shows the migration from

source to destination, where the first three phases of pre-copy

are applicable. In the case of standard pre-copy migration, all

the memory pages or the related configuration are migrated to

the destination host. Now we are going to extend this

migration process further.

Suppose a container is migrated to another host due to any of

the following reasons: fault tolerance, system update, load

balancing, or any other reason. In that case, there is a chance

that the container will come back to the same host once the

purpose of migration is achieved. In the case of common

techniques, while migrating back to the source host, the same

migration process of copying memory pages from the

destination host back to the source host is followed.

In the proposed technique, when it is decided to migrate back

to the same host, it will not send back all the memory pages

that are currently on the destination host. As you can see in

Figure 4(b), the pages indicated in red are those that have

been modified by the destination host. Only the modified

pages will be transmitted to the source host when migrating

back. The proposed methodology is explained in Figure 5. If

the request to migrate the container is initiated, then it will

send back only the modified pages.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 355

RESEARCH ARTICLE

Figure 5 The Detailed Process of Proposed Methodology

4. SYSTEM MODEL

Figure 6 The ANN Prediction Model Architecture used in

Proposed System Model

The proposed migration model works in two different phases.

Phase 1 is the container migration from source to destination

using the predictive pre-copy approach. LSTM is used to

predict the set of pages to be migrated in the iterative dump in

this approach. Memory migration is predicted using the

LSTM in a network model. An ANN is used to create the

prediction model’s architecture. This model utilizes three

input layers that interact with a hidden layer of ten cells

(LSTM cells) to produce a single output layer as shown in

Figure 6. Where t1, t2, and t3 represent the input layers, n1,

n2...n3 denotes the LSTM cells and t in the final single layer

output. Each LSTM cell used in Figure 6 as n1, n2...n3 is

represented as shown in Figure 7. This is a representation of

each cell used in the ANN network.

The LSTM module comprises three gates: the forget gate,

input gate, and output gate. The quantity of data that can pass

via these gates is limited. A sigmoid function and an

operation are used in each gate. The dotted line handles the

data generated by these gates. The union of ht-1 and xt

determines the value of the Sigmoid function, which is

between 0 and 1. The output is obtained by multiplying the

sigmoid result by the gate’s input. If the sigmoid result is 1,

for example, the gate output will be the same as the input

since it is multiplied by one. The unit processes the input data

for each input vector to the LSTM network as follows:

Figure 7 LSTM Cell Architecture

1) A new vector will be created by adding the ht − 1

(hidden state vector) and xt (input vector). The newly

created vector will used as input to tanh function and to

the three gates.

2) The flow of previously stored cell states regulated by

the forget gate:

ft = sig(Wf ∗ [ht − 1, xt] + bf)

3) The Ct candidate value for the present cell state is

calculated as follows:

Ct = tahn(Wc ∗ [ht − 1, xt] + bc))

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 356

RESEARCH ARTICLE

4) The amount of Ct to be added to current cell is fixed

by input gate and then Ct multiplies with it.

it = sig(Wi ∗ [ht − 1, xt] + bi))

5) The final calculated Ct is as:

Ct = ft ∗ Ct − 1 + it ∗ Ct

6) The output gate determines how much Ct is passed to

the next cell. The hidden state ht is calculated as follows:

Ot = sig(WO ∗ [ht − 1, x(t)] + b0))

ht = Ot ∗ tanh(Ct)

Phase 2 of the proposed technique is to migrate back to the

same source host. The migration process is different in this

case. Instead of transferring all the memory pages related to a

container, this technique will send only the modified pages.

This reusing technique reduces the data transfer with a huge

difference. If a particular memory page is not modified on the

destination host, then that page will not participate in

migration back to the same source.

5. EXPERIMENTAL SETUP

Using the time series of the prior three observations, this

network design can anticipate the next batch of pages that will

be transferred. There are two possible circumstances in which

this model can be used. The first approach is called single-

step prediction, and it makes a single forecast based on

several time-series inputs. Direct and recursive prediction are

the other two methods of multi-step prediction.

Table 1 LSTM Model Configuration Parameters

Parameters Range

Input size 3

Output size 1

Number of LSTM Layers 1

Number of LSTM Units 1

Kernel initializer Lecun uniform

Loss function MSE

Optimizer adam

Batch size 64

Number of epochs 10

The mean square error is the loss function used to train LSTM

and ANN prediction models. This prediction model is trained

using a multi-step direct technique to forecast the number of

active pages moved in the subsequent round. The model was

trained using a Tensor Processing Unit (TPU) supplied by

colab. The configuration parameters are listed in Table 1.

Result: Set of Modified Pages

Parameters: db, Pid, r, Rmax

while r ≤ Rmax do

while (mempool) do

if Pid.db TRUE then

M pool.append(Pid)

end

end

r+ = 1

end

return (Mpool [Pid])

Algorithm 1 To Identify Modified Pages in Pre-Copy

Container Migration Process

Algorithm 1 will return the set of modified memory pages.

The parameters used in this Algorithm 1 are as: Pid is

representing pages of memory pool with page id, Rmax is the

maximum number of iterations and db is a Boolean data

member to store dirty bit status, r is set to 1 and it is used for

rounds/iterations. According to the selected memory pool 1

≤r≤Rmax and Rmax = 10.

Figure 8 System Architecture to Identify Updated Pages using

LSTM

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 357

RESEARCH ARTICLE

When a container is migrated from any source host to

destination, then all its memory along with its system

configuration is sent to the destination host. Once it is

acknowledged by the receiving host, then the memory dump

is removed from the source host as shown in Figure 9(a).

Everything related to that container is available on destination

host only. In this standard pre-copy technique, there is no

option to recover the pages from source host.

The LSTM is integrated with the proposed prediction system.

As shown in Figure 8, the array represents the memory pages

in each round. Where P1,P2,Pn represents the memory pages

and R1,R2,Rn denote the number of iterations.

The updated status of each page will be stored in "Page

Modification History". This will be provided as an input to

the LSTM module. In this module, the cells mentioned in the

ANN network are used to predict the updated pages. This

process will be repeated up to the maximum number of

iterations. This module will produce the final set of memory

pages to be migrated to the destination host. We proposed a

technique to provide page recovery and reuse the memory

while migrating back to the same host. The LSTM is used to

migrate from source to destination only. When it is decided to

migrate back to the same host, we will migrate back only the

modified pages The rest of the pages will be recovered from

the copy of dump at host as shown in Figure 9(b). The set of

pages identical to the pages at source host, will be discarded.

This complete scenario is implemented with container

CloudSim 4.0 and LSTM algorithm used to predict memory

pages to be migrated.

Figure 9 The Process of Transferring the Container Memory where a). Depicts the Existing Approach, in which the Container’s

Memory is Deleted from the Source Host when it is Migrated to the Destination Host and b). is a Proposed Approach for

Providing Page Recovery by Keeping Memory on the Source Host Following a Successful Migration.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 358

RESEARCH ARTICLE

6. PERFORMANCE AND EVALUATION

Migration performance and cost modelling is an essential

component of migration management to assess and forecast

migration requests' overall cost and performance. Single

migration performance indicators have been the subject of

several studies. We categorize these indicators according to

time and data quantity. Data transmission size is the critical

element for determining the network overhead associated with

network migration. It is substantially positively associated

with migration time for pre-copy migration. The overall

quantity of data transmitted equals the sum of the amounts

transmitted on each occasion. It consists of two components:

memory data and storage data.

Figure 10 The Amount of Data Transferred when Migrating

Back to the Same Host with 15 Test Cases. Where Test Cases

1 to 5 were Implemented with 5 Containers, 6 to 10 with 10

Containers, and 11 to 15 with 15 Containers by using the

Standard Pre-Copy, Advanced Pre-Copy, and the Proposed

Technique which Revert only Updated Pages

Figure 11 The Amount of Data Transferred with the Batch of

5 Containers, 10 Containers, and 15 Containers by using the

Standard Pre-Copy, Advanced Pre-Copy, and the Proposed

Technique

For better understanding and outcomes, we have tested the

proposed memory reusing approach on different containers.

There are 15 test cases, wherein the first 5 test cases, the set of

5 containers, are implemented. As mentioned in Figure 10, the

number of bytes transferred during the migration of containers

is specified. The memory transfer with the existing approach

[30] is represented in red. And according to the proposed

approach, when it is migrating back to the same host, we are

reverting only the updated pages. You can see the difference

in data transfer in the proposed technique as represented in the

red-green color. The yellow color represents the migration

from source to destination with the proposed scheme of our

previous research.

We have stored the memory dump copies of the containers

migrated to the destination host. Because in some cases, when

containers are migrated due to load balancing, fault tolerance,

system upgrade, etc., the container migrates back to the same

host. As we mentioned in the process of memory reusing in

Section 3, when the container is migrated back to the same

host, we send only the modified memory pages. These copies

of the memory dump at the source will be used to initiate the

containers on the source host. In the proposed technique, there

is an additional space overhead on the source host. This

additional space overhead will occupy the memory of the host

system only. But with this small overhead, we can reduce the

costly data transmission over the network. The result shows,

the data transfer during migrating back is reduced.

Figure12 The Average Rate of Data Transferred when

Migrating Back to the Same Host with the Batch Size of 5

Containers, 10 Containers, and 15 Containers by using the

Standard Pre-Copy, Advanced Pre-Copy, and the Proposed

Technique

In the same way, we have run containers in three batches of 5,

10 and 15 containers. Results shows that, if the number of

container increases in a batch of migration, then the

percentage of data transmission over the network is improved.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 359

RESEARCH ARTICLE

Further in Figure 11, the amount of data transferred during

existing approach of container migration and the proposed

technique are shown. Here we can identify the difference in

the transmission.

The rate of data transfer in the standard pre-copy approach,

advanced pre-copy, and the proposed pre-copy approach are

discussed in detail. The average rate of data transferred when

migrating back to the same host with a batch size of 5

containers, 10 containers, and 15 containers is illustrated in

Figure 12.

With the proposed reusing mechanism of container

migrations, the memory state stored at the source host is

utilized while migrating back and helps in reducing the data

transmission over the network. The number of bytes

transferred in the proposed technique is much lower than the

existing techniques. It shows the average rate of reduction in

the data transfer over the network by 60.68% compared to

standard pre-copy and 52.30% compared to advanced pre-

copy.

7. CONCLUSION

The migration process is divided into three phases in the pre-

copy container migration technique. The first two phases are

pre-dump and iterative dump. The pre-dump was

implemented with the PSO algorithm and the iterative dump

is implemented with LSTM. After that in the final dump, the

memory related to the container will be removed from the

source host. We recognized a few cases (fault tolerance,

system upgrade, load balancing, etc.), where containers go

back to the same host. In such cases, we have implemented

the proposed migration technique that helps to reduce the data

transfer over the network and it outperforms compared to the

existing system. As a future direction, this technique can be

implemented in various cloud environments like VMs used

for various services, fog, edge computing, etc., where the

instances are moving rapidly. The other alternative is to use

the centralized instance image to reduce data transfer between

source and destination host. In such cases, we have

implemented the proposed migration technique that helps to

reduce the data transfer over the network. This can be further

enhanced by ensuring whether the container will be migrated

back or not. Accordingly, the approach to migration will be

decided.

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patter-son, Ariel

Rabkin, Ion Stoica, et al. A view of cloud computing. Communications
of the ACM, 53(4):50–58, 2010.

[2] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and

Anand Ghalsasi. Cloud computing—the business perspective. Decision
support systems, 51(1):176–189, 2011.

[3] Dirk Merkel et al. Docker: lightweight linux containers for con-sistent

development and deployment. Linux journal, 2014(239):2, 2014.

[4] Ann Mary Joy. Performance comparison between linux containers and

virtual machines. In 2015 International Conference on Advances in
Computer Engineering and Applications, pages 342–346. IEEE, 2015.

[5] Ying Mao, Yuqi Fu, Suwen Gu, Sudip Vhaduri, Long Cheng, and

Qingzhi Liu. Resource management schemes for cloud-native platforms
with computing containers of docker and kubernetes. arXiv preprint

arXiv:2010.10350, 2020.

[6] Gursharan Singh, and Parminder Singh. "A Taxonomy and Survey on
Container Migration Techniques in Cloud Computing." In Sustainable

Development Through Engineering Innovations, pp. 419-429. Springer,

Singapore, 2021.
[7] Keerthana Govindaraj and Alexander Artemenko. Container live

migration for latency critical industrial applications on edge computing.

In 2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), volume 1, pages 83–90. IEEE, 2018.

[8] Gursharan Singh, Parminder Singh, Mustapha Hedabou, Mehedi

Masud, and Sultan S. Alshamrani. "A Predictive Checkpoint Technique

for Iterative Phase of Container Migration." Sustainability 14, no. 11:

6538, 2022.

[9] Alessandro Ferreira Leite, Azzedine Boukerche, Alba Cristina
Magalhaes Alves de Melo, Christine Eisenbeis, Claude Tadonki, and

Célia Ghedini Ralha. Power-aware server consolidation for federated
clouds. Concurrency and Computation: Practice and Expe-rience,

28(12):3427–3444, 2016.

[10] Radostin Stoyanov and Martin J Kollingbaum. Efficient live migration
of linux containers. In International Conference on High Performance

Computing, pages 184–193. Springer, 2018.

[11] Carlo Puliafito, Carlo Vallati, Enzo Mingozzi, Giovanni Merlino,
Francesco Longo, and Antonio Puliafito. Container migration in the fog:

A performance evaluation. Sensors, 19(7):1488, 2019.

[12] TianZhang He, Adel N Toosi, and Rajkumar Buyya. Performance
evaluation of live virtual machine migration in sdn-enabled cloud data

centers. Journal of Parallel and Distributed Computing, 131:55– 68,

2019.
[13] Pekka Karhula, Jan Janak, and Henning Schulzrinne. Checkpoint-ing

and migration of iot edge functions. In Proceedings of the 2nd

International Workshop on Edge Systems, Analytics and Networking,
pages 60–65, 2019.

[14] Jiaxin Feng, Jiawei Zhang, Yuming Xiao, and Yuefeng Ji. Demon-

stration of containerized vdu/vcu migration in wdm metro optical
networks. In 2020 Optical Fiber Communications Conference and

Exhibition (OFC), pages 1–3. IEEE, 2020.

[15] Janaina Schwarzrock, Michael Guilherme Jordan, Guilherme Ko-rol,
Charles C de Oliveira, Arthur F Lorenzon, Mateus Beck Rutzig, and

Antonio Carlos S Beck. Dynamic concurrency throt-tling on numa

systems and data migration impacts. Design Automation for Embedded
Systems, 25(2):135–160, 2021.

[16] Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S Milojicic, and Ada

Gavrilovska. Fast in-memory criu for docker containers. In Proceedings
of the International Symposium on Memory Systems, pages 53–65,

2019.

[17] Alejandro E González and Emmanuel Arzuaga. Herdmonitor:
Monitoring live migrating containers in cloud environments. In 2020

IEEE International Conference on Big Data (Big Data), pages 2180–

2189. IEEE, 2020.
[18] Florian Hofer, Martin Sehr, Alberto Sangiovanni-Vincentelli, and

Barbara Russo. Industrial control via application containers:

Maintaining determinism in iaas. Systems Engineering, 24(5):352– 368,
2021.

[19] Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He,

and Shaofeng Zhao. Layer-centric memory reuse and data migration for
extreme-scale deep learning on many-core archi-tectures. ACM

Transactions on Architecture and Code Optimization (TACO), 15(3):1–

26, 2018.
[20] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and

Ioannis Sourdis. Llc-guided data migration in hybrid memory sys-tems.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2022/212560 Volume 9, Issue 3, May – June (2022)

ISSN: 2395-0455 ©EverScience Publications 360

RESEARCH ARTICLE

In 2019 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 932–942. IEEE, 2019.
[21] Moussa, Walid, Mona Nashaat, Walaa Saber, and Rawya Rizk.

"Comprehensive Study on Machine Learning-Based Container

Scheduling in Cloud." In International Conference on Advanced
Machine Learning Technologies and Applications, pp. 581-592.

Springer, Cham, 2022.

[22] Gundall, Michael, Julius Stegmann, Mike Reichardt, and Hans D.
Schotten. "Downtime Optimized Live Migration of Industrial Real-

Time Control Services." arXiv preprint arXiv:2203.12935 (2022).

[23] Terneborg, Martin. "Enabling container failover by extending current
container migration techniques." (2021).

[24] Terneborg, Martin, Johan Karlsson Rönnberg, and Olov Schelén.

"Application Agnostic Container Migration and Failover." In 2021
IEEE 46th Conference on Local Computer Networks (LCN), pp. 565-

572. IEEE, 2021.

[25] Zhi, Zhang, Zhao Zhuofeng, and Li Han. "Static layout and dynamic

migration method of a large-scale container." In 2021 IEEE 5th

Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC), vol. 5, pp. 1897-1901. IEEE, 2021.
[26] Zheng, Siyuan, Fenfen Huang, Chen Li, and Haobin Wang. "A Cloud

Resource Prediction and Migration Method for Container Scheduling."
In 2021 IEEE Conference on Telecommunications, Optics and

Computer Science (TOCS), pp. 76-80. IEEE, 2021.

[27] Yang, Run, Hui He, and Weizhe Zhang. "Multitier Service Migration
Framework Based on Mobility Prediction in Mobile Edge Computing."

Wireless Communications and Mobile Computing 2021 (2021).

[28] Chen, Lei, and Weiwen Zhang. "A deep learning-based approach with
PSO for workload prediction of containers in the cloud." In 2021 13th

International Conference on Advanced Infocomm Technology (ICAIT),

pp. 204-208. IEEE, 2021.
[29] Dai Vu, Dinh, Xuan Tuong Vu, and Younghan Kim. "Deep Learning-

based fault prediction in cloud system." In 2021 International

Conference on Information and Communication Technology
Convergence (ICTC), pp. 1826-1829. IEEE, 2021.

How to cite this article:

[30] Aditya Bhardwaj and C Rama Krishna. A container-based technique to

improve virtual machine migration in cloud computing. IETE Journal of
Research, pages 1–16, 2019.

Authors

Gursharan Singh is currently pursuing a Ph.D.
degree in Computer Science and Engineering at

Lovely Professional University, Punjab, India. He is

working as an Assistant Professor in the School of
Computer Science and Engineering at Lovely

Professional University. His research interest includes

virtualization, cloud computing, container migration,
and network security.

Parminder Singh is a Postdoctoral Researcher at

Mohammed VI Polytechnic University (UM6P), Ben

Guerir, Morocco. He has been working as an

Associate Professor in the school of computer science
and Engineering, Lovely Professional University,

India. He has completed his B.Tech. from Punjabi

University, Patiala, and M.Tech. from Punjab
Technical University, Jalandhar. He has done his

Ph.D. from Lovely Professional University in 2019.
He has published more than 50 papers in reputed journals, conferences, and

book chapters including IEEE transactions. His research interests include

cyber-security, machine learning, and Cloud/Fog/Edge computing. He has
been a session chair and technical program committee member in various

national and international conferences. He has won a 'Best Smart City Project'

award from the Government of India in 2019. He has been awarded Research
Excellence awards in the A+ category from LPU in 2019, 2020, and 2021. He

has also been awarded a Teaching Excellence award in 2021 from LPU.

Currently, 6 students are pursuing Ph.D. under his supervision. 15 Master's
dissertations and 1 Ph.D. thesis have been completed under his supervision.

He is an active member of IEEE and ACM.

 Gursharan Singh, Parminder Singh, “A Container Migration Technique to Minimize the Network Overhead with Reusable

Memory State”, International Journal of Computer Networks and Applications (IJCNA), 9(3), PP: 350-360, 2022, DOI:

10.22247/ijcna/2022/212560.

