International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

International Journal of Computer Networks and Applications (IJCNA)

International Journal of Computer Networks and Applications (IJCNA)

Published By EverScience Publications

ISSN : 2395-0455

Invigorated Chameleon Swarm Optimization-Based Ad-Hoc On-Demand Distance Vector (ICSO-AODV) for Minimizing Energy Consumption in Healthcare Mobile Wireless Sensor Networks

Author NameAuthor Details

S. Kawsalya, D. Vimal Kumar

S. Kawsalya[1]

D. Vimal Kumar[2]

[1]Department of Computer Science, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India.

[2]Department of Computer Science, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India.

Abstract

This study explores the advancements in Wireless Sensor Networks (WSNs) and their application in Mobile Wireless Sensor Networks (MWSNs), particularly within Healthcare Mobile Wireless Sensor Networks (H-MWSNs). Routing in WSNs poses challenges, including adaptability to dynamic environments and efficient path computation. Addressing these challenges, this research propose the Floyd-Warshall-based Ad-hoc On-Demand Distance Vector (FW-AODV) approach. FW-AODV seamlessly integrates the Floyd-Warshall Algorithm with the AODV protocol, providing optimal path computation and dynamic routing capabilities. This integration is particularly promising for MWSNs, where adaptability and efficiency are crucial, especially in healthcare applications. We elucidate the working mechanism of FW-AODV, detailing its iterative rejuvenation process and dynamic color-based communication. Through simulations, this research evaluate FW-AODV's performance in dynamic and challenging WSN environments. Our results demonstrate FW-AODV's effectiveness in enhancing routing efficacy, resilience, and adaptability, offering a robust solution for modern healthcare-focused WSNs.

Index Terms

FW-AODV

Optimal Path

Dynamic Routing

Chameleon Optimization

MWSN

Healthcare MWSN

Routing

Reference

  1. 1.
    F. Firouzi, B. Farahani, and A. Marinšek, “The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT),” Inf. Syst., vol. 107, p. 101840, 2022, doi: 10.1016/j.is.2021.101840.
  2. 2.
    Z. Lei, L. Na, and L. Dongxia, “Hospital internet of things system design and captopril treatment of hypertension nursing intervention,” Microprocess. Microsyst., vol. 82, p. 103922, 2021, doi: 10.1016/j.micpro.2021.103922.
  3. 3.
    R. K. Yadav and R. P. Mahapatra, “Hybrid metaheuristic algorithm for optimal cluster head selection in wireless sensor network,” Pervasive Mob. Comput., vol. 79, p. 101504, 2022, doi: 10.1016/j.pmcj.2021.101504.
  4. 4.
    M. Faheem, R. A. Butt, R. Ali, B. Raza, M. A. Ngadi, and V. C. Gungor, “CBI4.0: A cross-layer approach for big data gathering for active monitoring and maintenance in the manufacturing industry 4.0,” J. Ind. Inf. Integr., vol. 24, p. 100236, 2021, doi: 10.1016/j.jii.2021.100236.
  5. 5.
    R. Almesaeed and A. Jedidi, “Dynamic directional routing for mobile wireless sensor networks,” Ad Hoc Networks, vol. 110, p. 102301, 2021, doi: 10.1016/j.adhoc.2020.102301.
  6. 6.
    V. A. Memos and K. E. Psannis, “Optimized UAV-based data collection from MWSNs,” ICT Express, vol. 9, no. 1, pp. 29–33, 2023, doi: 10.1016/j.icte.2022.10.003.
  7. 7.
    R. I. da Silva, J. D. C. V. Rezende, and M. J. F. Souza, “Collecting large volume data from wireless sensor network by drone,” Ad Hoc Networks, vol. 138, p. 103017, 2023, doi: 10.1016/j.adhoc.2022.103017.
  8. 8.
    J. Ramkumar, A. Senthilkumar, M. Lingaraj, R. Karthikeyan, and L. Santhi, “Optimal Approach for Minimizing Delays in Iot-Based Quantum Wireless Sensor Networks Using Nm-Leach Routing Protocol,” J. Theor. Appl. Inf. Technol., vol. 102, no. 3, pp. 1099–1111, 2024.
  9. 9.
    R. Jaganathan, V. Ramasamy, L. Mani, and N. Balakrishnan, “Diligence Eagle Optimization Protocol for Secure Routing (DEOPSR) in Cloud-Based Wireless Sensor Network,” Res. Sq., 2022, doi: 10.21203/rs.3.rs-1759040/v1.
  10. 10.
    R. Jaganathan and R. Vadivel, “Intelligent Fish Swarm Inspired Protocol (IFSIP) for Dynamic Ideal Routing in Cognitive Radio Ad-Hoc Networks,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 1063–1074, 2021, doi: 10.12785/ijcds/100196.
  11. 11.
    J. Ramkumar and R. Vadivel, “Improved frog leap inspired protocol (IFLIP) – for routing in cognitive radio ad hoc networks (CRAHN),” World J. Eng., vol. 15, no. 2, pp. 306–311, 2018, doi: 10.1108/WJE-08-2017-0260.
  12. 12.
    N. Shah, H. El-Ocla, and P. Shah, “Adaptive Routing Protocol in Mobile Ad-Hoc Networks Using Genetic Algorithm,” IEEE Access, vol. 10, pp. 132949–132964, 2022, doi: 10.1109/ACCESS.2022.3230991.
  13. 13.
    M. Li, S. Zhang, Y. Cao, and S. Xu, “NMSFRA: Heterogeneous routing protocol for balanced energy consumption in mobile wireless sensor network,” Ad Hoc Networks, vol. 145, p. 103176, 2023, doi: 10.1016/j.adhoc.2023.103176.
  14. 14.
    S. Sachan, R. Sharma, and A. Sehgal, “Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks,” Sustain. Comput. Informatics Syst., vol. 30, p. 100504, 2021, doi: 10.1016/j.suscom.2020.100504.
  15. 15.
    Z. Ding, L. Shen, H. Chen, F. Yan, and N. Ansari, “Residual-Energy Aware Modeling and Analysis of Time-Varying Wireless Sensor Networks,” IEEE Commun. Lett., vol. 25, no. 6, pp. 2082–2086, 2021, doi: 10.1109/LCOMM.2021.3065062.
  16. 16.
    S. Jain, K. K. Pattanaik, R. K. Verma, S. Bharti, and A. Shukla, “Delay-Aware Green Routing for Mobile-Sink-Based Wireless Sensor Networks,” IEEE Internet Things J., vol. 8, no. 6, pp. 4882–4892, 2021, doi: 10.1109/JIOT.2020.3030120.
  17. 17.
    V. Agarwal, S. Tapaswi, and P. Chanak, “Energy-Efficient Mobile Sink-Based Intelligent Data Routing Scheme for Wireless Sensor Networks,” IEEE Sens. J., vol. 22, no. 10, pp. 9881–9891, 2022, doi: 10.1109/JSEN.2022.3164944.
  18. 18.
    N. Gharaei, Y. D. Al-Otaibi, S. A. Butt, S. J. Malebary, S. Rahim, and G. Sahar, “Energy-Efficient Tour Optimization of Wireless Mobile Chargers for Rechargeable Sensor Networks,” IEEE Syst. J., vol. 15, no. 1, pp. 27–36, 2021, doi: 10.1109/JSYST.2020.2968968.
  19. 19.
    A. M. Khedr, A. Salim, P. Raj P V, and W. Osamy, “MWCRSF: Mobility-based weighted cluster routing scheme for FANETs,” Veh. Commun., vol. 41, p. 100603, 2023, doi: 10.1016/j.vehcom.2023.100603.
  20. 20.
    B. Vijay Kumar, S. Musthak Ahmed, and M. N. Giri Prasad, “Efficient method to identify hidden node collision and improving Quality-of-Service (QoS) in wireless sensor networks,” Mater. Today Proc., vol. 80, pp. 1747–1750, 2023, doi: 10.1016/j.matpr.2021.05.498.
  21. 21.
    R. Yarinezhad and M. Sabaei, “An optimal cluster-based routing algorithm for lifetime maximization of Internet of Things,” J. Parallel Distrib. Comput., vol. 156, pp. 7–24, 2021, doi: 10.1016/j.jpdc.2021.05.005.
  22. 22.
    G. Zhang et al., “Decision fusion for multi-route and multi-hop Wireless Sensor Networks over the Binary Symmetric Channel,” Comput. Commun., vol. 196, pp. 167–183, 2022, doi: 10.1016/j.comcom.2022.09.025.
  23. 23.
    V. B. Patil and S. Kohle, “A high-scalability and low-latency cluster-based routing protocol in time-sensitive WSNs using genetic algorithm,” Meas. Sensors, vol. 31, p. 100941, 2024, doi: 10.1016/j.measen.2023.100941.
  24. 24.
    J. Y. Lu, K. F. Hu, X. C. Yang, C. J. Hu, and T. S. Wang, “A cluster-tree-based energy-efficient routing protocol for wireless sensor networks with a mobile sink,” J. Supercomput., vol. 77, no. 6, pp. 6078–6104, 2021, doi: 10.1007/s11227-020-03501-w.
  25. 25.
    N. Moussa, D. Benhaddou, and A. El Belrhiti El Alaoui, “EARP: An Enhanced ACO-Based Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks,” Int. J. Wirel. Inf. Networks, vol. 29, no. 1, pp. 118–129, 2022, doi: 10.1007/s10776-021-00545-4.
  26. 26.
    J. Sumathi and R. L. Velusamy, “A review on distributed cluster based routing approaches in mobile wireless sensor networks,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 1, pp. 835–849, 2021, doi: 10.1007/s12652-020-02088-7.
  27. 27.
    K. M. Kumaran and M. Chinnadurai, “A Competent Ad-hoc Sensor Routing Protocol for Energy Efficiency in Mobile Wireless Sensor Networks,” Wirel. Pers. Commun., vol. 116, no. 1, pp. 829–844, 2021, doi: 10.1007/s11277-020-07741-0.
  28. 28.
    Z. Liu, Y. Zhang, and H. Peng, “Energy balanced routing protocol based on improved particle swarm optimisation and ant colony algorithm for museum environmental monitoring of cultural relics,” IET Smart Cities, vol. 5, no. 3, pp. 210–219, Sep. 2023, doi: 10.1049/smc2.12060.
  29. 29.
    S. Chaurasia, K. Kumar, and N. Kumar, “MOCRAW: A Meta-heuristic Optimized Cluster head selection based Routing Algorithm for WSNs,” Ad Hoc Networks, vol. 141, p. 103079, Mar. 2023, doi: 10.1016/j.adhoc.2022.103079.
SCOPUS
SCImago Journal & Country Rank