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Abstract – This research addresses the intertwined challenges of 

routing efficiency and data security in Vehicular Ad Hoc 

Networks (VANETs), characterized by dynamic Vehicle-to-

Vehicle (V2V) communication. To bolster the Ad Hoc On-

Demand Distance Vector (AODV) protocol, Route Life Time 

Enhanced AODV (RLE-AODV) is introduced, integrating Fast 

Furious Cheetah Optimization (FFCO) at each protocol step for 

comprehensive optimization. The robust security measures are 

concurrently incorporated using an enhanced iteration of 

Elliptic Curve Cryptography (ECC), which is seamlessly 

integrated into the secure routing framework. The study 

meticulously explores the synergistic integration of FFCO with 

RLE-AODV and ECC, optimizing routing efficiency while 

fortifying data security. After integration with ECC, the 

framework transforms into Fast Furious Cheetah Optimization-

Based Secured Routing (FFCOSR), ensuring the integrity and 

confidentiality of data exchanged between vehicles. Through 

extensive simulations, the FFCOSR framework demonstrates 

superior performance and heightened security compared to 

conventional approaches in V2V VANETs. By orchestrating 

FFCO within RLE-AODV, the approach dynamically adjusts 

routing parameters to adapt to changing network conditions, 

prolonging route stability and enhancing overall network 

performance. This research significantly advances state-of-the-

art efficient and secure vehicular communication, offering 

valuable insights into the synergy of optimization techniques for 

addressing multifaceted network challenges. The proposed 

FFCOSR framework represents a promising avenue for 

improving the reliability and security of V2V communication in 

VANETs, with potential applications in real-world scenarios 

where robustness and efficiency are paramount. 

Index Terms – Ad Hoc On-Demand Distance Vector Routing, 

Particle Swarm Optimization, Machine Learning, Network 

Lifespan, Energy Balancing, Localization, Clustering, Routing 

Overhead, Throughput, End-to-End Delay. 

1. INTRODUCTION 

Vehicular Ad hoc Networks (VANETs) are specialized 

wireless communication networks that enable vehicles to 

communicate with each other and with roadside 

infrastructure. The primary objective of VANETs is to 

enhance road safety and optimize traffic flow through real-

time information exchange among vehicles [1].  

These networks use technologies like Dedicated Short Range 

Communication (DSRC) or Cellular Vehicle-to-Everything 

(C-V2X) to enable direct communication between vehicles 

and infrastructure. One key feature of VANETs is their 

dynamic and decentralized nature. Vehicles within the 

network form temporary connections based on their 

proximity, allowing them to share information about their 

speed, position, and other relevant data [2].  

This information exchange helps vehicles make informed 

decisions, such as adjusting speed to avoid congestion or 

potential hazards. VANETs contribute to developing 

Intelligent Transportation Systems (ITS), offering the 

potential for improved transportation efficiency and reduced 

traffic congestion. As vehicles become increasingly equipped 

with communication capabilities, VANETs pave the way for 

innovative transportation solutions that leverage the 

connectivity of vehicles for more responsive and adaptive 

traffic management [3]. 

VANETs employ various types of communication to facilitate 

interaction among vehicles and between vehicles and roadside 

infrastructure. The primary communication types in VANETs 

include [4]–[6]: 
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 Vehicle-to-Vehicle (V2V) Communication: In V2V 

communication, vehicles directly exchange information. 

This can include data about speed, position, acceleration, 

and other relevant parameters. V2V communication 

enables real-time collaboration among vehicles, helping 

them react to changes in the road environment, such as 

sudden braking or the presence of obstacles. 

 Vehicle-to-Infrastructure (V2I) Communication: V2I 

communication involves data exchange between vehicles 

and roadside infrastructure, such as traffic lights, road 

signs, or toll booths. This type of communication enhances 

overall traffic management and allows vehicles to receive 

information about traffic conditions, road hazards, or 

updates on traffic signal timings. 

 Vehicle-to-Everything (V2X) Communication: V2X is a 

comprehensive term that encompasses communication not 

only between vehicles (V2V) and between vehicles and 

infrastructure (V2I) but also includes communication with 

pedestrians (V2P) and other elements of the environment 

(V2E). V2X communication aims to create a holistic 

network where vehicles interact with various entities, 

enhancing safety and efficiency in diverse traffic 

scenarios. 

 Vehicle-to-Roadside (V2R) Communication: Similar to 

V2I, V2R communication refers explicitly to vehicle and 

roadside infrastructure elements. This can include data 

exchange with fixed sensors, cameras, or other devices 

installed along the road. 

 Vehicle-to-Network (V2N) Communication: V2N 

communication involves vehicles communicating with a 

central network or cloud-based system. This allows for 

broader data analytics, monitoring traffic, and 

disseminating traffic-related information to a larger 

audience. 

In VANETs, vehicles must exchange information about their 

current positions, speeds, and other relevant data to enable 

efficient and reliable routing [7], [8]. Routing in VANETs 

involves determining the best paths for data transmission 

between vehicles, considering factors like traffic conditions, 

road topology, and potential obstacles. V2V communication 

plays a crucial role in this process by allowing vehicles to 

share this information with nearby vehicles. The exchanged 

data can be used to make informed decisions about the 

optimal routes and to avoid congested or unsafe areas [9]. 

Routing protocols in VANETs often leverage the dynamic 

nature of V2V communication to establish and update routes 

in real-time. Examples of routing protocols used in VANETs 

include Geographic Routing, Beacon-Based Routing, and 

Position-Based Routing. Routing in V2V communication 

involves determining efficient paths for data transmission 

between vehicles, and several challenges are associated with 

this process, as outlined below [10], [11]: 

 Dynamic Network Topology: Rapid changes in vehicle 

positions and connectivity create a vibrant network 

topology, posing difficulties in establishing and 

maintaining stable and reliable V2V communication links. 

 Interference and Signal Attenuation: Wireless signal 

interference and attenuation due to obstacles in urban 

environments can lead to communication disruptions and 

reduced effectiveness of V2V communication. 

 Scalability Issues: As the number of vehicles on the road 

increases, scalability becomes a concern, impacting the 

efficiency of V2V communication protocols and the 

ability to handle many simultaneous connections. 

 Quality of Service (QoS) Requirements: Meeting stringent 

QoS requirements, such as low latency and high 

reliability, is challenging in vehicular movement’s 

dynamic and unpredictable nature. 

 Security and Privacy Concerns: Ensuring the security and 

privacy of V2V communication is critical, as the exchange 

of sensitive information between vehicles could be 

vulnerable to malicious attacks, posing risks to safety and 

confidentiality. 

Bio-inspired optimization for ad hoc networks leverages 

nature's principles to tackle challenges. Mimicking biological 

systems, these methods optimize network performance, 

energy efficiency, and resource allocation [12], [13]. Drawing 

from natural phenomena like self-organization, adaptation, 

and cooperation, bio-inspired approaches offer innovative 

solutions tailored to the dynamic and decentralized nature of 

ad hoc networks [14]. Such techniques promote robustness, 

scalability, and adaptability, enhancing the network's ability 

to handle mobility, limited resources, and changing 

environmental conditions [15]. 

1.1. Problem Statement 

In the rapidly evolving landscape of VANETs, a significant 

problem arises in ensuring seamless communication and 

collaboration among vehicles. The challenge lies in the 

diverse nature of vehicles on the road, ranging from various 

makes and models to differing communication capabilities. 

Establishing a standardized communication protocol that 

caters to this diversity is a complex puzzle, leading to 

interoperability issues and communication gaps. Given the 

resource constraints inherent in vehicular devices, efficient 

real-time data processing at the network edge becomes a 

critical concern. The struggle to balance the need for rapid 

data handling with the limitations of available resources poses 

a significant hurdle in achieving optimal VANET 

performance. Energy efficiency emerges as a pressing 
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challenge as the quest to minimize power consumption for 

prolonged device operation encounters difficulties. This 

challenge impacts the operational lifespan of V2V 

communication modules and raises questions about the 

sustainability of energy usage in a connected vehicular 

environment. In navigating these challenges, the seamless 

integration of VANETs with autonomous vehicles and 

intelligent infrastructure faces obstacles in establishing 

consistent communication protocols across diverse 

technological domains. The resulting lack of a harmonized 

system impedes the full potential of these networks in 

enhancing road safety and traffic optimization. As we address 

these challenges, the ultimate goal is to create a robust and 

adaptive vehicular communication framework that ensures the 

reliability, efficiency, and security of V2V communication in 

VANETs. 

1.2. Motivation 

The challenges inherent in VANETs form a compelling 

motivation for research endeavors. In a context where 

vehicles exhibit diverse characteristics, there is a clear 

imperative to establish a standardized communication 

protocol. This necessity propels the exploration of solutions 

that can effectively bridge interoperability gaps, enhancing 

the reliability of V2V communication. The urgency to process 

real-time data efficiently at the network edge serves as a 

driving force for innovative research approaches. The goal is 

to optimize VANET performance within the inherent resource 

constraints of vehicular devices. Energy efficiency becomes a 

pivotal focus, motivating the investigation of sustainable 

practices that minimize power consumption while ensuring 

the extended and reliable operation of V2V communication 

modules. This motivation extends to overcoming challenges 

associated with seamlessly integrating VANETs with 

autonomous vehicles and intelligent infrastructure. The 

ultimate objective is to unlock the full potential of these 

networks, fostering revolutionary advancements in road safety 

and traffic optimization. This research is inspired by a 

commitment to address these challenges to advance V2V 

communication in VANETs and contribute meaningfully to 

the broader landscape of intelligent transportation systems. By 

delving into these complexities, the aim is to pave the way for 

a robust, adaptive, and secure vehicular communication 

framework that can shape the future of transportation 

technologies. 

1.3. Research Objective 

The primary objective of this research is to introduce and 

develop a bio-inspired optimization-based routing protocol as 

an effective solution to address the challenges prevalent in 

VANETs. This involves designing a robust routing 

framework inspired by biological systems to enhance 

communication paths’ adaptability, efficiency, and resilience 

in dynamic vehicular environments. 

This research seeks to rigorously assess and enhance its 

adaptability, performance, security, real-world applicability, 

and resource efficiency as its secondary objectives, which are 

given below: 

 Routing Protocol Development: Develop bio-inspired 

optimization algorithms, drawing inspiration from 

biological systems like swarm intelligence or genetic 

algorithms, to form the foundation of the proposed routing 

protocol. 

 Adaptability Assessment: Evaluate the adaptability of the 

bio-inspired routing protocol to dynamic changes in 

VANET topologies, ensuring that it can efficiently 

respond to variations in vehicle positions and network 

connectivity. 

 Performance Comparison: Conduct comprehensive 

simulations to compare the performance of the proposed 

bio-inspired routing protocol against existing VANET 

routing protocols. Assess critical metrics such as 

communication reliability, latency, scalability, and 

adaptability to varying traffic conditions. 

 Real-world Validation: Validate the effectiveness of the 

bio-inspired routing protocol through real-world scenarios, 

considering factors like urban and rural environments, 

diverse weather conditions, and fluctuating traffic 

densities. 

 Security Integration: Integrate security measures into the 

bio-inspired routing protocol to ensure the robustness of 

communication paths against potential threats or malicious 

activities, contributing to the overall reliability of V2V 

communication. 

 Resource Efficiency Analysis: Analyze the resource 

efficiency of the proposed routing protocol, mainly 

focusing on power consumption and computational 

requirements. Strive to minimize energy usage while 

maintaining optimal communication performance. 

1.4. Organization of the Paper 

The paper is organized into several sections to 

comprehensively analyse the dynamic integration of Fast 

Furious Cheetah Optimization for efficient and secure routing 

in Vehicular Ad Hoc Networks (VANETs). The Introduction 

(Section 1) outlines the problem statement, research 

motivation, and objectives (1.1, 1.2, 1.3). The Literature 

Review (Section 2) delves into existing research gaps (2.1) to 

establish the study's context. The paper's core lies in the Fast 

Furious Cheetah Optimization-Based Secured Routing 

Protocol (Section 3), which details the proposed approach. 

Results and Discussion (Section 4) analyze simulation 

settings, energy consumption, packet delay, loss, and 

throughput (4.1-4.5). Finally, the Conclusion (Section 5) 
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summarizes the findings and suggests future research 

directions. This structured organization ensures a logical 

progression, facilitating a clear understanding of the research 

methodology, results, and implications. 

2. LITERATURE REVIEW 

“EdgeVehRoute” [16] integrates edge computing into multi-

connected vehicles for cooperative route planning across 

diverse domains. The system optimizes route decisions by 

leveraging edge resources for real-time data processing. It 

establishes seamless vehicle communication, utilizing edge 

servers to exchange information about traffic, road conditions, 

and preferences. “CAVRouteControl” [17] evaluates the 

significance of optimal routing and signal timing control 

strategies in the context of connected autonomous vehicles 

(CAVs). The system employs advanced algorithms to 

optimize route selection and signal timing, considering real-

time data from CAVs. It maximizes traffic flow efficiency by 

dynamically adjusting routes and signal timings based on 

vehicle connectivity and autonomy. “6GAutoRoute” [18] 

presents an autonomous vehicle routing protocol tailored for 

6G networks, incorporating computational intelligence for 

efficient and trusted navigation. The protocol harnesses 

advanced algorithms to dynamically allocate resources, 

ensuring optimal routing for autonomous vehicles. It adapts to 

real-time traffic conditions using computational intelligence, 

enhancing route efficiency.  

“AutoDynAlloc” [19] introduces an Automatic Dynamic User 

Allocation system coupled with opportunistic routing over the 

vehicular network for Intelligent Transport Systems (ITS). 

The system dynamically allocates resources, optimizing user 

assignments in real-time. Opportunistic routing leverages the 

mobility of vehicles to enhance data transmission efficiency. 

“K-MORP-UAV” [20] introduces a K-means online-learning 

routing protocol for Unmanned Aerial Vehicles (UAV) ad-

hoc networks. This protocol leverages K-means clustering and 

online learning to dynamically adapt to changing network 

conditions. It optimizes routing for UAVs, ensuring efficient 

communication in ad-hoc scenarios. “TS-CAGR-IoV” [21] 

presents a Traffic Sensitive Connectivity-Aware Geocast 

Routing (TS-CAGR) protocol tailored for the Internet of 

Vehicles (IoV). The protocol prioritizes traffic sensitivity and 

connectivity awareness in geocast routing decisions, 

optimizing communication within the IoV ecosystem. By 

considering real-time traffic conditions and connectivity 

status, TS-CAGR improves the efficiency of geocast 

communication in vehicular networks.  

“ReliableClusterRoute” [22] addresses cybersecurity threats 

in the Internet of Vehicles (IoV) communication system by 

implementing a robust clustering and routing approach. The 

protocol employs reliable clustering mechanisms to enhance 

network security, creating resilient clusters that mitigate 

potential cyber threats. “MMWaveITSRoute” [23] introduces 

an energy-efficient data transmission solution for Intelligent 

Transportation Systems (ITS) utilizing millimeter-wave 

(mmWave) based routing algorithms for connected vehicles. 

The protocol optimizes data transmission by leveraging 

mmWave technology, which offers high bandwidth and low 

latency.  

“Evolutionary Algorithm Vehicular Clustering” [24] 

introduces an Evolutionary Algorithm-Based Vehicular 

Clustering Technique for VANETs. This technique utilizes 

evolutionary algorithms to dynamically form and optimize 

clusters in VANETs, addressing the complexities of vehicular 

environments. Adapting to the changing conditions and 

communication requirements of vehicular scenarios, the 

evolutionary algorithm enhances the effectiveness of 

clustering strategies.  “Connectivity Enhance” [25] presents 

an innovative approach to improving the connectivity of 

Electric VANETs (E-VANETs) through the QL-mRSU Self-

Learning Energy-Saving Algorithm. This solution optimizes 

connectivity in E-VANETs by leveraging a self-learning 

algorithm within Quick Learning (QL) mechanisms and 

Mobile Roadside Units (mRSUs). “SOMACA-SwarmOpt-

Mobility Clustering-IoV” [26] introduces SOMACA, a novel 

Swarm Optimization-Based and Mobility-Aware Clustering 

Approach designed for the Internet of Vehicles (IoV). This 

approach leverages swarm optimization techniques to form 

IoV clusters, considering vehicle mobility patterns 

dynamically. “Bio-inspired Optimization-based Routing 

Protocols” [27], [28] have significant performances in terms 

of saving energy consumption in ad hoc networks. 

“Dynamic Topo-Reliable Route (DTE-RR)” [29] significantly 

contributes to VANETs by introducing a hybrid routing 

algorithm that dynamically adapts to the changing network 

topology. The critical innovation involves integrating Genetic 

Algorithms (GAs) and the Firefly Algorithm to optimize 

communication paths. DTE-RR excels in real-time 

monitoring and predictive modelling, allowing anticipatory 

adaptations for efficient route optimization. Despite 

challenges such as computational complexity and parameter 

sensitivity, the algorithm proves valuable in its ability to adapt 

to varying network sizes, anticipate changes, and enhance 

reliability in communication. The Pseudocode of DTE-RR is 

provided in Algorithm 1. 

Step 1: Initialize: αi = 0, fi = −yi 

Step 2: Compute: bhigh, Ihigh, blow, Ilow 

Step 3: Update αIhigh and αIlow 

Step 4: while True: 

Step 5: Update fi 

Step 6: Compute: bhigh, Ihigh, blow, Ilow 

Step 7: Update αIhigh and αIlow 
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Step 8: if blow <= bup + 2 * τ: 

Step 9: break 

Step 10: Store the new α1 and α2 values 

Step 11: Update weight vector w if SVM is linear 

Step 12: Update the threshold b 

Algorithm 1 DTE-RR 

“Hybrid Genetic-Firefly Routing (HGFR)” [30]  stands out in 

routing algorithms due to its pragmatic integration of Genetic 

Algorithms (GA) and Firefly Algorithms. The core 

contribution lies in the algorithm’s ability to efficiently 

explore solution spaces using genetic operators and 

dynamically adapt to changing network conditions inspired by 

firefly behavior. HGFR excels in optimizing routes within 

complex networks, showcasing a balanced and practical 

approach to exploration and exploitation. Its practicality lies 

in providing robust solutions for dynamic routing scenarios, 

catering to the challenges posed by unpredictable network 

environments. The Pseudocode of HGFR is provided in 

Algorithm 2. 

Step 1: initializeparameters(); 

Step 2: initialize population(routes, geneticparameters, 

fireflyparameters); 

Step 3: evaluatefitness(routes); 

Step 4: convergencecriteria_met := False; 

Step 5: while not convergencecriteria_met do 

Step 6: selectedroutes := selectparents(routes); 

Step 7: recombine(selectedroutes); 

Step 8: mutate(selectedroutes); 

Step 9: adaptroutes_firefly(selectedroutes, fireflyparameters); 

Step 10: evaluatefitness(selectedroutes); 

Step 11: routes := selectsurvivors(routes, selectedroutes); 

Step 12: convergencecriteria_met := checkconvergence_criteria(); 

Step 13: end while 

Algorithm 2 HGFR 

2.1. Research Gap 

The literature reviewed in the context of vehicular 

communication networks highlights various routing protocols, 

including adaptive routing with genetic algorithms, firefly-

inspired approaches, and multi-objective optimization. 

However, a distinct research gap emerges concerning the 

absence of a new, dynamic optimization-based secure routing 

technique in the existing work. The identified research gap 

underscores the pressing need for a routing paradigm that 

integrates dynamic optimization principles with robust 

security measures. The current literature lacks a 

comprehensive exploration of a routing solution that 

optimizes routes in response to changing conditions and 

prioritizes security in the inherently vulnerable VANET 

environment. As intelligent transportation systems 

increasingly rely on secure and efficient vehicle 

communication, a novel approach that addresses the dual 

challenges of adaptability and security becomes imperative. A 

new cum dynamic optimization-based secure routing 

technique would not only fill this research gap but also 

respond to the evolving demands of VANETs. Such a 

technique could significantly enhance the resilience and 

security of vehicular communication, providing a crucial 

foundation for the reliability and efficiency of future 

intelligent transportation systems. 

3. FAST FURIOUS CHEETAH OPTIMIZATION-BASED 

SECURED ROUTING (FFCOSR) 

FFCOSR is a cutting-edge framework tailored for Vehicular 

Ad Hoc Networks (VANETs). It integrates Fast Furious 

Cheetah Optimization (FFCO) with Route Life Time 

Enhanced AODV (RLE-AODV) and enhanced Elliptic Curve 

Cryptography (ECC), ensuring both optimal routing 

efficiency and robust data security. By dynamically adjusting 

routing parameters and fortifying data exchanges, FFCOSR 

offers superior performance and heightened security 

compared to traditional VANET approaches. Through 

meticulous simulations, FFCOSR showcases its ability to 

adapt to changing network conditions, prolong route stability, 

and enhance overall communication reliability in V2V 

scenarios, promising advancements in secure and efficient 

vehicular communication. 

3.1. Route Lifetime Enhanced AODV (RLE-AODV) 

Route Lifetime Enhanced AODV (RLE-AODV) is a refined 

version of AODV designed for VANET. It prioritizes route 

stability by extending the lifetime of established routes. By 

optimizing route discovery and maintenance, RLE-AODV 

minimizes disruptions, enhancing overall network efficiency. 

This improvement ensures more reliable communication in 

dynamic environments, making RLE-AODV a valuable 

advancement in ad-hoc network routing protocols. 

3.1.1. Adaptive Route Expiration Time 

Adaptive Route Expiration Time (ARET) is a critical aspect 

of the Route Lifetime Enhanced AODV (RLE-AODV) 

protocol, aiming to dynamically adjust the expiration time of 

routes based on observed stability and reliability. The 

rationale behind ARET lies in adapting the route lifetime to 

the changing conditions of a mobile ad-hoc network 

(MANET), where the stability of routes can vary due to node 

mobility, link quality, and other dynamic factors. To 
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mathematically describe ARET, let’s establish a framework 

that considers the stability metrics of a route. Let 𝑅𝑖  represent 

a route between a source node and a destination node in the 

network, and let 𝑆𝑖(𝑡) denote the stability metric of 𝑅𝑖 at time 

𝑡 . Link quality, packet loss rate, or historical stability 

observations can influence the metric. The adaptive expiration 

time (𝐸𝑖) of 𝑅𝑖  at time 𝑡, denoted by 𝐸𝑖(𝑡), is determined as 

Eq.(1). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖(𝑡) + 𝛽. (1 − 𝑆𝑖(𝑡)) (1) 

Where 𝛼  and 𝛽  are configurable parameters that weigh the 

stability and instability components, respectively. The term 

𝛼. 𝑆𝑖(𝑡) represents the contribution of the stability metric to 

the expiration time, while 𝛽. (1 − 𝑆𝑖(𝑡))  represents the 

contribution of the instability component. The combination of 

these components allows ARET to adapt dynamically to the 

observed route stability. 

To further enhance the adaptability of ARET, a temporal 

smoothing factor (𝛾)  can be introduced to consider the 

historical stability trends of the route. The updated stability 

metric (𝑆𝑖
′(𝑡)) is then given by Eq.(2). 

(𝑆𝑖
′(𝑡)) = γ. 𝑆𝑖

′(𝑡 − 1) + (1 − γ). 𝑆𝑖(𝑡) (2) 

Where 𝑆𝑖
′(𝑡 − 1) is the previous stability metric, and 𝑆𝑖

′(𝑡)is 

the updated stability metric at time 𝑡. The temporal smoothing 

factor 𝛾 determines the influence of historical stability on the 

current stability metric. 

The adaptive expiration time (𝐸𝑖(𝑡)) can now be modified to 

incorporate the historical stability component, expressed as 

Eq.(3). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) (3) 

3.1.2. Predictive Route Lifetime 

Predictive Route Lifetime (PRL) builds upon the foundation 

laid by ARET. While ARET dynamically adjusts route 

expiration times based on observed stability, PRL introduces 

predictive analytics to estimate the future stability of routes, 

further enhancing the adaptability and efficiency of route 

management in MANETs. Let’s denote the predictive stability 

metric of a route 𝑅𝑖 at time 𝑡 as 𝑃𝑖(𝑡).  

This predictive metric is influenced by historical stability 

observations and is projected into the future. The PRL 

mechanism uses this predictive stability to estimate the 

route’s future reliability and adjust its expiration time 

accordingly. The predictive stability (𝑃𝑖(𝑡))  can be 

formulated as a function of the historical stability (𝑆𝑖
′(𝑡)) and 

other relevant parameters: 

𝑃𝑖(𝑡) = 𝑓. (𝑆𝑖
′(𝑡), … ) (4) 

Where 𝑓(… ) represents the predictive function that considers 

historical stability and potentially other factors impacting 

future stability. 

The predictive expiration time (𝑃𝐸𝑖
(𝑡)) of 𝑅𝑖  at time 𝑡 is then 

determined using Eq.(5) which is the predicted stability: 

𝑃𝐸𝑖
(𝑡) = 𝛼. 𝑃𝑖(𝑡) + 𝛽. (1 − 𝑃𝑖(𝑡)) (5) 

Where parameters 𝛼  and 𝛽  weigh the contribution of 

predicted stability and its complement to the expiration time, 

similar to the ARET mechanism. This predictive approach 

allows RLE-AODV to anticipate potential variations in route 

stability, enabling proactive adjustments to expiration times 

before actual instability occurs. 

Machine learning or statistical models can be integrated into 

the predictive function to refine the prediction process further, 

leveraging historical stability data to make more accurate 

forecasts. This introduces a learning factor (𝜆) that influences 

the impact of historical data on predictive stability: 

𝑃𝑖(𝑡) = 𝜆. 𝑃𝑖−1(𝑡 − 1) + (1 − 𝜆). 𝑆𝑖
′(𝑡) (6) 

Where 𝑃𝑖−1(𝑡 − 1)   is the previous predictive stability and 

𝑆𝑖
′(𝑡) is the updated stability metric at time 𝑡. 

3.1.3. Traffic Load-based Lifetime Extension 

Traffic Load-based Lifetime Extension (TLLE) introduces an 

innovative approach to dynamically adjust route expiration 

times based on the real-time traffic load experienced by 

individual routes. Let’s denote the traffic load on a route 𝑅𝑖 at 

time 𝑡 as 𝐿𝑖(𝑡). Packet transmission rates, data volume, and 

congestion levels along the route can influence this traffic 

load metric. The adaptive expiration time (𝐸𝑖(𝑡))  of 𝑅𝑖  at 

time 𝑡 , incorporating the TLLE mechanism, is given by 

Eq.(7). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. 𝐿𝑖(𝑡) (7) 

Where 𝛾  represents the weight assigned to the traffic load 

component in the overall expiration time calculation. The 

TLLE mechanism recognizes that routes experiencing higher 

traffic loads may need more frequent updates to prevent 

premature expiration due to increased data transmission 

demands. 

To avoid abrupt changes in expiration times caused by 

instantaneous traffic fluctuations, a smoothing factor (𝛿) can 

be introduced to account for the average traffic load over a 

specific time window using Eq.(8). 
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�̅�𝑖(𝑡) = 𝛿. �̅�𝑖(𝑡 − 1) + (1 − 𝛿). 𝐿𝑖(𝑡) (8) 

Where �̅�𝑖(𝑡) represents the smoothed or averaged traffic load 

and �̅�𝑖(𝑡 − 1)  is the previous smoothed traffic load. The 

parameter 𝛿 determines the influence of historical traffic load 

on the current smoothed value. 

Considering the smoothed traffic load, the adjusted expiration 

time with TLLE is expressed in Eq.(9). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. �̅�𝑖(𝑡) (9) 

Incorporating TLLE in RLE-AODV acknowledges the impact 

of varying network traffic loads on route stability.  

3.1.4. Link Stability Monitoring 

Link Stability Monitoring (LSM) aims to fortify the protocol 

by incorporating a real-time assessment of the stability of 

individual links within a route. By dynamically considering 

the link stability, RLE-AODV becomes more adept at 

predicting and responding to potential disruptions, 

contributing to further refinements in route lifetime 

management. Let denote the strength of the link between 

nodes 𝑖 and 𝑗 at time 𝑡 as 𝐿𝑖𝑗(𝑡). This link stability metric may 

encapsulate signal quality, error rates, and historical 

observations. The link stability for a given link is influenced 

by the stability metrics of its constituent nodes and the quality 

of the communication channel between them. The link 

stability monitoring mechanism adjusts the adaptive 

expiration time (𝐸𝑖(𝑡)) to consider the stability of each link 

(𝐿𝑖𝑗(𝑡))  along the route. The modified expiration time is 

expressed as Eq.(10). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ 𝐿𝑖𝑗(𝑡)
𝑗

 (10) 

Where 𝛾 represents the weight assigned to the link stability 

component in the overall expiration time calculation, the 

summation is taken over all links (𝑗) in the route. 

To enhance the robustness of LSM, a smoothing factor (𝜖) is 

introduced to account for the historical link stability over 

time, expressed in Eq.(11). 

�̅�𝑖𝑗(𝑡) = 𝜖. �̅�𝑖𝑗(𝑡 − 1) + (1 − 𝜖). 𝐿𝑖𝑗(𝑡) (11) 

Where �̅�𝑖𝑗(𝑡)  represents the smoothed or averaged link 

stability for the link between nodes 𝑖 and 𝑗, and �̅�𝑖𝑗(𝑡 − 1)is 

the previous smoothed link stability. The parameter 𝜖 controls 

the influence of historical link stability on the current 

smoothed value. 

The adjusted expiration time with LSM, considering the 

smoothed link stability is then given by Eq.(12). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ 𝐿𝑖𝑗(𝑡)
𝑗

 (12) 

Integrating LSM into RLE-AODV allows the protocol to 

dynamically adapt route expiration times based on the 

stability of individual links.  

3.1.5. Proactive Route Refresh 

Proactive Route Refresh (PRR) aims to optimize route 

maintenance by anticipating potential route expiration and 

initiating timely updates to ensure continuous connectivity in 

MANETs. The proactive nature of PRR distinguishes it from 

traditional reactive route maintenance approaches, where 

route adjustments are triggered only when a route is about to 

expire. PRR, on the other hand, takes a preemptive stance by 

periodically refreshing routes before they expire. This 

proactive approach helps to minimize the delay and potential 

disruptions associated with reactive route discovery 

processes. Let 𝑅𝑖   be a route between a source and a 

destination node, and 𝐸𝑖(𝑡) represent the adaptive expiration 

time of 𝑅𝑖  at time 𝑡. Eq.(13) adjusts the expiration time based 

on a proactive factor (𝜌). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ 𝐿𝑖𝑗(𝑡)
𝑗

+ 𝜌 

(13) 

Where 𝜌  represents the proactive factor added to the 

expiration time to initiate proactive route refreshment. 

The proactive factor (𝜌) is determined by considering factors 

such as historical stability trends, network conditions, and the 

desired level of proactiveness. A balance must be struck to 

avoid unnecessary overhead caused by frequent proactive 

refreshments while ensuring that routes remain up-to-date and 

reliable. 

3.1.6. Energy-Aware Route Maintenance 

Energy-Aware Route Maintenance (EARM) recognizes the 

critical role of node energy levels in VANETs and aims to 

optimize route maintenance based on the energy efficiency of 

individual nodes. Let’s denote the energy level of node 𝑖 at 

time 𝑡  as 𝐸𝑖(𝑡) . This energy metric reflects the available 

energy resources at the node, which can be crucial in 

determining the route’s effectiveness and reliability. Building 

upon the existing route expiration time calculation, the 

EARM mechanism adjusts the adaptive expiration time 

(𝐸𝑖(𝑡)) to account for the energy level of the nodes along the 

route. The modified expiration time is expressed as Eq.(14). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. 𝐸𝑖(𝑡) 

(14) 

Where 𝛿  represents the weight assigned to the energy level 

component in the overall expiration time calculation. 
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A dynamic threshold (𝜙) can be introduced to determine the 

necessity of proactive adjustments based on the node’s energy 

level and expressed as Eq.(15) to ensure that the energy-aware 

adjustments are adequate. 

𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 𝑖𝑓 𝐸𝑖(𝑡) < 𝜙,  

𝑡ℎ𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒 𝑎 𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑓𝑟𝑒𝑠ℎ 
(15) 

This decision-making process ensures that proactive 

refreshments are triggered when a node’s energy level falls 

below a certain threshold, balancing the need for energy-

aware maintenance with the potential overhead of frequent 

route updates. To enhance the EARM mechanism, an energy 

smoothing factor (𝜁) can be introduced as Eq.(16) to account 

for the historical energy level over time. 

�̅�𝑖(𝑡) = 𝜁. �̅�𝑖(𝑡 − 1) + (1 − 𝜁). 𝐸𝑖(𝑡) (16) 

Where �̅�𝑖(𝑡)  represents the smoothed or averaged energy 

level for node 𝑖 , and �̅�𝑖(𝑡 − 1)  is the previous smoothed 

energy level. The parameter 𝜁  controls the influence of 

historical energy levels on the current smoothed value. 

The adjusted expiration time with EARM, considering the 

smoothed energy level is then given by Eq.(17). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. �̅�𝑖(𝑡) 

(17) 

3.1.7. Cross-Layer Optimization for Lifetime 

The Cross-Layer Optimization for Lifetime (CLOL) step aims 

to leverage interactions between different protocol stack 

layers, enhancing route maintenance’s adaptability and 

efficiency in MANETs. Let’s denote the cross-layer 

optimization factor at time 𝑡  as 𝐶𝐿𝑂𝐿(𝑡) . The cross-layer 

optimization factor represents the collective influence of 

various parameters from different protocol layers, such as 

network, transport, and physical layers, on the route 

maintenance decisions. Building upon the existing route 

expiration time calculation, the CLOL mechanism adjusts the 

adaptive expiration time (𝐸𝑖(𝑡)) by incorporating the cross-

layer optimization factor as specified in Eq.(18). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. �̅�𝑖(𝑡) + 𝜔. 𝐶𝐿𝑂𝐿(𝑡) 

(18) 

Where 𝜔  represents the weight assigned to the cross-layer 

optimization factor in the overall expiration time calculation. 

Specific parameters influencing route stability, such as signal 

strength, interference levels, and available bandwidth, may be 

considered to enable effective cross-layer interactions. These 

parameters contribute to cross-layer optimization and 

facilitate a more comprehensive and context-aware approach 

to route lifetime management. To ensure smooth integration 

of cross-layer optimization, a smoothing factor (𝜂)  can be 

introduced to account for the historical cross-layer 

optimization factor over time, expressed as Eq.(19). 

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝐶𝐿𝑂𝐿(𝑡):  𝐶𝐿𝑂𝐿(𝑡)
= 𝜂. 𝐶𝐿𝑂𝐿(𝑡 − 1)
+ (1 − 𝜂). 𝐶𝐿𝑂𝐿(𝑡) 

(19) 

Where 𝐶�̅�𝑂𝐿(𝑡) represents the smoothed or averaged cross-

layer optimization factor, and 𝐶�̅�𝑂𝐿(𝑡 − 1)  is the previous 

smoothed value. The parameter 𝜂  controls the influence of 

historical cross-layer optimization on the current smoothed 

value. 

The adjusted expiration time with CLOL, considering the 

smoothed cross-layer optimization factor is given by Eq.(20). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. �̅�𝑖(𝑡) + 𝜔. 𝐶𝐿𝑂𝐿(𝑡) 

(20) 

3.1.8. Load Balancing for Lifetime Extension 

Load Balancing for Lifetime Extension (LBLE) focuses on 

optimizing route maintenance by considering the distribution 

of traffic across available routes. Integrating LBLE into RLE-

AODV enhances the protocol’s ability to adapt to varying 

traffic loads and network conditions. Let’s denote the load 

balancing factor at time 𝑡  as 𝐿𝐵𝐿𝐸(𝑡) . The load balancing 

factor represents the degree of load balancing in the network, 

considering factors such as the current traffic distribution and 

congestion levels. Building upon the existing route expiration 

time calculation, the LBLE mechanism adjusts the adaptive 

expiration time (𝐸𝑖(𝑡)) By incorporating the load balancing 

factor, Eq.(21) applies. 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 

𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. �̅�𝑖(𝑡) + 𝜔. 𝐶�̅�𝑂𝐿(𝑡)

+ 𝜃. 𝐿𝐵𝐿𝐸(𝑡) 

(21) 

Where 𝜃 represents the weight assigned to the load balancing 

factor in the overall expiration time calculation. 

To calculate the load balancing factor, one approach is to 

consider the ratio of the traffic on the current route (𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

to the average traffic load across all routes (�̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒). 

𝐿𝐵𝐿𝐸(𝑡) =
𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡)

�̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡)
 (22) 

Eq.(22) measures how evenly the traffic is distributed across 

routes. If the load balancing factor is close to 1, it indicates a 

balanced traffic distribution, while values significantly 

deviating from 1 suggest a load imbalance. 
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To calculate the average traffic load �̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒  over time, a 

smoothing factor (𝜆) can be introduced using Eq.(23). 

�̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) = 𝜆. �̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡 − 1)

+ (1 − 𝜆). 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡) 
(23) 

Where �̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) represents the smoothed or averaged load 

balancing factor and �̅�𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡 − 1)  is the previous 

smoothed value. The parameter 𝜆  controls the influence of 

historical load balancing factors on the current smoothed 

value. 

The adjusted expiration time with LBLE, considering the 

smoothed load balancing factor, is then given by Eq.(24). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 

𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. �̅�𝑖(𝑡) + 𝜔. 𝐶�̅�𝑂𝐿(𝑡)

+ 𝜃. 𝐿�̅�𝐿𝐸(𝑡) 

(24) 

3.1.9. Dynamic Threshold Adjustment 

Dynamic Threshold Adjustment (DTA) enhances the 

protocol’s adaptability by dynamically adjusting thresholds 

based on the observed stability and reliability of the network, 

ensuring optimal route maintenance and lifetime extension. 

Let’s denote the dynamic threshold adjustment factor at time 𝑡 

as 𝐷𝑇𝐴(𝑡) . The dynamic threshold adjustment factor 

represents the degree of adjustment required based on the 

current network conditions. Building upon the existing route 

expiration time calculation, the DTA mechanism adjusts the 

adaptive expiration time (𝐸𝑖(𝑡)) by incorporating Eq.(25). 

𝐸𝑖(𝑡) = 𝛼. 𝑆𝑖
′(𝑡) + 𝛽. (1 − 𝑆𝑖

′(𝑡)) + 

𝛾. ∑ �̅�𝑖𝑗(𝑡)
𝑗

+ 𝜌 + 𝛿. �̅�𝑖(𝑡) + 𝜔. 𝐶�̅�𝑂𝐿(𝑡)

+ 𝜃. 𝐿�̅�𝐿𝐸(𝑡) + 𝜙. 𝐷𝑇𝐴(𝑡) 

(25) 

Where 𝜙  represents the weight assigned to the dynamic 

threshold adjustment factor in the overall expiration time 

calculation. 

The dynamic threshold adjustment factor (𝐷𝑇𝐴(𝑡))  can be 

calculated based on the observed stability and reliability 

metrics of the network. For instance, it may be determined by 

analyzing the packet delivery ratio (PDR), link quality, or 

other relevant metrics.  

A higher 𝐷𝑇𝐴(𝑡) value signifies a need for more conservative 

threshold settings, while a lower value suggests that 

thresholds can be adjusted more aggressively. To adapt 

thresholds based on historical observations, a smoothing 

factor (𝜇) is introduced using Eq.(26). 

𝐷�̅�𝐴(𝑡) = 𝜇. 𝐷�̅�𝐴(𝑡 − 1) + (1 − 𝜇). 𝐷𝑇𝐴(𝑡) (26) 

Where 𝐷�̅�𝐴(𝑡) represents the smoothed or averaged dynamic 

threshold adjustment factor, and 𝐷�̅�𝐴(𝑡 − 1) is the previous 

smoothed value. The parameter 𝜇  controls the influence of 

historical adjustments on the current smoothed value. 

3.2. Fast Furious Cheetah Optimization 

Fast Furious Cheetah Optimization (FFCO) is an innovative 

algorithm inspired by the agile behavior of cheetahs. It 

enhances decision-making processes in various applications, 

including optimization problems. Mimicking cheetahs’ swift 

and adaptive nature, this algorithm dynamically adjusts 

parameters to achieve optimal solutions efficiently.  

Whether applied in routing protocols or other optimization 

domains, FFCO contributes to faster and more adaptive 

decision-making. It is a promising approach in fields that 

demand swift and efficient solutions to complex problems. 

3.2.1. Initialization  

The initial step in the optimization process involves the 

creation of a population of candidate solutions denoted as 

𝑋(0).  Let 𝑁  represent the population size, 𝐷  the 

dimensionality of the solution space, and 𝑥𝑖𝑗  denote the 𝑗-th 

parameter of the 𝑖 -th solution in the population. The 

initialization process can be expressed as Eq.(27). 

𝑋(0) = {𝑥𝑖𝑗
(0)

},   𝑖 = 1,2, … , 𝑁;    𝑗 = 1,2, … . . , 𝐷 (27) 

Where 𝑋(0) represents the initial value of the 𝑗-th parameter 

for the 𝑖-th solution in the population. 

The optimization process is guided by an objective function 

𝑓(𝑋)  that evaluates the performance of each candidate 

solution. The objective function is the mapping from the 

solution space to a scalar fitness value as specified in Eq.(28) 

and Eq.(29). 

𝑓(𝑋) = {𝑓(𝑥𝑖)},   𝑖 = 1,2, … . , 𝑁 
(28) 

 

𝑓(𝑥𝑖) =
𝑔(𝑥𝑖)−𝑚𝑖𝑛 (𝑔(𝑋))

𝑚𝑎𝑥 (𝑔(𝑋))−𝑚𝑖𝑛 (𝑔(𝑋))
                                                          (29) 

Where 𝑓(𝑥𝑖) represents the fitness value of the 𝑖-th solution in 

the population. 

Compute the gradient of the objective function concerning the 

parameters of each solution. Let ∇𝑓(𝑥𝑖𝑗) denote the gradient 

vector for the 𝑗-th parameter of the 𝑖-th solution in Eq.(30) 

∇𝑓(𝑋) = {∇𝑓(𝑥𝑖)},   𝑖 = 1,2, … . , 𝑁;   𝑗 = 1,2, … . , 𝐷 (30) 

The gradient provides information about the direction and 

magnitude of the steepest ascent in the objective function 

landscape. 
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3.2.2. Fast Fourier Transform Analysis for Frequency 

Components 

Perform a Fast Fourier Transform (FFT) analysis on the 

objective function values 𝑓(𝑥𝑖)  to decompose the function 

into its frequency components. Let 𝐹(𝑘) in Eq.(31) represent 

the Fourier Transform of 𝑓(𝑥𝑖) at frequency 𝑘. 

𝐹(𝑘) = 𝐹𝐹𝑇{𝑓(𝑥𝑖)},   𝑘 = 1,2, … , 𝐾 (31) 

Where 𝐾  is the number of frequency components obtained 

from the FFT analysis. 

Identify the dominant frequencies by examining the 

magnitude spectrum of the Fourier Transform. Let 𝑘𝑑𝑜𝑚 

denote the index of the dominant frequency component in 

Eq.(32). 

𝑘𝑑𝑜𝑚 = arg 𝑚𝑎𝑥𝑘 |𝐹(𝑘)|;  𝑘𝑑𝑜𝑚 ∈ [1, 𝐾] (32) 

The dominant frequency in Eq.(32) indicates the most 

prominent periodicity in the objective function landscape. 

Modify the candidate solutions based on the identified 

dominant frequencies in the frequency domain. Introduce a 

frequency-dependent modification factor 𝑀𝑖𝑗  for each 

parameter by applying Eq.(33) 

𝑥𝑖𝑗
(𝑚𝑜𝑑)

= 𝑥𝑖𝑗 + 𝑀𝑖𝑗 . 𝑠𝑖𝑛(2𝜋𝑘𝑑𝑜𝑚),

𝑖 = 1,2, … , 𝑁;   𝑗 = 1,2, … , 𝐷 
(33) 

Where 𝑥𝑖𝑗
(𝑚𝑜𝑑)

 represents the modified value of the 𝑗 -th 

parameter for the 𝑖-th solution in the population and 𝑀𝑖𝑗 is the 

modification factor. 

Perform an inverse FFT to transform the modified solutions to 

the original parameter space, expressed as Eq.(34). 

𝑥𝑖𝑗
(𝑚𝑜𝑑)

= 𝐼𝐹𝐹𝑇{𝑋𝑖𝑗
(𝑚𝑜𝑑)

},

𝑖 = 1,2, … , 𝑁;   𝑗 = 1,2, … , 𝐷 
(34) 

Where 𝑋𝑖𝑗
(𝑚𝑜𝑑)

  represents the modified solution in the 

frequency domain. 

3.2.3. Evaluation of Frequency-Adapted Solutions 

Evaluate the performance of the frequency-adapted solutions 

using the objective function. The fitness values 𝑓(𝑥𝑖
(𝑚𝑜𝑑)

) are 

obtained for each modified solution using Eq.(35). 

𝑓(𝑋(𝑚𝑜𝑑)) = {𝑓(𝑥𝑖
(𝑚𝑜𝑑)

)}, 𝑖 = 1,2, … , 𝑁;   (35) 

Where 𝑓(𝑥𝑖
(𝑚𝑜𝑑)

) represents the fitness value of the 𝑖 -th 

solution after the frequency-based modification. 

Compute the gradients of the objective function concerning 

the parameters of the frequency-adapted solutions. Let 

∇𝑓(𝑥𝑖𝑗
(𝑚𝑜𝑑)

) denote the gradient vector for the 𝑗-th parameter 

of the 𝑖 -th modified solution, and it is calculated using 

Eq.(36). 

∇𝑓(𝑋(𝑚𝑜𝑑)) = {∇𝑓(𝑥𝑖𝑗
(𝑚𝑜𝑑)

)}, 𝑖 = 1,2, … , 𝑁;   (36) 

The gradient information for the modified solutions guides 

combined evaluation and frequency adaptions. 

Combine the objective function values and gradient 

information for the frequency-adapted solutions, which is 

mathematically expressed as Eq.(37), and it ensures that the 

optimization algorithm considers both the fitness values and 

the modified frequency-dependent characteristics of the 

solutions. 

𝑓(𝑋(𝑚𝑜𝑑)) = {𝑓(𝑥𝑖
(𝑚𝑜𝑑)

)}, ∇𝑓(𝑋(𝑚𝑜𝑑))

= {∇𝑓(𝑥𝑖𝑗
(𝑚𝑜𝑑)

)} 
(37) 

Select the top-performing frequency-adapted solutions based 

on their evaluation scores. The selection process involves 

identifying solutions with improved fitness values and 

favorable gradients where Eq.(38) expresses the same. 

𝑋(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = {𝑥𝑖𝑗
(𝑚𝑜𝑑)

},   𝑖 = 1,2, … , 𝑁;    𝑗 = 1,2, … 𝐷 (38) 

The selected solutions form the basis for generating offspring 

in subsequent steps. 

3.2.4. Frequency-Adapted Recombination (Crossover) and 

Mutation 

The features are combined from the selected frequency-

adapted solutions using recombination (crossover). The 

crossover process incorporates frequency-based adaptations 

using Eq.(39) to guide the generation of offspring solutions. 

𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

= 𝛼. 𝑥𝑖𝑗
(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)

+ (1 − 𝛼). 𝑥𝑖𝑗
(𝑟𝑎𝑛𝑑𝑜𝑚)

 (39) 

Where 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

 represents the 𝑗 -th parameter of the 

offspring, 𝛼 is a recombination parameter, and 𝑥𝑖𝑗
(𝑟𝑎𝑛𝑑𝑜𝑚)

 is a 

randomly selected parameter from the population. 

By introducing a small random change to the parameters of 

some offspring solutions, considering the frequency-based 

adaptations. The mutation process aims to promote 

exploration in both the parameter space and the modified 

frequency domain which is expressed in Eq.(40). 

𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

= 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

+ 𝛽. 𝑟𝑎𝑛𝑑() (40) 
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Where 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

 represents the 𝑗-th parameter of the mutated 

offspring, 𝛽 is a mutation parameter, and rand() is a random 

value from a specified distribution. 

By combining the offspring solutions generated through 

recombination and mutation, 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

 will be calculated 

using Eq.(41). The offspring solutions represent a 

combination of recombined and mutated solutions, with 

consideration given to the frequency-adapted characteristics. 

𝑋(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) = {𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

, 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

},   𝑖

= 1,2, … . 𝑁;   𝑗 = 1,2, … , 𝐷 
(41) 

Evaluate the performance of the generated offspring solutions 

using the objective function. Obtain the fitness values and 

gradients for the offspring using Eq.(42). The evaluation 

phase ensures that the offspring solutions’ performance is 

assessed in both recombination and mutation scenarios. 

𝑓(𝑋(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔))

= {𝑓 (𝑥𝑖
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

) , 𝑓(𝑥𝑖
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

)},   

∇𝑓(𝑋(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔))

= {∇𝑓(𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

), ∇𝑓(𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

)} 

(42) 

3.2.5. Replacement and Convergence Check 

Replace the old population with a combination of the original 

solutions and the newly generated offspring based on their 

fitness values. Implement a selection mechanism that 

considers both parent and offspring solutions using Eq.(43) to 

maintain a diverse population while favouring solutions with 

improved fitness. 

𝑋(𝑛𝑒𝑤) = {𝑥𝑖𝑗
(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)

, 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

, 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

},

𝑖 = 1,2, … 𝑁;   𝑗 = 1,2, . . , 𝐷 
(43) 

Check for convergence by assessing whether the optimization 

process has met predefined criteria. Convergence criteria may 

include a satisfactory level of fitness, stability in the 

population, or a specified number of iterations. The decision 

to converge is influenced by factors such as the fitness values, 

gradients, and modifications introduced during the 

optimization process, which is Eq.(44). 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 = 

𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠,                              (44) 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠, … ) 

Where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 is a binary variable indicating whether the 

optimization process has converged, and 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

is a function that evaluates convergence criteria. 

Eq.(45) is applied to combine the replacement and 

convergence check steps. Replacing the old population with a 

diverse set of solutions, combined with a convergence check, 

ensures the optimization process evolves towards satisfactory 

solutions. 

𝑋(𝑛𝑒𝑤) = {𝑥𝑖𝑗
(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)

, 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

, 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑)

} (45) 

If convergence has not been achieved, repeat the optimization 

steps from 3.2.2 to 3.2.5 until the convergence criteria are met 

or a predefined number of iterations is reached. Iteration 

control ensures the optimization continues until convergence 

or a specified limit is reached. The integration of replacement 

strategies and a convergence check in this step contributes to 

the dynamic evolution of the population, with periodic 

assessments of the optimization progress. 

3.2.6. Iterative Frequency Adaptation 

Continuing the iterative process, another Fast Fourier 

Transform (FFT) analysis on the objective function values of 

the current population will be performed. Eq.(46) aims to 

capture any evolving frequency patterns in the accurate 

function landscape as the optimization progresses. 

𝐹(𝑡)(𝑘) = 𝐹𝐹𝑇{𝑓(𝑥𝑖
(𝑡)

)},   𝑘 = 1,2, … 𝐾(𝑡) (46) 

Where 𝑡 denotes the current iteration, and 𝐾(𝑡) is the number 

of frequency components at iteration 𝑡 . The dominant 

frequency is updated by identifying the index of the 

maximum magnitude in the frequency spectrum obtained 

from the FFT analysis at the current iteration. Eq.(47) shifts or 

changes the frequency characteristics of the objective function 

landscape. 

𝑘𝑑𝑜𝑚
(𝑡)

= arg 𝑚𝑎𝑥𝑘 |𝐹(𝑡)(𝑘)|, 𝑘𝑑𝑜𝑚
(𝑡)

∈ [1, 𝐾(𝑡)] (47) 

The candidate solutions are modified in the frequency domain 

based on the updated dominant frequency. Utilize the 

frequency-dependent modification factor 𝑀𝑖𝑗
(𝑡)

 for each 

parameter as specified in Eq.(48). 

𝑥𝑖𝑗
(𝑚𝑜𝑑,𝑡)

= 𝑥𝑖𝑗
(𝑡)

+ 𝑀𝑖𝑗
(𝑡)

. 𝑠𝑖𝑛(2𝜋𝑘𝑑𝑜𝑚
(𝑡)

) (48) 

Where 𝑥𝑖𝑗
(𝑚𝑜𝑑,𝑡)

 represents the modified value of the 𝑗 -th 

parameter for the 𝑖-th solution in the population at iteration 𝑡. 

An inverse FFT is performed to transform the modified 

solutions back to the original parameter space for the current 

iteration, and it is expressed as Eq.(49). 

𝑥𝑖𝑗
(𝑚𝑜𝑑,𝑡)

= 𝐼𝐹𝐹𝑇{𝑋𝑖𝑗
(𝑚𝑜𝑑,𝑡)

},   𝑖 = 1,2, … , 𝑁;    𝑗

= 1,2, … , 𝐷 
(49) 

3.2.7. Enhanced Recombination and Mutation with Frequency 

Adaptation 

This step enhances the recombination (crossover) process by 

incorporating the iterative frequency-adapted information. 
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The features are combined from the selected frequency-

adapted solutions using recombination, emphasizing the 

updated frequency characteristics. Mathematically, it is 

expressed as Eq.(50) 

𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

= 𝛼. 𝑥𝑖𝑗
(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑡)

+ (1 − 𝛼). 𝑥𝑖𝑗
(𝑟𝑎𝑛𝑑𝑜𝑚,𝑡)

 (50) 

Where 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

 represents the 𝑗 -th parameter of the 

offspring at iteration 𝑡, 𝛼 is a recombination parameter, and 

𝑥𝑖𝑗
(𝑟𝑎𝑛𝑑𝑜𝑚,𝑡)

 is a randomly selected parameter from the 

population at iteration 𝑡. 

Introducing small random changes to the parameters of some 

offspring solutions considers the evolving frequency-based 

adaptations. The mutation process promotes exploration in 

both the parameter space and the modified frequency domain 

as Eq.(51) 

𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

= 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

+ 𝛽. 𝑟𝑎𝑑() (51) 

Where 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

 represents the 𝑗 -th parameter of the 

mutated offspring at iteration 𝑡 , 𝛽  is a mutation parameter, 

and 𝑟𝑎𝑛𝑑() is a random value from a specified distribution. 

The offspring solutions are combined by generating through 

enhanced recombination and mutation with frequency 

adaptation, as expressed in Eq.(52). The offspring solutions at 

iteration 𝑡  now reflect an improved combination of 

recombined and mutated solutions, guided by the evolving 

frequency characteristics. 

𝑋(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡) = {𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

, 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

} ,

𝑖 = 1,2, … , 𝑁;   𝑗 = 1,2, … , 𝐷 
(52) 

Evaluate the generated offspring solutions’ performance using 

the current iteration’s objective function. Obtain the fitness 

values and gradients for the offspring using Eq.(53). The 

iterative evaluation phase ensures that the performance of the 

progeny is assessed considering both recombination and 

mutation scenarios. 

𝑓(𝑋(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡))

= {𝑓(𝑥𝑖
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

), 𝑓(𝑥𝑖
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

)} 

∇𝑓(𝑋(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡))

= {∇𝑓(𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

), ∇𝑓(𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

)} 

(53) 

3.2.8. Iterative Replacement and Adaptive Convergence 

Check 

The replacement strategy is refined by adapting the process 

based on the evolving frequency-adapted solutions. Consider 

a combination of parent solutions, frequency-adapted 

offspring, and potentially mutated offspring in the 

replacement phase. 

𝑋(𝑛𝑒𝑤,𝑡) = {𝑥𝑖𝑗
(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑡)

, 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

, 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

} ,

𝑖 = 1,2, … , 𝑁;    𝑗 = 1,2, … , 𝐷 
(54) 

Eq.(54) aims to maintain diversity while favoring solutions 

with improved fitness and incorporating information from the 

frequency-adapted offspring. 

The convergence check is enhanced by considering the 

frequency-adapted solutions and potentially updating the 

convergence criteria dynamically. Eq.(55) evaluates whether 

the optimization process has met adaptive convergence 

criteria considering the evolving frequency characteristics, 

fitness values, and gradient information. 

𝐶ℎ𝑒𝑐𝑘𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

(𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠(𝑡), 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑡), 𝑚𝑜𝑑)                        (55) 

Where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑(𝑡) is a binary variable indicating whether 

the optimization process has converged at iteration 𝑡 , and 

𝐶ℎ𝑒𝑐𝑘𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 is a function that dynamically 

evaluates adaptive convergence criteria. 

If convergence has not been achieved at iteration 𝑡, repeat the 

optimization steps from section 3.2.2 to 3.2.8 until the 

adaptive convergence criteria are met or a predefined number 

of iterations is reached. The iterative nature of the 

optimization process, coupled with adaptive replacement and 

convergence checks, ensures the algorithm dynamically 

responds to changes in the optimization landscape. By 

integrating adaptive strategies, the algorithm can navigate 

challenging scenarios where the characteristics of the 

objective function may vary across different phases of the 

optimization process. 

3.2.9. Fine-Tuning and Solution Refinement 

Introduce a fine-tuning mechanism to refine solutions in the 

vicinity of the current population. Incorporate local search 

techniques to exploit promising solutions in the 

neighborhood. Fine-tuning involves minor adjustments to the 

parameters of selected solutions, focusing on controlling local 

improvements expressed as Eq. (56). 

𝑥𝑖𝑗
(𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑,𝑡)

= 𝑥𝑖𝑗
(𝑡)

+ 𝛾. 𝑙𝑜𝑐𝑎𝑙_𝑠𝑒𝑎𝑟𝑐ℎ(𝑥𝑖𝑗
(𝑡)

) (56) 

Where 𝑥𝑖𝑗
(𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑,𝑡)

 represents the fine-tuned version of the 

𝑗-th parameter for the 𝑖-th solution at iteration 𝑡, and 𝛾 is a 

fine-tuning parameter. 

Evaluate the performance of the fine-tuned solutions using the 

objective function. Adjust the evaluation strategy using 

Eq.(57) to dynamically consider the fine-tuned solutions in 

assessing fitness values and gradients. The adaptive 
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evaluation ensures that the fine-tuned solutions contribute to 

the optimization process based on their adjusted fitness and 

gradient information. 

𝑓(𝑋(𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑,𝑡) = {𝑓(𝑥𝑖
(𝑓𝑖𝑛𝑒−𝑡𝑖𝑛𝑒𝑑,𝑡)

)} 

∇𝑓(𝑋(𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑,𝑡) = {∇𝑓(𝑥𝑖𝑗
(𝑓𝑖𝑛𝑒−𝑡𝑖𝑛𝑒𝑑,𝑡)

)} 

(57) 

 

Combine the fine-tuned solutions with the current population 

and frequency-adapted offspring expressed as Eq.(58). 

𝑋(𝑓𝑖𝑛𝑎𝑙,𝑡) =

{𝑥𝑖𝑗
(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑡)

, 𝑥𝑖𝑗
(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)

, 𝑥𝑖𝑗
(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)

, 𝑥𝑖𝑗
(𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑,𝑡)

}    (58) 

The combined set of solutions represents the final population 

at iteration 𝑡 , including the initially selected solutions, 

frequency-adapted offspring, potentially mutated solutions, 

and fine-tuned solutions. 

The convergence check is adapted to include the fine-tuned 

solutions in the assessment of convergence criteria. The 

iterative convergence check, now accounting for fine-tuned 

solutions, ensures that the optimization process responds to 

local improvements and potential refinement opportunities.  

Introduce an adaptive step size control mechanism to 

dynamically adjust the exploration-exploitation balance 

during optimization. The step size control influences the 

magnitude of parameter updates in the population and fine-

tuned solutions. Mathematically, it is expressed as Eq.(59). 

𝑥𝑖𝑗
(𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒,𝑡)

= 𝑥𝑖𝑗
(𝑓𝑖𝑛𝑎𝑙,𝑡)

+ 𝛿. 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒(𝑥𝑖𝑗
(𝑓𝑖𝑛𝑎𝑙,𝑡)

) (59) 

Where 𝑥𝑖𝑗
(𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒,𝑡)

 represents the parameter with an adaptive 

step size at iteration 𝑡, and 𝛿 is the adaptive step size factor. 

Promote global exploration by applying the adaptive step size 

control to all solutions in the population, fine-tuned solutions, 

and any additional exploration strategies, which uses Eq.(60). 

The global exploration set includes solutions with adaptive 

step sizes and any other exploration strategies designed to 

enhance the search process. 

𝑋(𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡)

= {𝑥𝑖𝑗
(𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒,𝑡

, 𝑥𝑖𝑗
(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡

} 
(60) 

(a). Iterative Evaluation of Globally Explored Solutions 

Evaluate the performance of the globally explored solutions 

using the objective function. Dynamically consider the fitness 

values and gradients of the solutions with adaptive step sizes 

and any additional exploration strategies. 

𝑓(𝑋(𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡))

= {𝑓(𝑥𝑖
(𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒,𝑡

), 𝑓(𝑥𝑖
(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡

)} 

∇𝑓(𝑋(𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡))

= {∇𝑓(𝑥𝑖𝑗
(𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒,𝑡

), ∇𝑓(𝑥𝑖𝑗
(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡

)} 

(61) 

Eq.(61) ensures that the performance of globally explored 

solutions is assessed, considering both adaptive step sizes and 

any additional exploration strategies. 

 

(b). Combined Globally Explored Equations 

Combine the globally explored solutions using Eq.(62) with 

the current population, frequency-adapted offspring, 

potentially mutated solutions, and fine-tuned solutions. It 

represents the global exploration set at iteration 𝑡 , 

incorporating solutions with adaptive step sizes and any 

additional exploration strategies. 

𝑋(𝑔𝑙𝑜𝑎𝑏𝑙,𝑡) = 

{
𝑥𝑖𝑗

(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑡)
, 𝑥𝑖𝑗

(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,𝑡)
, 𝑥𝑖𝑗

(𝑚𝑢𝑡𝑎𝑡𝑒𝑑,𝑡)
, 𝑥𝑖𝑗

(𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑,𝑡)
,

𝑥𝑖𝑗
(𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑡)

}  (62) 

(c). Iterative Convergence Check with Global Exploration 

Adapt the convergence check using Eq.(63) to include the 

globally explored solutions in the assessment of convergence 

criteria: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑(𝑡) = 

𝐶ℎ𝑒𝑐𝑘𝐺𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠(𝑡), 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑡), 𝑚𝑜𝑑𝑖𝑓𝑖𝑐)                                                   (63) 

Where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑(𝑡) is a binary variable indicating whether 

the optimization process has converged at iteration 𝑡 , and 

𝐶ℎ𝑒𝑐𝑘𝐺𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒  is a function that dynamically 

evaluates convergence criteria considering globally explored 

solutions. 

3.3. Elliptic Curve Cryptography (ECC) 

Integrating Elliptic Curve Cryptography (ECC) within the 

Fast Furious Cheetah Optimization (FFCO) framework results 

in Fast Furious Cheetah Optimization-Based Secured Routing 

(FFCOSR). This integration enhances the security of routing 

protocols within the FFCOSR paradigm, bolstering the 

confidentiality, integrity, and authentication of transmitted 

data. Leveraging ECC's efficiency and effectiveness, 

FFCOSR reinforces routing optimization with robust security 

measures, rendering it well-suited for dynamic and resource-

constrained environments like vehicular ad hoc networks 

(VANETs). The amalgamation of ECC within FFCO signifies 
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a pivotal advancement, offering a holistic solution for secure 

and efficient routing in VANETs. 

Elliptic Curve Cryptography (ECC) is a robust cryptographic 

framework widely employed for secure data transmission and 

digital signatures. Rooted in elliptic curves' mathematical 

properties, ECC provides stronger security with shorter 

critical lengths than traditional methods. ECC’s strength lies 

in its ability to resist various attacks, including those 

anticipated with the advent of quantum computing. The core 

principle involves leveraging elliptic curve algebraic 

structures, where points on the curve define keys for 

encryption, decryption, and digital signatures. ECC’s 

computational efficiency makes it suitable for resource-

constrained environments, such as mobile devices and 

embedded systems, while maintaining high levels of security. 

The security of ECC relies on the difficulty of the elliptic 

curve discrete logarithm problem, contributing to its resilience 

against potential threats. Widely adopted in contemporary 

cryptographic protocols like TLS and PGP, ECC is 

instrumental in ensuring the confidentiality and integrity of 

sensitive information. Its efficiency and formidable security 

features position ECC as a cornerstone in modern 

cryptographic applications, navigating the evolving landscape 

of information security challenges. The functionality of ECC 

can be classified into 7 phases, which are as follows. 

3.3.1. Key Generation: 

Key generation is the foundational step in ECC and is crucial 

for securing communications and data integrity. This process 

involves the computation of a public key ( 𝑄 ) and a 

corresponding private key ( 𝑑 ) using elliptic curve 

mathematics. The elliptic curve equation Eq.(64) defines the 

curve’s points over a finite field 𝐹𝑝 , where 𝑎  and 𝑏 are 

constants, and 𝑝 is a prime number. 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (64) 

The public key ( 𝑄 ) is derived by performing scalar 

multiplication of a chosen base point (G) on the curve by the 

private key ( 𝑑 ), which is represented mathematically in 

Eq.(65). 

Q = 𝑑 × 𝐺 (65) 

This scalar multiplication is efficiently achieved through 

repeated point addition and doubling operations. The resulting 

𝑄 becomes the user’s public key, intended for distribution. 

The private key (𝑑) is a randomly selected scalar within the 

range [1,𝑛 − 1], where n is the order of the base point (𝐺).  

n × G = O (66) 

In Eq.(66) as represented 𝑛 is the smallest positive integer, 

where 𝑂  is the point at infinity. The private key is kept 

confidential and is fundamental for cryptographic operations. 

The essential generation process in ECC, as expressed by 

equations, involves the selection of a private key (𝑑) from a 

finite range and the computation of the corresponding public 

key (𝑄) by scalar multiplication of the base point (𝐺) on the 

elliptic curve.  

3.3.2. Key Exchange: 

The Key Exchange phase involves the computation of a 

shared secret 𝑆  between two parties using their respective 

private and public keys. The sender’s private key 𝑑𝑠𝑒𝑛𝑑𝑒𝑟 

and the receiver’s public key 𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 are utilized in this 

process. The shared secret 𝑆  is calculated through scalar 

multiplication mathematically represented in Eq.(67). 

S = 𝑑𝑠𝑒𝑛𝑑𝑒𝑟 × 𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟  (67) 

Eq.(67) signifies the combination of the sender’s secret scalar 

with the receiver’s public key point on the elliptic curve. The 

resulting 𝑆  is a shared secret that remains confidential 

between the communicating entities. 

To achieve secure key exchange, both parties must ensure the 

validity of each other’s keys and employ the same elliptic 

curve parameters. The security of this process hinges on the 

difficulty of the elliptic curve discrete logarithm problem, 

wherein deriving the private key from the public key is 

computationally infeasible.  

This process is robust due to the inherent complexity of 

elliptic curve arithmetic. The scalar multiplication involves a 

series of point additions and doublings, making it resistant to 

traditional cryptographic attacks. The security of the shared 

secret 𝑆  lies in the strength of the private key  𝑑𝑠𝑒𝑛𝑑𝑒𝑟 , 

ensuring confidentiality in the communication channel. The 

Key Exchange step establishes a shared secret 𝑆 between two 

entities, paving the way for secure communication and 

cryptographic operations.  

3.3.3. Digital Signatures 

Digital Signatures play a pivotal role in ensuring data 

integrity and authentication. This process involves the 

generation and verification of a signature using the private 

key 𝑑 and the corresponding public key 𝑄 of the signer. For a 

message m, the signer computes a pair of integers 𝑟, 𝑠  as 

depicted in Eq.(68) to Eq.(70). 

(𝑥1, 𝑦1) = 𝑘 × 𝐺 (68) 

r = 𝑥1 𝑚𝑜𝑑 𝑛 (69) 

s = 𝑘−1 ∙ (𝐻(𝑚) + 𝑑 ∙ 𝑟) 𝑚𝑜𝑑 𝑛 (70) 

Where 𝐺 represents the base point on the elliptic curve, 𝑘 is a 

randomly chosen integer 𝐻(𝑚) is the hash of the message 𝑚, 

and 𝑛 is the order of the base point. The resulting (𝑟, 𝑠) pair 

constitutes the digital signature. 
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The verification process involves the receiver, who possesses 

the sender’s public key 𝑄, the received message 𝑚, and the 

received signature 𝑟, 𝑠. The receiver checks the validity of the 

signature through the following equations from Eq.(71) to 

Eq.(75). 

w = 𝑠−1 𝑚𝑜𝑑 𝑛 (71) 

𝑢1 = 𝐻(𝑚) ∙ w 𝑚𝑜𝑑 𝑛 (72) 

𝑢2 = r ∙ w 𝑚𝑜𝑑 𝑛 (73) 

(𝑥1, 𝑦1) = 𝑢1 × 𝐺 + 𝑢2 × 𝑄 (74) 

𝑣 = 𝑥1𝑚𝑜𝑑 𝑛 (75) 

The signature is considered valid if 𝑣 is equal to 𝑟. The use of 

a nonce 𝑘  prevents deterministic signatures and enhances 

security. The digital signatures step in ECC involves the 

generation and verification of signatures using private and 

public keys, ensuring the authenticity and integrity of 

transmitted data. 

3.3.4. Encryption 

The encryption process involves transforming plaintext into 

ciphertext using the recipient’s public key 𝑄 and a randomly 

chosen integer 𝑘. For a given plaintext message m, Eq.(76) 

and Eq.(77) represent the encryption process mathematically.  

(𝑥𝑘,𝑦𝑘) = 𝑘 × 𝐺 (76) 

(𝑥𝑐 , 𝑦𝑐) = (𝑥𝑚 + 𝑥𝑘 , 𝑦𝑚 + 𝑦𝑘) (77) 

Where 𝐺 is the base point on the elliptic curve, and (𝑥𝑚, 𝑦𝑚) 

represents the coordinates of the plaintext message. The 

ciphertext ( 𝑥𝑐 , 𝑦𝑐 ) is obtained by adding the result of the 

scalar multiplication of the base point 𝐺  with 𝑘  to the 

coordinates of the plaintext message. 

The decryption process, performed by the recipient possessing 

the private key 𝑑, involves reversing the encryption to retrieve 

the original plaintext coordinates.  

(𝑥𝑚, 𝑦𝑚) = (𝑥𝑐 , 𝑦𝑐) − d ×(𝑥𝑘 , 𝑦𝑘) (78) 

Eq.(78) employs scalar multiplication and subtraction on the 

elliptic curve to obtain the original coordinates of the 

plaintext message. The security of the Encryption step relies 

on the computational infeasibility of reversing the scalar 

multiplication process without knowledge of the private key 

𝑑. The elliptic curve properties ensure that only the recipient, 

possessing the private key, can successfully decrypt the 

ciphertext to retrieve the original plaintext. The Encryption 

step in ECC leverages mathematical operations on elliptic 

curves to achieve data confidentiality.  

3.3.5. Key Storage and Management: 

Key Storage and Management involve the secure handling of 

private keys 𝑑 to maintain the confidentiality and integrity of 

cryptographic operations. The private key must be securely 

stored and managed to prevent unauthorized access and 

potential compromise. Key storage practices commonly 

include secure mechanisms such as Hardware Security 

Modules (HSMs) or key vaults. The process entails properly 

storing the private key d in a secure location. While the 

mathematical representation is abstract, the essence lies in 

safeguarding the private key from unauthorized access or 

disclosure, represented mathematically using Eq.(79). 

Secure Storage ∶ 𝑆𝑡𝑜𝑟𝑒(𝑑) (79) 

The stored private key is crucial for cryptographic operations 

like signature generation and decryption. Its protection is 

paramount to the overall security of the ECC system. The 

management of private keys involves considerations such as 

key rotation and periodic updates. The mathematical 

representation of key rotation might include generating a new 

private key (𝑑𝑛𝑒𝑤) and securely updating the stored key. 

Key Rotation ∶ 𝑆𝑡𝑜𝑟𝑒(𝑑𝑛𝑒𝑤) (80) 

Eq.(80) represents the process of securely storing a new 

private key, ensuring the continuous security of cryptographic 

operations. 

In ECC, the management of public keys is equally vital. The 

mathematical aspect involves securely distributing and 

verifying the authenticity of public keys. An equation 

capturing this concept is Eq.(81) as public key distribution. 

𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = Retrieve(𝑑𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟) × 𝐺 (81) 

Eq.(81) symbolizes the distribution of a public key (𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟) 

by scalar multiplication of the recipient’s private key 

(𝑑𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ) with the base point (G). The Key Storage and 

Management step in ECC involves secure storage practices 

for private keys and effective management of private and 

public keys.  

3.3.6. Post-Quantum Considerations 

Post-quantum considerations address the evolving landscape 

of quantum computing and its potential threats to existing 

cryptographic systems. The emergence of powerful quantum 

computers has spurred the exploration of quantum-resistant 

algorithms to ensure data security in the post-quantum era. 

One such consideration involves transitioning from traditional 

elliptic curve-based cryptographic schemes to post-quantum 

algorithms. Choosing a post-quantum algorithm is crucial for 

maintaining security against quantum attacks. The post-

quantum key exchange is mathematically represented 

mathematically with Eq.(82). 

𝑆𝑃𝑄 = 𝑆𝐾𝑃𝑄 × 𝑃𝐾𝑂𝑡ℎ𝑒𝑟𝑃𝑎𝑟𝑡𝑦 (82) 

Where 𝑆𝐾𝑃𝑄 the post-quantum private is key, and 

𝑃𝐾𝑂𝑡ℎ𝑒𝑟𝑃𝑎𝑟𝑡𝑦 is the public key of the other party. 
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As quantum computers pose a threat to traditional public-key 

cryptography, the adoption of lattice-based or hash-based 

post-quantum cryptographic algorithms becomes imperative. 

A representative equation for a post-quantum digital signature 

might involve the use of a post-quantum private key 𝑆𝐾𝑃𝑄 . 

Post − Quantum Signature: 𝑆𝑖𝑔𝑃𝑄

= 𝑆𝑖𝑔𝑛𝑃𝑄(𝑆𝐾𝑃𝑄 , 𝑀𝑒𝑠𝑠𝑎𝑔𝑒) 
(83) 

Where, in Eq.(83) 𝑆𝑖𝑔𝑛𝑃𝑄  denotes the signing algorithm for 

the post-quantum scheme. 

In anticipation of quantum adversaries, researchers explore 

mathematical structures that remain secure even in the face of 

quantum algorithms.  

3.3.7. Randomness Considerations 

Randomness Considerations play a crucial role in enhancing 

the security of cryptographic operations. Randomness is 

integral for generating unpredictable values, such as nonces or 

ephemeral keys, to thwart deterministic attacks.  

Incorporating randomness is vital in various aspects of ECC, 

including key generation and signature schemes. Generating 

random nonces (𝑘) is a common practice in ECC to prevent 

predictability in signatures. The mathematical representation 

of the nonce generation process involves obtaining a random 

value within a specified range. 

k ∈[1, 𝑛 − 1] (84) 

Where in Eq.(84)  𝑛 denotes the order of the base point on the 

elliptic curve. The unpredictability of k contributes to the 

security of the digital signature. 

Randomness is often employed in secure multiparty 

computation or distributed key generation. The mathematical 

representation of a secure joint key generation process might 

involve the combination of individual contributions with 

randomness, as shown in Eq.(85). 

Shared Key = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝐾𝑒𝑦1 + 𝑅𝑎𝑛𝑑𝑜𝑚1 , 𝐾𝑒𝑦2

+ 𝑅𝑎𝑛𝑑𝑜𝑚2, … ) 
(85) 

In cryptographic protocols, especially those involving 

multiple parties, introducing randomness adds an extra layer 

of security. Randomness is crucial in the context of key 

diversification. The mathematical representation of 

diversification through randomness might involve combining 

a master key (𝑀𝐾 ) with a random value (𝑅 ) to derive a 

diversified key (𝐷𝐾). 

Diversified Key = 𝐷𝑒𝑟𝑖𝑣𝑒(𝑀𝐾, 𝑅) (86) 

Eq.(86) symbolizes the generation of a diversified key (DK) 

using a master key (𝑀𝐾) and a random value (𝑅). 

3.3.8. Error Handling and Robust Implementations 

Error detection is a fundamental aspect of ECC 

implementations, often involving the validation of inputs. The 

mathematical expression for input validation may include 

conditions and constraints, ensuring that the input adheres to 

specified criteria. Detection of error signaling mechanisms is 

crucial for communicating the nature of the error. Method 

representations for signalling may involve error codes or 

messages. Error recovery strategies are implemented to 

mitigate the impact of errors. The depiction of error recovery 

might involve retrying an operation or switching to an 

alternative method. Logging and auditing error information 

contribute to the analysis and improvement of cryptographic 

implementations. A method of representing logging error 

information may involve recording relevant details. 

Exception-handling mechanisms in programming languages 

are critical for controlled error management. 

𝑆𝑡𝑒𝑝 1: 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐶𝐶𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦,  

𝑐𝑢𝑟𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝑡𝑒𝑝 2: 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 

=  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦(𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, 𝑐𝑢𝑟𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝑡𝑒𝑝 3: 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 

=  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦, 𝑐𝑢𝑟𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝑡𝑒𝑝 4: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 

=  𝑆𝑖𝑔𝑛(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, 𝑐𝑢𝑟𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝑡𝑒𝑝 5: 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 

=  𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦, 𝑐𝑢𝑟𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝑡𝑒𝑝 6: 𝑖𝑠𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑 

=  𝑉𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒, 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦,  

𝑐𝑢𝑟𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

𝑆𝑡𝑒𝑝 7: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒, 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒,  

𝑖𝑠𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑 

𝑆𝑡𝑒𝑝 8: 𝑒𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

Algorithm 3 Error Handling and Robust Implementations 

Algorithm 3 depicts the steps of Error Handling and Robust 

Implementations. Error handling is an integral part of 

maintaining system integrity and security. While specific 

mathematical equations may not directly represent error-

handling procedures, the implementation involves logical and 

conditional statements within the code. The systematic 

approach to detecting, signalling, and recovering from errors 

ensures that ECC implementations remain robust in the face 

of unforeseen challenges. 

Step 1: Structure EllipticCurve: 
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a) Fp: Finite field 

b) E: Elliptic curve defined over Fp 

c) G: Base point on E 

d) n: Order of G 

Step 2: Structure ECCKeyPair: 

a) PrivateKey: Secret scalar (d) 

b) PublicKey: Public key point (Q) 

Step 3: Function ECCKeyGeneration()  →  ECCKeyPair: 

a) Curve ←  EllipticCurve(Fp, E, G, n) 

b) PrivateKey ←  RandomNumberInRange(1, n − 1) 

c) PublicKey ←  ScalarMultiplication(PrivateKey, G) 

d) Return ECCKeyPair(PrivateKey, PublicKey) 

Step 4: Function ECCEncryption(plaintext, PublicKey)  
→  Ciphertext: 

a) k ←  RandomNumberInRange(1, n − 1) 

b) K ←  ScalarMultiplication(k, G) 

c) c1 ←  K. x 

d) s ←  ScalarMultiplication(k, PublicKey) 

e) c2 ←  plaintext XOR Hash(s) 

f) Return Ciphertext(c1, c2) 

Algorithm 4 ECC 

Algorithm 4 outlines the significant steps involved in ECC, 

incorporating key generation, key exchange, digital 

signatures, encryption, key storage and management, post-

quantum considerations, randomness considerations, and error 

handling. 

3.4. Fusion of FFCO and RLE-AODV 

Integrating the RLE-AODV and FFCO presents a synergistic 

approach to addressing the challenges in vehicular 

communication networks. RLE-AODV, a robust routing 

protocol, forms the foundation for establishing reliable 

communication paths within dynamic vehicular environments. 

By enhancing communication routes’ adaptability, efficiency, 

and resilience, RLE-AODV responds effectively to variations 

in vehicle positions and network connectivity. Fast Furious 

Cheetah Optimization complements this routing framework 

with its unique frequency-based adaptation strategy. Through 

a Fast Fourier Transform (FFT) analysis, the optimization 

process identifies dominant frequencies in the objective 

function landscape, offering insights into the dynamic nature 

of the vehicular network. The subsequent modification of 

candidate solutions in the frequency domain, guided by 

dominant frequencies, introduces a novel dimension to the 

routing optimization process. This frequency-dependent 

modification, expressed through sine functions, aims to 

enhance the overall performance of the vehicular 

communication network. 

The iterative nature of FFCO ensures continuous adaptation to 

evolving frequency patterns, aligning with the dynamic 

changes in the vehicular environment. This iterative 

frequency adaptation and enhanced recombination and 

mutation processes generate offspring solutions that exhibit 

improved fitness values and favorable gradients. The selection 

of top-performing frequency-adapted solutions forms the 

basis for subsequent iterations, driving the optimization 

process towards more satisfactory outcomes. Algorithm 5 

establishes a comprehensive routing protocol that leverages 

the strengths of both methodologies. This integration offers a 

promising avenue for creating a robust, adaptive, and secure 

vehicular communication framework, enhancing 

communication paths’ overall reliability and efficiency within 

dynamic vehicular environments. 

Step 1: Dynamic Adaptive Networking 

Step 2: Begin 

Step 3: DAN_Setup InitializeDANSetup(): 

a) MaxNodes ←  100 

b) NetworkTopology ←  GenerateRandomTopology(MaxNodes) 

c) InitialRoutingTable ←  CreateInitialRoutingTable(NetworkTopology) 

d) Return DAN_Setup { MaxNodes, NetworkTopology, InitialRoutingTable } 

Step 4: FFO_Parameters InitializeFFOParameters(): 

a) MaxIterations ←  500 

b) CheetahPopulation ←  30 

c) ConvergenceCriteria ←  1e − 5 
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d) Return FFO_Parameters { MaxIterations, CheetahPopulation, ConvergenceCriteria } 

Step 5: Solution FastFuriousOptimization(FFO_Parameters parameters): 

a) Population ←  InitializeCheetahPopulation(parameters. CheetahPopulation) 

b) For iteration in 1 to parameters. MaxIterations: 

c) EvaluateFitness(Population, DAN_Setup. InitialRoutingTable) 

d) UpdateCheetahPositions(Population) 

e) If Converged(Population, parameters. ConvergenceCriteria): 

a. Break 

f) Return GetBestSolution(Population) 

Step 6: DynamicRoutingTable UpdateDynamicRoutingTable 

(Solution optimizedSolution): 

a) UpdatedRoutingInfo ←  ExtractRoutingInfo(optimizedSolution) 

b) UpdatedRoutingTable ←  DAN_Setup. InitialRoutingTable. Merge(UpdatedRoutingInfo) 

c) Return UpdatedRoutingTable 

Step 7: EncryptedData FFOEncryption 

(OriginalData data, Solution optimizedSolution): 

a) HashedSolution ←  SHA_256. Hash(optimizedSolution) 

b) EncryptionKey ←  DeriveSymmetricKey(HashedSolution) 

c) EncryptedData ←  AES. Encrypt(data, EncryptionKey) 

d) Return EncryptedData 

Step 8: EncryptedData DAN_FFO_FusionAlgorithm(OriginalData data): 

a) DANSetup ←  InitializeDANSetup() 

b) FFOParameters ←  InitializeFFOParameters() 

c) For iteration in 1 to FFOParameters. MaxIterations: 

d) FFOBestSolution ←  FastFuriousOptimization(FFOParameters) 

e) UpdatedRoutingTable ←  UpdateDynamicRoutingTable(FFOBestSolution) 

f) EncryptedData ←  FFO_Encryption(data, FFOBestSolution) XOR UpdatedRoutingTable 

g) Return EncryptedData 

Step 9:         END 

Algorithm 5 Dynamic Adaptive Networking with FFCO 

3.4.1. Advantages of FFCO 

The holistic approach to vehicular network optimization, 

combining the strengths of RLE-AODV and Fast Furious 

Cheetah Optimization, results in extended route lifetimes, 

real-time adaptability, and optimized traffic flow with reduced 

communication disruptions.  

 Extended Route Life: DynamicAdaptNet uses a boosted 

AODV (RLE-AODV) to create dependable 

communication paths, reducing the need for constant 

rediscovery of routes. 

 Smooth Traffic: Fast Furious Cheetah Optimization 

enhances traffic flow by considering fitness values and 
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characteristics adapted to frequencies in vehicular 

networks. 

 Diversity in Solutions: DynamicAdaptNet keeps things 

diverse by balancing parent and offspring solutions and 

tackling scale and service quality challenges in vehicular 

networks. 

 Adaptable Progress Check: DynamicAdaptNet stays on its 

toes by responding to changes in the objective function 

landscape, updating its criteria for a robust optimization 

process. 

 Fine-tuning for Local Touch-ups: DynamicAdaptNet fine-

tunes solutions in the nearby population, making local 

adjustments and boosting overall network efficiency. 

3.5. Fusion of FFCO and ECC Robust Security Solutions 

The fusion of ECC and FFCO (Algorithm 6) presents a 

formidable alliance, combining advanced encryption 

techniques with dynamic optimization strategies. The 

integration of ECC and FFCO brings forth a cryptographic 

framework that combines the robustness of ECC’s 

mathematical foundation with the adaptive optimization 

capabilities of FFCO.  

 Optimized Cryptographic Operations: FFCO enhances 

ECC’s operations, optimizing mathematical computations 

for more efficient and secure cryptographic processes. 

 Resistance Against Attacks: The integration provides a 

multi-layered defense, combining FFCO’s iterative 

frequency adaptation with ECC’s inherent security 

measures against cryptographic threats. 

 Efficient Resource Utilization: ECC’s resource-efficient 

design, enhanced by FFCO, ensures minimal 

computational and energy resources for cryptographic 

operations, crucial in resource-constrained scenarios. 

This cryptographic framework stands at the forefront of 

secure communication, offering a harmonious balance 

between robust mathematical security and dynamic 

optimization strategies. The resulting synergy enhances 

cryptographic operations’ adaptability, efficiency, and overall 

security, paving the way for advanced and resilient 

cryptographic protocols in diverse applications. 

Step 1: ECC-FFCO 

Step 2: Begin 

Step 3: ECC_KeyPair GenerateECCKeyPair(): 

a) Curve ← EllipticCurve.SelectCurve(NIST_P_256) 

b) PrivateKey ← 

RandomNumberGenerator.GenerateRandomInteger(

1, Curve.Order - 1) 

c) PublicKey ← Curve.GeneratorPoint * PrivateKey 

d) Return ECC_KeyPair { PrivateKey, PublicKey} 

Step 4: FFCO_Parameters InitializeFFCOParameters(): 

a) MaxIterations ← 1000   

b) CheetahPopulation ← 50   

c) ConvergenceCriteria ← 1e-6   

d) Return FFCO_Parameters { MaxIterations, 

CheetahPopulation, ConvergenceCriteria } 

Step 5: Solution 

FastFuriousCheetahOptimization(FFCO_Parameters 

parameters): 

a) Population ← 

InitializeCheetahPopulation(parameters.CheetahPop

ulation) 

b) For iteration in 1 to parameters.MaxIterations: 

c) EvaluateFitness(Population) 

d) UpdateCheetahPositions(Population) 

e) If Converged(Population, 

parameters.ConvergenceCriteria): 

f) Break 

g) Return GetBestSolution(Population) 

Step 6: HashedData HashFunction(Solution data): 

a) HashedData ← SHA_256.Hash(data) 

b) Return HashedData 

Step 7: EncryptedData ECCEncryption(OriginalData data, 

ECC_Key key): 

a) SharedSecret ← ECDH.KeyExchange(data, key) 

b) EncryptionKey ← 

DeriveSymmetricKey(SharedSecret) 

c) EncryptedData ← AES.Encrypt(data, 

EncryptionKey) 

d) Return EncryptedData 

Step 8: EncryptedData 

ECC_FFCO_FusionAlgorithm(OriginalData data): 

a) ECCKeyPair ← GenerateECCKeyPair() 

b) FFCOParameters ← InitializeFFCOParameters() 

c) For iteration in 1 to FFCOParameters.MaxIterations: 

d) FFCOBestSolution ← 

FastFuriousCheetahOptimization(FFCOParameters) 
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e) HashedSolution ← 

HashFunction(FFCOBestSolution) 

f) EncryptedData ← ECCEncryption(data, 

ECCKeyPair.PublicKey XOR HashedSolution) 

g) Return EncryptedData 

Step 9:   END 

Algorithm 6 FFCO-ECC 

4. RESULTS AND DISCUSSION 

4.1. Simulation Settings 

Table 1 Simulation Settings 

Parameter Values 

Network simulator NS-3 

MAC Type IEEE 802.11p 

Radio Wave Propagation Two-Ray Ground 

Antenna Omnidirectional 

Simulation Time 600 seconds 

Mobility Model Random Waypoint 

Area size Urban road network 

No. of Vehicles 100 

Traffic Density Medium 

Communication Range 200 meters 

Transmission Power 20 dBm 

Routing Protocol AODV 

Vehicle Types Cars 

Interference Model Path loss 

Data Packet Size 200 bytes 

Network Layers MAC 

Road Layout Complexity Urban roads with intersections 

Environmental Conditions Normal weather conditions 

Transmission Models V2V 

NS-3 is well-suited for simulating VANETs due to its 

flexibility, extensibility, and robust networking capabilities. 

With a modular architecture written in C++ and Python, NS-3 

enables researchers to model and analyze complex VANET 

scenarios, including realistic mobility models, diverse 

communication protocols, and dynamic network conditions. 

Its open-source nature allows for the integration of custom 

protocols tailored to the specific needs of VANET research. 

As a powerful tool for networking experiments, NS-3 plays a 

crucial role in evaluating the performance, security, and 

efficiency of VANET-related technologies, contributing 

significantly to advancements in intelligent transportation 

systems. The simulation settings are shown in Table 1. 

4.2. Energy Consumption  

Energy consumption in VANETs refers to the energy utilized 

by individual vehicles or nodes for communication, 

computation, and data transmission within the network. 

Managing energy resources is crucial in VANETs, where 

vehicles are equipped with communication devices, sensors, 

and computing units. Figure 1 and Figure 2 provide the 

analysis of FFCOSR’s energy consumption against the state-

of-the-art protocols. 

 

Figure 1 Energy Consumption 

Figure 1 elucidates the intricate relationship between energy 

consumption and varying node densities, unraveling the 

operational characteristics of three prominent routing 

protocols in VANETs: DTE-RR, HGFR, and FFCOSR. At the 

initial node density of 60, DTE-RR exhibits a modest energy 

consumption of 34.662. This highlights its adeptness in 

optimizing energy utilization in relatively sparse vehicular 

presence scenarios. The protocol, relying on dynamic 

topology evolution, balances efficient communication and 

reasonable energy consumption, a crucial factor for the 

sustainability of VANETs. HGFR closely follows with an 

energy consumption of 29.155 at 60 nodes, showcasing its 

cooperative and adaptive nature. By leveraging a hybrid 

genetic-firefly strategy, HGFR optimizes routing decisions, 

resulting in reduced energy consumption. This efficiency is 

particularly evident in scenarios with lower node densities, 
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underscoring HGFR's ability to enhance communication 

reliability while conserving energy resources. Remarkably, 

FFCOSR stands out with a significantly lower energy 

consumption of 14.610 at 60 nodes. This underscores 

FFCOSR's unique optimization inspired by Fast Furious 

Cheetah behavior, emphasizing its prowess in minimizing 

energy usage for secure routing in less congested VANET 

scenarios. The protocol introduces an innovative approach 

that aligns with energy conservation goals while ensuring 

effective data transmission. 

As the node density escalates, DTE-RR adapts while 

maintaining competitiveness. At 240 nodes, it exhibits an 

energy consumption of 73.153, showcasing its ability to 

adjust to denser vehicular environments dynamically. HGFR 

and FFCOSR adapt, revealing energy consumptions of 59.831 

and 30.011, respectively, at 240 nodes. Notably, FFCOSR 

consistently excels, emphasizing its secure routing approach 

inspired by cheetah optimization and its capacity to ensure 

minimal energy consumption even in denser VANET 

scenarios. Figure 1 provides a detailed snapshot of the energy 

consumption dynamics across node densities. DTE-RR, 

HGFR, and FFCOSR showcase distinctive profiles, with 

DTE-RR and HGFR demonstrating adaptability and FFCOSR 

excelling in energy efficiency. This nuanced understanding is 

vital for network planners and researchers aiming to deploy 

VANETs with routing protocols that align with specific 

density conditions and sustainability goals. 

 

Figure 2 Average Energy Consumption 

4.3. Packet Delay Analysis 

Packet delay is a critical metric representing the time data 

packets traverse the network from source to destination, 

influencing communication efficiency and reliability. 

 

Figure 3 Packet Delay 

Figure 3 unveils the intricate delay dynamics across varying 

node densities, providing insights into the operational 

behavior of DTE-RR, HGFR, and FFCOSR within VANETs. 

DTE-RR, leveraging dynamic topology evolution, exhibits 

robust adaptability across node densities. At 60 nodes, DTE-

RR demonstrates a delay of 4364, emphasizing its efficiency 

in managing communication paths in scenarios with sparse 

vehicular presence.  

This showcases DTE-RR's capacity to optimize data 

transmission in less congested environments, contributing to 

reduced communication latency. HGFR, employing a hybrid 

genetic-firefly strategy, closely follows with a delay of 4141 

at 60 nodes. This highlights HGFR's cooperative and adaptive 

nature, where genetic algorithms and firefly optimization 

enhance routing decisions, reducing delay. The protocol's 

efficiency becomes evident, particularly in scenarios with 

lower node densities, showcasing its effectiveness in 

minimizing communication latency.  

FFCOSR excels with a notably low delay of 2821 at 60 nodes, 

showcasing its unique optimization inspired by Fast Furious 

Cheetah behavior for secure routing. FFCOSR's ability to 

minimize delay in low-density environments underscores its 

effectiveness in swiftly and securely transmitting data 

packets, making it a standout performer in less congested 

VANET scenarios.  

As node density increases, DTE-RR maintains 

competitiveness, showcasing adaptability with delays of 5056 

at 240 nodes. HGFR and FFCOSR adapt, displaying delays of 

4542 and 3102, respectively, at 240 nodes. FFCOSR 

consistently excels, emphasizing its secure routing approach 

inspired by cheetah optimization, ensuring minimal delay 

even in denser VANET scenarios. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224449                 Volume 11, Issue 2, March – April (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       269 

     

RESEARCH ARTICLE 

 

Figure 4 Average Packet Delay 

Figure 4 provides a holistic perspective on the average delay 

landscape, offering a comprehensive view of the overall 

efficiency of DTE-RR, HGFR, and FFCOSR across diverse 

node densities in VANETs. DTE-RR maintains an average 

delay of 4797.6, showcasing balanced and consistent 

performance. This underscores DTE-RR's dynamic 

adaptability, where the dynamic topology evolution 

mechanism optimizes communication paths effectively, 

ensuring timely data packet delivery across varied scenarios. 

HGFR closely follows with an average delay of 4434.8, 

highlighting the efficiency of its hybrid genetic-firefly 

approach. Integrating genetic algorithms and firefly 

optimization contributes to a notable reduction in average 

delay. HGFR's adaptability and cooperation make it 

particularly efficient in scenarios with diverse node densities, 

showcasing its effectiveness as a routing solution in 

VANETs. 

FFCOSR stands out with an average delay of 3015.0, 

establishing itself as remarkably efficient, especially in 

scenarios characterized by high node densities. FFCOSR's 

success can be attributed to its unique optimization approach 

inspired by Fast Furious Cheetah behavior, ensuring swift and 

secure routing decisions. The protocol's ability to minimize 

average delay signifies its suitability for resource-intensive, 

densely populated vehicular environments, emphasizing its 

role as a safe and efficient routing solution in VANETs. 

Figures 3 and 4 collectively provide a nuanced understanding 

of how each routing protocol manages delay in VANETs. 

DTE-RR exhibits resilience and adaptability, and HGFR 

proves consistently efficient. At the same time, FFCOSR 

excels, particularly in dense network environments, 

showcasing its unique approach to secure and swift routing 

inspired by Fast Furious Cheetah Optimization. Researchers 

and practitioners can leverage these distinctions for protocol 

selection based on specific VANET deployment scenarios and 

node density conditions. 

4.4. Packet Loss 

Packet Loss is when data packets transmitted across a 

network fail to reach their destination. This phenomenon can 

occur due to network congestion, errors in transmission, or 

limitations in network resources, impacting the reliability and 

completeness of data delivery. 

 

Figure 5 Packet Loss 

In Figure 5, an intricate packet loss analysis unfolds across 

varying node densities, shedding light on the performance 

nuances of the routing protocols DTE-RR, HGFR, and 

FFCOSR within VANETs. DTE-RR, characterized by its 

dynamic topology evolution, showcases its adaptability and 

resilience to varying node densities. At lower node densities, 

precisely 60 nodes, DTE-RR exhibits a packet loss of 

20.512%, reflecting its ability to efficiently optimize 

communication paths in sparse vehicular presence. This 

demonstrates its proficiency in managing data packet delivery 

in less congested environments. HGFR, leveraging a hybrid 

genetic-firefly approach, closely follows with a packet loss of 

10.220% at 60 nodes. This indicates the cooperative and 

adaptive nature of HGFR, which employs genetic algorithms 

and firefly optimization to enhance routing decisions. The 

lower packet loss emphasizes the efficiency of HGFR in 

minimizing data loss, especially in scenarios with a lower 

node density. Remarkably, FFCOSR outperforms both 

protocols with a shallow packet loss of 0.208% at 60 nodes. 

FFCOSR's unique approach, inspired by FAst Furious 

Cheetah Optimization, showcases its efficacy in secure 

routing with minimal packet loss, even in low-vehicular 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224449                 Volume 11, Issue 2, March – April (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       270 

     

RESEARCH ARTICLE 

density scenarios. This highlights the protocol's ability to 

swiftly and securely deliver data packets, setting it apart in 

less congested VANET environments. DTE-RR maintains its 

competitiveness as node density increases, demonstrating 

adaptability with a packet loss of 27.657% at 240 nodes. 

HGFR and FFCOSR also adapt, showcasing packet losses of 

20.163% and 5.479%, respectively, at 240 nodes. FFCOSR 

consistently excels, emphasizing its secure routing approach 

inspired by cheetah optimization, ensuring minimal packet 

loss even in denser VANET scenarios. 

 

Figure 6 Average Packet Loss 

Figure 6 unfolds a compelling narrative about the average 

packet loss dynamics across diverse node densities, providing 

insights into the overall performance of DTE-RR, HGFR, and 

FFCOSR within VANETs. DTE-RR, with an average packet 

loss of 25.075%, establishes a reliable and balanced 

performance metric. This underscores DTE-RR's prowess in 

adapting dynamically to changing network conditions, where 

its dynamic topology evolution optimizes communication 

paths efficiently. The protocol's consistent average packet loss 

across varying node densities showcases its reliability in real-

world VANET scenarios. HGFR closely follows with an 

average loss of 17.657%, underscoring its efficacy in 

minimizing data loss. The hybrid genetic-firefly approach in 

HGFR contributes to efficient routing decisions, making it 

particularly suitable for scenarios with diverse node densities. 

HGFR's cooperative nature aligns well with the demands of 

VANETs, ensuring a commendable performance average. 

Notably, FFCOSR stands out with an impressively low 

average packet loss of 3.407%. This exceptional performance 

solidifies FFCOSR's position as a standout solution, 

especially in high-density VANET environments. FFCOSR's 

unique optimization approach inspired by Fast Furious 

Cheetah Optimization effectively ensures secure and swift 

routing decisions, resulting in minimal average packet loss. 

This feature makes FFCOSR appealing for environments 

demanding heightened security and efficiency. Figure 6 

portrays a nuanced understanding of the average packet loss 

landscape in VANETs. DTE-RR showcases reliability, HGFR 

excels in efficiency, and FFCOSR stands out for its 

exceptional performance in minimizing average packet loss. 

Researchers and practitioners can leverage these distinctions 

to align their protocol selection with specific VANET 

deployment scenarios, tailoring their choices based on the 

unique strengths of each protocol in managing average packet 

loss across varied node densities. 

4.5. Throughput 

Throughput refers to the data transfer rate or the amount of 

data transmitted successfully over a network within a specific 

time frame. In the context of VANETs, throughput measures 

the network's capacity to efficiently deliver data packets, 

reflecting its overall performance in data transmission. 

 

Figure 7 Throughput 

Figure 7 scrutinizes the throughput dynamics across diverse 

node densities, unraveling the operational intricacies of three 

prominent routing protocols in VANETs: DTE-RR, HGFR, 

and FFCOSR. At the initial node density 60, FFCOSR 

emerges as a frontrunner, showcasing an impressive 

throughput of 354.265 Kbps. This underscores FFCOSR's 

ability to efficiently facilitate high-speed data transfer, 

leveraging its unique optimization inspired by Fast Furious 

Cheetah behavior. The protocol's adeptness in achieving 

superior throughput in scenarios with lower node densities 

positions it as a promising solution for applications 

demanding swift and reliable data transmission in less 

congested VANET environments. DTE-RR and HGFR 

closely follow with throughputs of 268.367 Kbps and 302.446 
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Kbps, respectively, at 60 nodes. These results highlight the 

commendable performance of both protocols in facilitating 

efficient data transfer. With its dynamic topology evolution 

and HGFR, DTE-RR utilizes a hybrid genetic-firefly 

approach to showcase competitive throughput values, 

emphasizing their efficacy in supporting reliable 

communication in scenarios with moderate node densities. 

As node density escalates to 300, DTE-RR maintains 

competitiveness with a throughput of 218.402 Kbps, 

showcasing its adaptability to denser vehicular environments. 

HGFR and FFCOSR also adapt, with throughputs of 266.350 

Kbps and 336.446 Kbps, respectively, at 300 nodes. FFCOSR 

consistently excels, emphasizing its secure routing approach 

inspired by cheetah optimization, ensuring superior 

throughput even in denser VANET scenarios. Figure 7 

provides a nuanced understanding of how each protocol 

responds to increasing node densities, reflecting their 

adaptability and efficiency in managing data transfer 

demands. These insights are crucial for network planners and 

researchers aiming to deploy VANETs with routing protocols 

that align with specific density conditions, ensuring optimal 

throughput and reliable communication in dynamically 

changing vehicular environments. 

 

Figure 8 Average Throughput 

Figure 8 offers a comprehensive overview of the average 

throughput landscape, presenting a holistic perspective on the 

efficiency of three prominent routing protocols in VANETs: 

DTE-RR, HGFR, and FFCOSR. DTE-RR maintains an 

average throughput of 243.836 Kbps, reflecting its balanced 

and competitive performance across diverse node densities. 

The protocol's dynamic adaptability and optimization 

mechanisms contribute to a consistent and reliable 

throughput, positioning it as a dependable choice for VANET 

applications requiring efficient and steady data transmission. 

DTE-RR's ability to maintain competitiveness in average 

throughput underscores its versatility and adaptability in 

various vehicular scenarios. HGFR closely follows with an 

average throughput of 285.406 Kbps, showcasing the 

effectiveness of its hybrid genetic-firefly approach in 

optimizing routing decisions. The protocol's adaptability and 

cooperative nature contribute to competitive average 

throughput values, making it a promising solution for 

VANET scenarios with varying node densities. HGFR's 

ability to consistently achieve average throughput 

demonstrates its suitability for applications demanding 

reliable and efficient data transfer in dynamic vehicular 

environments. 

FFCOSR stands out with an impressive average throughput of 

345.688 Kbps, establishing itself as exceptionally efficient 

across diverse node densities. FFCOSR's success can be 

attributed to its unique optimization approach inspired by Fast 

Furious Cheetah behavior, ensuring high-speed and reliable 

data transfer. The protocol's ability to consistently achieve 

superior average throughput values signifies its suitability for 

data-intensive applications in VANETs, emphasizing its role 

as a secure and efficient routing solution. Figure 8 provides 

valuable insights into the average throughput performance of 

DTE-RR, HGFR, and FFCOSR, allowing network planners 

and researchers to make informed decisions based on specific 

deployment requirements and the need for high-speed data 

transfer in diverse vehicular environments. The distinctions in 

average throughput underscore the unique strengths of each 

protocol, enabling stakeholders to choose the most suitable 

routing solution for their VANET applications. 

5. CONCLUSION 

FFCOSR is an innovative framework that addresses routing 

and security challenges inherent in Vehicular Ad Hoc 

Networks (VANETs). FFCOSR integrates Route Life Time 

Enhanced AODV (RLE-AODV), an optimized version of the 

Ad Hoc On-Demand Distance Vector (AODV) protocol, with 

Fast Furious Cheetah Optimization (FFCO) and Elliptic 

Curve Cryptography (ECC). RLE-AODV enhances routing 

efficiency by prolonging route stability through FFCO's 

dynamic adjustment of routing parameters, thus mitigating 

common VANET issues like route flapping and packet loss. 

FFCOSR fortifies data security using ECC, ensuring the 

integrity and confidentiality of transmitted data amidst 

potential security threats. Empirical validation is necessary to 

substantiate FFCOSR's effectiveness in real-world VANET 

environments, with future enhancements focusing on further 

refining its mechanisms to optimize routing efficiency and 

security features. FFCOSR holds significant promise for 

advancing vehicular communication systems' reliability, 

efficiency, and security, offering valuable contributions to the 

evolving landscape of connected and autonomous vehicles. 
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