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Abstract – Physical obstructions that disrupt signal propagation 

and routing paths hinder routing performance in IoT-based 

Cloud Wireless Sensor Networks (IC-WSN) for greenhouse 

farming. Existing routing algorithms fail to address the energy 

consumption challenge, resulting in suboptimal routing paths 

and potential data loss. This paper proposes an Energizing 

Firefly Optimization-Inspired Routing Protocol (EFOIRP) to 

enhance performance in IC-WSN. The protocol employs novel 

routing strategies to handle physical obstructions within 

greenhouses. It includes comprehensive site surveys to identify 

obstructions and their impact on signal propagation, enabling 

intelligent path selection that minimizes obstruction effects and 

ensures reliable data transmission. This research aims to achieve 

seamless data transmission and monitoring in greenhouse 

farming. EFOIRP minimizes signal interference by addressing 

physical obstructions, optimizing data transmission efficiency, 

and empowering farmers with reliable and accurate data for 

precise control over greenhouse conditions and resource 

management. The research objectives encompass characterizing 

obstructions, developing adaptive routing algorithms, evaluating 

performance through simulations or experiments, investigating 

scalability, and validating effectiveness in real-world greenhouse 

farming scenarios. The proposed EFOIRP aims to overcome the 

limitations of existing routing algorithms and improve the 

performance of IC-WSN in greenhouse farming environments. 

Index Terms – Cloud, Greenhouse, Firefly Optimization, IoT, 

Routing Protocol, Wireless Sensor Networks 

1. INTRODUCTION 

Greenhouse farming, a modern and innovative agricultural 

technique, has gained significant attention recently for its 

potential to revolutionize food production. This method 

involves cultivating crops within enclosed structures, such as 

glass or plastic greenhouses, where environmental conditions 

can be carefully regulated and controlled [1]. By harnessing 

advanced technology and scientific principles, greenhouse 

farming offers a range of possibilities for overcoming 

traditional farming limitations and meeting the challenges of a 

rapidly changing world. Greenhouse farming stems from the 

need to address various agricultural constraints, such as 

unpredictable weather patterns, limited arable land 

availability, and the growing demand for fresh produce 

throughout the year [2]. By providing a controlled 

environment, greenhouse farming extends the growing season 

and allows for year-round crop cultivation, irrespective of 

external climatic conditions. This opens up immense 

opportunities for regions with harsh climates or limited 

agricultural potential, enabling them to become self-sufficient 

in food production and reduce dependence on imports [3]. 

Greenhouse farming presents a viable solution to the issue of 

resource scarcity and environmental sustainability. With 

precise control over factors like water, nutrients, and energy 

inputs, this method ensures optimal resource utilization and 

minimizes waste [4]. Greenhouse farming significantly 

reduces water consumption and mitigates the negative 

environmental impact by implementing efficient irrigation 

systems, recycling water, and adopting advanced farming 

practices such as hydroponics or aquaponics. The enclosed 

structure of greenhouses shields against pests, diseases, and 

invasive species, reducing the reliance on chemical pesticides 

and genetically modified crops [5]. This promotes ecological 

balance and contributes to producing healthier and safer food. 

Greenhouse Farming represents a promising and 

transformative approach to agriculture, offering opportunities 

for year-round cultivation, efficient resource management, 
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and sustainable food production. With its potential to 

overcome geographical limitations, enhance resource 

efficiency, and ensure food security, greenhouse farming is 

poised to play a vital role in shaping the future of farming and 

meeting the growing demands of a rapidly evolving world [6]. 

The advent of Internet of Things (IoT) technology has paved 

the way for revolutionary advancements in various industries, 

and one such groundbreaking innovation is the Internet of 

Things-based Cloud Wireless Sensor Network (IC-WSN). 

This cutting-edge technology combines the power of wireless 

sensor networks (WSN) and cloud computing to create a 

robust and interconnected system for data acquisition, 

analysis, and management [7]. By leveraging the capabilities 

of IoT and cloud computing, IC-WSN offers unprecedented 

opportunities for real-time monitoring, intelligent decision-

making, and enhanced operational efficiency. At its core, IC-

WSN consists of wireless sensors strategically deployed to 

collect data from the physical environment [8]. These sensors 

have various sensing capabilities that capture crucial 

information such as temperature, humidity, light intensity, and 

more. The collected data is transmitted wirelessly to a cloud-

based platform, securely stored, processed, and analyzed [9]. 

The integration of cloud computing in IC-WSN brings 

remarkable advantages. Cloud infrastructure provides the 

scalability and computational power required to handle vast 

sensor data, enabling real-time analytics and insights. 

Additionally, the cloud’s flexible storage capabilities ensure 

seamless data management and easy accessibility from 

anywhere worldwide, empowering users to make informed 

decisions based on up-to-date information [10]. IC-WSN 

finds applications in numerous fields, ranging from 

environmental monitoring and smart cities to industrial 

automation and precision agriculture. By facilitating efficient 

data collection, analysis, and communication, this technology 

enhances operational efficiency, optimizes resource 

allocation, and enables proactive decision-making [11]. IC-

WSN represents a game-changing technology that harnesses 

the power of wireless sensors and cloud computing. With its 

ability to allow real-time monitoring, intelligent data analysis, 

and remote accessibility, IC-WSN opens up new possibilities 

for innovation and optimization across diverse industries, 

driving us towards a more connected and data-driven future 

[10]. 

In agricultural contexts, IoT-based Wireless Sensor Network 

(IC-WSN) technology plays a crucial role in meeting the 

demands of greenhouse farming. Greenhouses provide 

controlled environments conducive to optimized crop growth, 

but effective monitoring and management are essential. IC-

WSNs offer a solution by enabling real-time data collection 

and analysis, ensuring precise control and efficient resource 

utilization [12], [13]. By deploying wireless sensors 

throughout the greenhouse, IC-WSNs allow continuous 

monitoring of critical parameters like temperature, humidity, 

soil moisture, and light levels. Farmers transmit this data 

wirelessly to a cloud-based platform, empowering them to 

access and analyze it remotely in real-time. IC-WSNs enable 

farmers to gain valuable insights into environmental 

conditions, detect anomalies, and make data-informed 

decisions to optimize crop growth. The continuous monitoring 

and control ability of IC-WSNs is highly advantageous in 

greenhouse farming. It allows farmers to make precise 

adjustments to environmental factors, such as temperature and 

irrigation, tailored to the specific needs of different plant 

varieties. This ensures optimal growing conditions, enhances 

crop quality, and reduces resource waste  [14]. 

Routing in IC-WSN for greenhouse farming is the impact of 

physical obstructions on the routing performance. 

Greenhouses often contain dense vegetation, equipment, and 

structures that can interfere with signal propagation and 

disrupt the routing paths. These physical obstructions pose 

challenges to maintaining reliable and efficient data 

transmission. Routing protocols must account for physical 

obstructions and find alternative routes to ensure 

uninterrupted data flow. However, existing routing algorithms 

may not effectively address these challenges, resulting in 

suboptimal routing paths and potential data loss. To tackle 

this problem, novel routing strategies must be developed to 

handle physical obstructions within the greenhouse. This 

could involve conducting comprehensive site surveys to 

identify potential obstructions and their impact on signal 

propagation. Based on this information, routing protocols can 

intelligently select paths that minimize the effects of 

obstructions and ensure reliable data transmission. 

Addressing the impact of physical obstructions on routing in 

IC-WSN for greenhouse farming is crucial for ensuring 

seamless data transmission and monitoring. By developing 

novel routing strategies that can handle the presence of 

physical obstructions, we can achieve several critical 

motivations for greenhouse farming. Firstly, accounting for 

these obstructions can minimize signal interference and 

disruptions, resulting in reliable and continuous data flow. 

This enables real-time monitoring of crucial environmental 

parameters, ensuring optimal conditions for plant growth and 

maximizing crop yields. Secondly, by intelligently selecting 

paths that avoid or minimize the effects of obstructions, we 

can optimize data transmission efficiency, reducing latency 

and potential data loss. Implementing effective routing 

protocols that address physical obstructions empowers 

greenhouse farmers with reliable and accurate data, enabling 

precise control over greenhouse conditions and facilitating 

efficient resource management. 

The research objective of this study is to address the impact of 

physical obstructions on routing performance in IC-WSN for 
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greenhouse farming. The specific research objectives are as 

follows: 

 Characterize and classify the physical obstructions 

commonly found in greenhouse environments, including 

dense vegetation, equipment, and structures, and assess 

their effects on signal propagation. 

 Develop novel routing algorithms that intelligently adapt 

to physical obstructions, considering signal strength, 

obstacle density, and alternative routing paths. 

 Evaluate the performance of the proposed routing 

algorithms through extensive simulations or practical 

experiments, measuring metrics such as packet delivery 

ratio, latency, and energy consumption in the presence of 

different types and densities of obstructions. 

 Investigate the scalability of the routing algorithms for 

large-scale greenhouse environments, considering the 

dynamic nature of obstructions and the increasing number 

of sensors. 

 Validate the effectiveness of the developed routing 

algorithms in real-world greenhouse farming scenarios, 

assessing their ability to ensure reliable data transmission, 

minimize packet loss, and optimize overall network 

performance. 

The paper is organized into six main sections. Beginning with 

Section 1, the Introduction, it addresses the problem 

statement, motivation, and research objectives. Section 2, the 

Literature Review, provides insights into existing routing 

protocols, optimization techniques, and performance 

enhancement strategies. Section 3 introduces the EFOIRP, 

detailing its design principles and functionality. Section 4, 

Simulation Settings, describes the experimental setup and 

parameters for simulating the EFOIRP in IC-WSN 

environments. Section 5, Results and Discussion, presents 

findings from simulations, analyzing the performance of the 

EFOIRP and comparing it with existing protocols. Finally, 

Section 6, the Conclusion, summarizes key findings, 

highlights the significance of the EFOIRP, and suggests 

future research directions. This structured approach offers a 

comprehensive framework for understanding and advancing 

knowledge in the domain of IC-WSN. 

2. LITERATURE REVIEW 

“Energy-Efficient Cooperative Routing” [15] leverages 

cooperative communication techniques to improve network 

efficiency. In heterogeneous WSNs, nodes with different 

capabilities and energy levels coexist. The routing scheme 

intelligently selects cooperative nodes based on their energy 

levels and proximity to the destination. By forming 

cooperative clusters and employing cooperative routing 

strategies, the scheme reduces the energy burden on 

individual nodes and extends the network’s operational 

lifetime. It enables efficient data transmission by leveraging 

the capabilities of neighbouring nodes, leading to improved 

network performance and energy efficiency in heterogeneous 

WSNs. “Sustainable Multipath Routing Protocol” [16] 

addresses the unique requirements of multi-sink WSNs 

deployed in harsh environments where reliable 

communication is crucial. It utilizes a multipath routing 

approach to establish multiple paths from source nodes to 

multiple sink nodes, enhancing reliability and robustness 

against link failures. The protocol also incorporates energy-

aware mechanisms to optimize energy consumption and 

prolong the network lifetime. By considering the specific 

challenges of harsh environments and adopting sustainable 

routing strategies, this protocol enables reliable and energy-

efficient data transmission in multi-sink WSNs, contributing 

to their long-term operation and performance in challenging 

conditions. 

“Trusted Routing Scheme” [17] combines deep learning 

principles and blockchain technology to provide a secure and 

transparent routing scheme. Deep learning techniques analyze 

network data and identify potential routing anomalies or 

malicious activities. With its decentralized and immutable 

nature, blockchain technology ensures the integrity and 

transparency of routing information. The proposed routing 

scheme enhances trust and security in WSNs by leveraging 

this deep blockchain approach, enabling reliable data 

transmission and protecting against various routing attacks. 

“Centralized Routing Protocol” [18] is designed to address the 

threat of wormhole attacks in WSNs. Wormhole attacks 

involve an adversary establishing a high-speed link between 

two distant points in the network, creating a shortcut for data 

transmission. This protocol employs a centralized approach 

where a central authority monitors and detects potential 

wormhole attacks. The central authority collects and analyzes 

network data, looking for suspicious patterns that may 

indicate the presence of wormholes. Appropriate 

countermeasures are taken upon detection, such as isolating 

the affected nodes or re-routing the traffic. 

“Secure Routing Technique” [19] enhances routing security in 

IoT-based WSNs. This technique utilizes the Blowfish 

encryption algorithm, an established symmetric key block 

cipher, to ensure the confidentiality and integrity of routing 

data. By applying the Improved Blowfish algorithm to the 

routing process, the technique protects against potential 

security threats, such as eavesdropping and data tampering. 

The algorithm ensures secure communication between sensor 

nodes and the IoT infrastructure, mitigating the risk of 

unauthorized access and data breaches. “Energy Harvesting 

Routing” [20] relies on energy harvesting sources, such as 

solar or wind, to replenish their batteries and support 

continuous operation. The routing protocol aims to optimize 

energy utilization by efficiently routing data packets while 
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considering the availability and capacity of alternative dual 

batteries. The protocol dynamically selects energy-efficient 

paths based on the energy levels of the batteries and the 

energy harvesting rates. It considers the state of both batteries 

and prioritizes routing decisions to balance the energy 

consumption between them. The routing algorithm adapts to 

the changing energy availability, adapting the routing paths to 

maximize the utilization of harvested energy. 

“Energy Efficient Data Aggregation” [21] optimizes energy 

efficiency, data aggregation, and end-to-end security. It 

intelligently selects nodes for data aggregation based on 

proximity and energy levels, reducing redundant 

transmissions and conserving energy. The protocol 

incorporates encryption and authentication mechanisms to 

ensure secure data transmission. By combining energy 

efficiency, data aggregation, and end-to-end security, E2DA 

enables efficient resource utilization, enhances network 

scalability, and ensures secure data transmission in dynamic 

and challenging 3D WSN environments.” Improved Routing 

Protocol” [22] is a specialized routing protocol designed for 

Heterogeneous WSNs deployed in IoT-based environmental 

monitoring applications. It addresses the challenges of 

heterogeneity within the network by considering sensor 

nodes’ varying capabilities and characteristics. The protocol 

utilizes an improved routing algorithm that considers node 

energy levels, data packet size, and communication distances 

to select efficient routes. By dynamically adapting to changes 

in the network topology, it ensures reliable and energy-

efficient data transmission. It is specifically tailored for IoT-

based environmental monitoring systems, where accurate and 

timely data delivery is crucial. 

“Distributed 2-Hop Cluster Routing Protocol” [23] enables 

sensor nodes to autonomously form clusters based on various 

criteria, with each cluster electing a cluster head responsible 

for intra-cluster communication. The cluster heads establish 

2-hop communication links with neighbouring cluster heads 

to facilitate inter-cluster communication. This approach offers 

advantages such as reduced energy consumption through 

shorter hops, improved scalability by distributing routing 

decisions, and enhanced network reliability through 

alternative communication paths. D2CRP provides an 

efficient and reliable data routing solution for WSNs, 

leveraging the benefits of distributed clustering and 2-hop 

communication. “Energy Efficient Environment-Aware 

Fusion” [24] prioritizes energy efficiency, environmental 

awareness, and reliable data fusion. It adapts routing decisions 

based on ecological conditions, utilizes data fusion techniques 

to conserve energy, and ensures reliable data transmission 

through error control coding and dynamic route selection. It 

optimizes resource utilization, prolongs network lifetime, and 

enhances data transmission reliability in WSNs, making it 

suitable for energy-efficient and reliable routing applications. 

Bio-inspired optimization-based Routing Protocols [25]-[29], 

plays a significant role in the network to achieve better 

efficiency. 

“Destination-Oriented Routing Algorithm (DORA)” [30] is a 

routing algorithm designed explicitly for Energy-Balanced 

WSNs. The main objective of DORA is to prolong the 

network lifetime by evenly distributing energy consumption 

among sensor nodes. DORA operates based on a destination-

oriented approach, where routing decisions are made 

considering the energy levels and distances to the destination 

nodes. The algorithm considers each node’s residual energy 

and dynamically selects the optimal next-hop node that 

minimizes energy consumption along the routing path. DORA 

employs a load-balancing mechanism that evenly distributes 

data traffic among sensor nodes to achieve energy balancing. 

This mechanism avoids energy depletion in specific nodes by 

dynamically adjusting the routing paths and promoting 

energy-efficient data transmission. DORA utilizes a proactive 

approach to periodically update the routing tables, ensuring 

reliable and efficient data forwarding in the network. It 

considers the changing network conditions, such as node 

failures or energy variations, and adapts the routing paths 

accordingly. 

“Particle Swarm Optimization Routing Scheme (PSORS)” 

[31] mimics the behaviour of a swarm of particles navigating 

through a search space to find optimal solutions. Each sensor 

node in the network is represented as a particle. These 

particles communicate and adjust their positions within the 

search space to explore and exploit the most favourable 

routing paths. The particles converge towards optimal 

solutions by iteratively updating their positions using local 

and global information. It integrates two crucial elements: 

exploration and exploitation. Exploration involves randomly 

exploring the search space to discover potential routing paths, 

while exploitation focuses on refining and improving these 

paths based on their quality. Within WSNs, the PSORS 

employs fitness functions to evaluate the quality of routing 

paths. These functions consider energy consumption, data 

transmission delay, and network connectivity. The particles 

strive to discover optimal routing paths that minimize energy 

consumption and maximize network performance by 

adjusting their positions and velocities based on fitness 

values. 

3. ENERGIZING FIREFLY OPTIMIZATION-INSPIRED 

ROUTING PROTOCOL (EFOIRP) 

3.1. Low Energy Adaptive Clustering Hierarchy 

The Low Energy Adaptive Clustering Hierarchy (LEACH) 

protocol is a distributed routing protocol designed for WSNs 

to conserve energy. The LEACH protocol has two main 

stages: initialization and operation at a constant rate. The 

intended proportion of cluster heads (𝑝) is used by the sensor 

nodes during setup calculations to generate a threshold value, 
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𝑇(𝑛) . This cutoff number establishes the likelihood that a 

specific node will act as the cluster leader for this iteration. 

Sensor nodes generate random numbers and check them 

against a threshold value. The node becomes a cluster leader 

if the produced number is less than or equal to the threshold 

value. Once chosen, the cluster leaders will notify the 

remainder of the network, while the remaining nodes will 

form a new cluster under the leadership of the nearest cluster 

leader. At a steady state, sensor nodes within every cluster 

collect data from their immediate environments and relay it to 

the cluster leaders via localized communication. Afterwards, 

the cluster leaders aggregate the data to reduce duplication 

and power consumption. Once the data has been aggregated, it 

is sent through multi-hop transmission to the base station or 

sink node for further processing. LEACH uses a round-based 

procedure to distribute power consumption fairly across the 

sensor nodes. In each subsequent round, cluster heads are 

randomly chosen to distribute the energy-intensive role. This 

dynamic selection mechanism for cluster heads promotes fair 

energy distribution and enhances the network’s resilience. In 

summary, the LEACH protocol facilitates the operation of 

energy-efficient wireless sensor networks and prolongs the 

network’s lifespan by effectively managing energy 

consumption. 

3.1.1. Setup Phase 

The LEACH protocol’s first phase is crucial because it allows 

cluster chiefs to be elected by the sensor nodes. This phase is 

significant for the protocol’s overall operation and energy 

optimization. Sensor nodes perform computations during 

setup to calculate a threshold value, which is then used to 

choose the required proportion of cluster heads. The threshold 

value heavily influences the likelihood of a node being 

selected as the round’s cluster leader. Employing a 

probabilistic approach, the selection process ensures an 

equitable distribution of the cluster head role throughout the 

network. This distributed clustering mechanism fosters 

efficient data aggregation and routing, ultimately leading to 

improved energy efficiency and an extended lifespan of 

wireless sensor networks. 

3.1.1.1. Threshold Calculation 

The threshold value establishes the likelihood of a node 

assuming the role of a cluster head in a specific round. In this 

step, each sensor node calculates a threshold value, 𝑇(𝑛) , 

where n represents the current round number. The calculation 

of function 𝑇(𝑛) is influenced by the desired proportion of 

cluster heads (𝑝)  and can be mathematically represented 

using Eq.(1). 

𝑇(𝑛) = 𝑝/ (1 − 𝑝 × (𝑛𝑚𝑜𝑑(1/𝑝))) (1) 

 

3.1.1.2. Cluster Head Selection 

Every sensor node generates a random number between 0 and 

1, employing the threshold value. If the generated number is 

equal to or less than 𝑇(𝑛), the node takes on the responsibility 

of being a cluster head for the present round. This randomized 

selection process ensures an equitable dispersion of cluster 

heads throughout the network. 

3.1.1.3. Cluster Formation 

The nodes at the centre of clusters announce their choice to 

the rest of the network. Non-cluster head nodes receive these 

broadcasts and choose the nearest cluster head to join its 

cluster. This method allows clusters to emerge with minimal 

ties between their constituent nodes and cluster leaders. 

3.1.2. Steady-State Phase 

After the establishment of clusters in LEACH, the subsequent 

phase, called the steady-state phase, commences, involving 

the transmission and aggregation of data. Sensor nodes collect 

information in every cluster and transmit it to their 

corresponding cluster leader via short-distance 

communication. Subsequently, the cluster leaders engage in 

data aggregation to reduce redundancy and preserve energy. 

Multi-hop communication relays The combined data to the 

base station or sink node. In the end, this method improves 

the power efficiency of wireless sensor networks by ensuring 

more effective data processing and routing. The following 

steps can summarize the process: 

3.1.2.1. Data Transmission 

Sensor nodes within each cluster collect data from their 

sensing environment. The sensor nodes transfer this data to 

their corresponding cluster leaders through direct 

communication links. Using short-range communication 

reduces energy consumption compared to transmitting data 

over long distances. 

3.1.2.2. Data Aggregation 

The cluster leaders have a crucial role in the process of data 

aggregation. They receive data from numerous nodes within 

their clusters and employ aggregation methods to minimize 

the volume of data transmitted over long distances. 

Aggregation techniques such as averaging, clustering, or 

compression can be employed to reduce redundancy and 

conserve energy. 

3.1.2.3. Cluster Head-to-Sink Communication 

Once data aggregation is complete, the cluster leaders use 

multi-hop communication to send the compiled information to 

the network’s hub node, i.e., the sink node. This involves 

passing the data through intermediate cluster heads until it 

reaches the designated sink node. Adopting multi-hop 

communication facilitates efficient data routing and 
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minimizes energy consumption for individual sensor nodes by 

eliminating the need for direct long-distance transmissions. 

3.1.3. Round-Based Operation 

LEACH employs a round-based methodology to distribute the 

energy burden across the entire network equitably. This 

ground-based operation helps balance individual sensor 

nodes’ energy consumption, preventing a few nodes from 

depleting their energy quickly and prolonging the network’s 

overall lifetime. In each subsequent round, the selection of 

cluster heads is randomized again, ensuring that different 

nodes can become cluster heads. This dynamic cluster head 

selection mechanism promotes fair energy distribution and 

enhances the network’s resilience by preventing network 

disruptions caused by the failure of individual nodes. The 

following aspects illustrate its round-based operation: 

3.1.3.1. Cluster Head Rotation 

In every subsequent round, the selection of cluster heads is 

randomized new. This rotation spreads the sensor nodes’ 

energy consumption fairly, ensuring that energy depletion 

does not occur rapidly in a select few nodes. This approach 

promotes fairness in energy utilization across the network. 

Randomized selection increases the probability of different 

nodes becoming cluster heads in different rounds, promoting 

fair energy distribution. 

3.1.3.2. Fault Tolerance 

LEACH incorporates fault tolerance mechanisms to ensure 

network reliability. If a cluster head fails, the network 

continues its operation by randomly selecting a new cluster 

head from the remaining nodes. This dynamic cluster head 

selection mechanism prevents network disruptions caused by 

the failure of individual nodes and enhances the overall 

resilience of the network. 

Input: 

 𝑝: The targeted proportion of cluster heads  

 𝑛: The present round count  

 Sensor nodes’ information (location, energy level, etc.) 

Output: 

 Cluster formation and data aggregation in the network 

Procedure: 

Step 1: Setup Phase 

 Using equation (1), every sensor node computes the 

threshold value, 𝑇(𝑛). 

 For every sensor node: 

 Produce a random number, 𝑟, within the range of 0 to 1. 

 If the generated random number, 𝑟, satisfies the condition 

𝑟 ≤  𝑇(𝑛), the node is designated as a cluster head for the 

current round. 

 Cluster heads transmit their selection to the remaining 

nodes through broadcasting. 

 If a node isn’t already part of a cluster’s head, it will join 

the cluster of the closest head. 

Step 2: Steady-State Phase 

 The cluster leaders gather data from the sensor nodes 

within their corresponding clusters.   

 Cluster heads perform data aggregation techniques (e.g., 

averaging, clustering, or compression) to reduce data 

redundancy. 

 The information gathered by the cluster heads is sent to the 

base station or sink node through multi-hop 

communication.   

 The central hub, the sink node, collects information from 

the cluster’s leaders.  

Step 3: Round-Based Operation 

 Repeat steps 1 and 2 in subsequent rounds to balance 

energy consumption. 

 During each round, recalculate the threshold value, 𝑇(𝑛), 

based on the present round number and the desired 

percentage of cluster heads, and the data is collected.   

 Randomly select cluster heads based on the threshold 

value. 

 If a cluster head fails, randomly select a new one from the 

remaining nodes to ensure fault tolerance. 

Algorithm 1 LEACH Protocol 

3.2. Firefly Optimization 

Firefly Optimization is a metaheuristic algorithm that draws 

inspiration from the behaviour of fireflies. This population-

based algorithm emulates the flashing pattern of fireflies to 

explore and discover optimal solutions to various 

optimization problems. Firefly Optimization was first 

proposed by Xin-She Yang in 2008 and has since gained 

popularity due to its simplicity and effectiveness. The 

algorithm capitalizes on the attractive and repulsive actions 

displayed by fireflies. A firefly’s attractiveness is determined 

by its brightness, which, in turn, is influenced by its distance 

from other fireflies. According to the algorithm, fireflies 

emitting brighter light are considered more attractive and 

closer to the optimal solution. The firefly optimization 

process commences by establishing an initial population of 

fireflies, with each firefly representing a potential solution to 
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the given optimization problem. The value of the objective 

function associated with each solution controls the intensity of 

the fireflies’ lights. The algorithm iteratively updates the 

positions of fireflies using the following steps: 

 Initialization: In this step, an initial population of fireflies 

is generated randomly. The population size is typically 

determined based on the complexity of the optimization 

problem. Every firefly within the algorithm represents a 

potential solution to the given problem. 

 Evaluation: Once the population is initialized, every 

firefly’s objective function is evaluated, and its brightness 

is assigned based on its fitness or objective function value. 

The brightness of a firefly represents its quality or how 

close it is to the optimal solution. Typically, brighter 

fireflies have lower objective function values. 

 Movement: Fireflies tend to navigate towards fireflies that 

emit more brightness, enabling them to explore the search 

space. The attractiveness and distance between fireflies 

guide the movement. A firefly’s attractiveness level is 

determined by its brightness concerning other fireflies. As 

the distance between fireflies increases, their attractiveness 

diminishes. The movement is random, with a step size 

proportional to the distance between fireflies. This 

randomness allows for the exploration of the search space. 

 Update: After each movement, the positions of the fireflies 

are updated based on their new locations. The fireflies’ 

brightness is also updated based on their new positions and 

objective function evaluations. Suppose a firefly moves to 

a better position with a lower objective function value, its 

brightness increases. Conversely, if a firefly moves to a 

worse position, its brightness may decrease. 

 Reinforcement: Fireflies reinforce their brightness by 

comparing themselves with other fireflies in their 

neighbourhood. This helps intensify the search for near-

promising regions of the search space. Fireflies exchange 

information about their brightness, and if a firefly finds a 

brighter neighbour, it adjusts its position towards that 

neighbour, thus reinforcing its brightness. 

 Termination: The algorithm iteratively repeats steps 3-5 

until a termination condition is met. Common termination 

conditions include reaching a maximum number of 

iterations, achieving a satisfactory solution within a 

predefined tolerance, or combining both. Once the 

termination condition is satisfied, the algorithm halts, and 

the best solution found by the fireflies is returned as the 

output. 

Input: 

 Graph 𝐺 represents the network 

 Source node 𝑆 

 Destination node 𝐷 

 Maximum number of iterations 

 Population size 

 Firefly movement parameters 

 Termination condition 
 

Output: 

 Optimal route from 𝑆 to 𝐷 

Procedure: 

Step 1: Set up the algorithm parameters, including the 

population size, the maximum number of iterations, 

the movement parameters of the fireflies (such as 

step size and decay of attractiveness), and the 

termination condition. 

Step 2: Generate an initial population of fireflies, where each 

represents a potential route from 𝑆 to 𝐷. Randomly 

generate routes satisfying the problem constraints. 

Step 3: Evaluate the fitness of each firefly route by 

calculating a suitable objective function, such as the 

total distance or cost of the route. Assign brightness 

values to the fireflies based on their fitness. 

Step 4: Repeat the following steps until the termination 

condition is met: 

a. For each firefly in the population: 

b. Calculate the attractiveness of the firefly based on its 

brightness and the distance from other fireflies. 

c. Move the firefly towards brighter fireflies by updating its 

position. The movement is random, with a step size 

proportional to the distance between fireflies. 

d. If the new position violates any constraints, discard the 

move and keep the firefly at its current position. 

e. Evaluate the new position’s fitness and update the 

firefly’s brightness accordingly. 

f. Reinforce the brightness of fireflies by comparing their 

brightness values with their neighbours. Adjust the 

positions of fireflies towards brighter neighbours. 

g. If a firefly with an improved brightness value is 

discovered, the global best solution will be updated.  

Step 5: Check the termination condition. If it is satisfied 

(e.g., the maximum number of iterations reached or a 

satisfactory solution is found), go to step 7. 

Otherwise, go to the next iteration. 

Step 6: Repeat steps 4 and 5. 
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Step 7: Select the firefly with the highest brightness value as 

the optimal route from 𝑆 to 𝐷. 

Step 8: Return the optimal route as the output. 

Algorithm 2 Firefly Optimization for Routing 

3.3. Chaos 

Under deterministic conditions, a deterministic nonlinear 

system exhibits chaotic behaviour characterized by its erratic 

movement pattern and unexpected behaviour. Chaotic 

behaviour arises in a nonlinear system when it demonstrates 

infinite possible periodic responses and shows strong 

sensitivity to the initial conditions. Even minute changes in 

the initial conditions can profoundly impact the output of a 

chaotic system. Researchers often employ chaotic maps to 

model chaos, constructed as dynamical discrete-time 

continuous value functions. These maps capture the intricate 

relationship between a chaotic system’s present state and 

future trajectory. Researchers gain insights into chaotic 

systems’ complex dynamics and predictability by utilizing 

these maps. Chaotic one-dimensional maps find extensive 

application in various real-world scenarios, offering a 

valuable tool for understanding and analyzing nonlinear 

systems. They are mathematically described by Eq.(2), 

representing these maps’ formal structure. Using chaotic 

maps, researchers can uncover the underlying mechanisms 

driving chaotic behaviour and facilitate the development of 

effective strategies for control and prediction in nonlinear 

systems. 

 𝑝𝑡+1 = 𝛾(𝑝𝑡) (2) 

Wherein 𝑝𝑡+1  and 𝑝𝑡  are two consecutive chaotic numbers, 

and 𝛾 is the mapping function of the forward transformation. 

Various types of chaotic number generators have been 

implemented to address different requirements. In automatic 

design optimization, the logistic, sinusoidal, and tent maps 

were particularly effective in three specific chaotic maps. The 

current research also leverages the capabilities of these maps. 

Additionally, a concept known as “piecewise chaos” is 

employed, which involves a probabilistic combination of 

these chaotic maps. 

According to the principle of piecewise chaos, generating a 

chaotic number involves two steps. The first step is to draw a 

random number, 𝑏, from an even distribution between 0 and 

1. Subsequently, the following requirements are examined to 

determine the appropriate chaotic map for generating the 

following chaotic number. If 𝑏 is less than 0.33, the chaotic 

logistic map is employed. The sinusoidal chaotic map is 

utilized if b is greater than or equal to 0.33 and less than 0.66. 

Otherwise, if 𝑏  is not within these ranges, the tent map 

chaotic map calculates the following chaotic number. Each 

chaotic map within the piecewise chaos framework 

individually stores the chaotic numbers it receives as input, 

referred to as predecessor chaotic numbers. These predecessor 

chaotic numbers are then utilized, as needed, to construct the 

following chaotic number, known as the successor number, 

over multiple generations. Moreover, distinct random seeds 

are employed to initialize each chaotic map to ensure the 

uniqueness and independence of each chaotic map. 

3.3.1. Logistic Map 

The logistic map has been extensively examined and 

researched among the chaotic maps. It captures the population 

dynamics of simple models and has been used to describe 

various natural phenomena. The logistic map is defined by the 

Eq.(3). 

𝑥{𝑛+1} = 𝑟 ∗ 𝑥𝑛 ∗ (1 − 𝑥𝑛) (3) 

Where 𝑥𝑛  represents the value at iteration 𝑛,  and 𝑟  is the 

control parameter. The logistic map exhibits a range of 

behaviours based on the value of 𝑟. When 𝑟 lies within the 

interval (3.57, 4.0), the map displays chaotic behaviour, 

characterized by extreme sensitivity to initial conditions and 

the emergence of complex, unpredictable patterns. 

3.3.2. Sinusoidal Map 

The sinusoidal map, also known as the sine map, is a chaotic 

map that relies on trigonometric functions to generate chaotic 

behaviour. It is given by Eq.(4). 

𝑥{𝑛+1} = 𝑎 ∗ 𝑠𝑖𝑛(𝑝𝑖 ∗ 𝑥𝑛) (4) 

Where 𝑥𝑛  represents the value at iteration 𝑛,  and 𝑎  is the 

control parameter. The sinusoidal map operates on the interval 

[0, 1], and for specific values of 𝑎 , it exhibits chaotic 

dynamics. Chaotic behaviour emerges when a fall is between 

approximately 1.9 and 2.5. Trajectories generated by the 

sinusoidal map exhibit irregular oscillations and sensitivity to 

initial conditions. 

3.3.3. Tent Map 

The tent map is a piecewise linear chaotic map with a simple 

yet intriguing structure. It is defined by Eq.(5). 

𝑝{𝑛+1} = 𝑟 ∗ 𝑥𝑛 𝑓𝑜𝑟 0 ≤ 𝑥𝑛 < 0.5 𝑎𝑛𝑑 𝑥{𝑛+1}

= 𝑟 ∗ (1 − 𝑥𝑛) 𝑓𝑜𝑟 0.5 ≤ 𝑥𝑛 < 1 
(5) 

Where 𝑥𝑛  represents the value at iteration 𝑛,  and 𝑟  is the 

control parameter. The tent map operates on the interval [0, 1] 

and exhibits chaotic behaviour when r is greater than 1. 

Chaotic trajectories generated by the tent map display 

intricate patterns characterized by bifurcations and sensitivity 

to initial conditions. The parameter r influences the number of 

branches and the overall behaviour of the map. 
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3.4. Energizing Firefly Optimization-Inspired Routing 

Protocol 

The EFOIRP is a modification of the Firefly Algorithm (FA) 

that adds the logistic map to improve the algorithm’s ability to 

explore and exploit new areas. The Firefly Algorithm is a 

problem-solving technique inspired by the flashing behaviour 

of fireflies. It utilizes the concept of attractiveness between 

fireflies to optimize various problems. EFOIRP introduces 

chaotic dynamics into the firefly movement by incorporating 

the logistic map, thereby improving the algorithm’s search 

efficiency. The six phases involved in EFOIRP are: 

 Logistic Map Initialization: EFOIRP initializes the firefly 

population using the logistic map. The initial population of 

fireflies is obtained by mapping values from the chaotic 

trajectory generated by the logistic map to the problem 

search space. The logistic map produces a sequence of 

values between 0 and 1, which are mapped to the 

corresponding ranges of the problem variables.  

 Attractiveness and Distance: Like the core Firefly 

Algorithm, EFOIRP employs the attractiveness of fireflies 

to guide their movement. The attractiveness is determined 

by the objective function values, where brighter fireflies 

have higher fitness values. The distance between fireflies 

also influences their attractiveness, following an inverse 

relationship. 

 Chaotic Movement with Logistic Map: The critical 

enhancement in EFOIRP lies in incorporating the logistic 

map to introduce chaotic movement into the firefly 

population. The logistic map produces chaotic dynamics 

that enhance the algorithm’s ability to explore and exploit 

effectively. The logistic map is used to update the position 

of each firefly in the population. The chaotic nature of the 

logistic map imparts randomness and diversity to the 

firefly movement, allowing them to explore the search 

space effectively. 

 Light Intensity and Attractiveness Update: In EFOIRP, the 

light intensity of each firefly represents its fitness value. 

Fireflies with higher light intensity (fitness) attract other 

fireflies towards them. The attractiveness between fireflies 

is updated using the logistic map. The logistic map 

generates a value between 0 and 1, which is then used to 

update the attractiveness between fireflies, incorporating 

the chaotic behaviour into the attraction mechanism. 

 Movement and Optimization: Fireflies adjust their 

positions in the search space based on the updated 

attractiveness values. The chaotic movement, guided by 

the logistic map, enables fireflies to explore and exploit 

the search space efficiently. Fireflies move towards 

brighter fireflies with higher attractiveness, resulting in a 

convergence towards optimal solutions. 

 Iterative Refinement: EFOIRP iteratively refines the 

firefly population by repeatedly updating the attractiveness 

values, adjusting the firefly positions, and evaluating their 

fitness using the objective function. The chaotic movement 

introduced by the logistic map ensures a diverse search 

space exploration, aiding in escaping local optima and 

finding global optima. 

3.4.1. Logistic Map Initialization 

In EFOIRP, the initial population of fireflies is determined by 

utilizing the logistic map. This map, governed by the logistic 

equation, generates a sequence of values from 0 to 1. These 

values are subsequently mapped to the corresponding ranges 

of the problem variables, thus defining the initial positions of 

the fireflies in the search space. The logistic map is 

mathematically expressed as Eq.(6). 

𝑥{𝑛+1} = 𝑟 ∗ 𝑥𝑛 ∗ (1 − 𝑥𝑛) (6) 

Where 𝑥𝑛  denotes the value at iteration 𝑛. The logistic map 

operates within the interval [0, 1], providing a continuous 

range of values. Each iteration of the map calculates the next 

value, 𝑥{𝑛+1} , based on the current value, 𝑥𝑛 , and the 

parameter r. 

To initialize the firefly population in EFOIRP, the logistic 

map is executed to generate a sequence of values. These 

values are then mapped to the corresponding ranges of the 

problem variables. The mapping process ensures that the 

initial positions of the fireflies fall within the defined search 

space. The EFOIRP introduces a chaotic dynamic into the 

firefly population by incorporating the logistic map into the 

initialization step. The chaotic behaviour enhances the 

exploration capabilities of the algorithm by introducing 

randomness and diversity to the initial positions of the 

fireflies. This diversity aids in exploring a more 

comprehensive range of the search space, increasing the 

likelihood of discovering optimal solutions. 

The logistic map generates a sequence of values that are then 

mapped to the problem variables. The resulting values 

determine the initial positions of the fireflies, thereby defining 

the starting points for the optimization process. The logistic 

map’s chaotic nature injects randomness into the initialization 

process, allowing for a diverse distribution of fireflies 

throughout the search space. EFOIRP sets the stage for 

subsequent steps in the optimization process through this 

mathematical integration of the logistic map. By leveraging 

the chaos generated by the logistic map, EFOIRP enables the 

firefly population to explore the search space effectively, 

enhancing the algorithm’s ability to locate optimal solutions. 

Incorporating the logistic map’s chaotic dynamics in the 

initialization step lays the foundation for the subsequent 
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stages of the EFOIRP, facilitating efficient optimization 

without requiring explicit knowledge of the problem domain. 

3.4.2. Attractiveness and Distance Calculation 

In this phase, the attractiveness between fireflies and the 

distance between them play a crucial role in guiding their 

movement. These factors are mathematically defined and 

updated iteratively to facilitate the optimization process. The 

attractiveness between two fireflies, 𝑖 and 𝑗, is determined by 

their respective fitness values and the distance between them. 

The fitness values, represented by 𝑓(𝑖)  and 𝑓(𝑗) , measure 

their performance in the optimization problem. The 

attractiveness, 𝐴(𝑖, 𝑗) , is inversely proportional to the 

distance, 𝑑(𝑖, 𝑗) , between the fireflies and can be 

mathematically expressed as Eq.(7). 

𝐴(𝑖, 𝑗) = 𝑒𝑥𝑝(−𝛾 ∗ 𝑑(𝑖, 𝑗)) (7) 

Where 𝛾  is a scaling parameter that controls the rate of 

attractiveness decay as the distance increases, the exponential 

function captures the inverse relationship between 

attractiveness and distance, ensuring that fireflies closer to 

each other have higher attractiveness. 

Various distance metrics can be employed to calculate the 

distance between two fireflies in the search space, such as the 

Euclidean distance, Manhattan distance, or Minkowski 

distance. Let’s consider the Euclidean distance, which is 

commonly used. The Euclidean distance, 𝑑(𝑖, 𝑗) , between 

fireflies 𝑖 and 𝑗 in a 𝑛-dimensional search space is calculated 

using Eq.(8). 

𝑑(𝑖, 𝑗) = 𝑠𝑞𝑟𝑡 (Σ(𝑥𝑖 − 𝑥𝑗)
2

) (8) 

Where 𝑥𝑖  and 𝑥𝑗  represent the positions of fireflies 𝑖  and 𝑗 

along each dimension of the search space. 

The logistic map introduces chaotic dynamics into the 

optimization process to update the attractiveness between 

fireflies. The updated attractiveness, 𝐴′(𝑖. 𝑗), is obtained by 

multiplying the initial attractiveness, 𝐴(𝑖, 𝑗) , with a value 

generated by the logistic map, denoted by 𝐿(𝑖, 𝑗): 

𝐴′(𝑖. 𝑗) = 𝐴(𝑖, 𝑗) ∗ 𝐿(𝑖, 𝑗) (9) 

Where 𝐿(𝑖, 𝑗) is a value between 0 and 1 generated by the 

logistic map equation, the logistic map provides chaotic 

behaviour that influences the attractiveness update, 

introducing randomness and diversity into the optimization 

process. 

The updated attractiveness values are then used to guide the 

movement of fireflies towards brighter fireflies with higher 

attractiveness. Fireflies adjust their positions based on the 

updated attractiveness, and the process iterates until 

convergence to optimal solutions is achieved. 

3.4.3. Chaotic Movement with Logistic Map 

In this phase, fireflies undergo chaotic movement based on 

the logistic map, enabling compelling search space 

exploration. This step involves updating the positions of 

fireflies using the chaotic dynamics introduced by the logistic 

map. The logistic map generates chaotic values between 0 and 

1, which are used to perturb the current positions of the 

fireflies. The logistic map equation, 𝑥{𝑛+1} = 𝑟 ∗  𝑥𝑛 ∗
(1 − 𝑥𝑛), is employed to update the positions of the fireflies 

in the search space. The logistic map’s chaotic nature ensures 

randomness and diversity in the movement of fireflies. 

To update the position of each firefly, the logistic map 

generates a value, 𝐿(𝑖), between 0 and 1. This value is then 

used to perturb the current position, 𝑥(𝑖) , of the firefly, 

resulting in an updated position, 𝑥′(𝑖) . The logistic map 

equation is applied using Eq.(10). 

𝑥′(𝑖) = 𝐿(𝑖) ∗ 𝑥(𝑖) (10) 

Where 𝐿(𝑖) denotes the value generated by the logistic map 

for firefly 𝑖, and 𝑥(𝑖) represents the present position of firefly 

𝑖 along each dimension of the search space. 

The logistic map-based chaotic movement introduced in 

EFOIRP enables fireflies to explore the search space 

effectively, promoting a diverse exploration of potential 

solutions. The randomness inherent in the logistic map 

ensures that fireflies move in unpredictable patterns, allowing 

for thorough search space coverage. The chaotic movement 

based on the logistic map enhances the algorithm’s ability to 

escape local optima and converge towards global optima. The 

exploration capabilities of the firefly population are enhanced 

by the inherent chaotic dynamics, ensuring a more exhaustive 

exploration of the search space and facilitating the discovery 

of optimal solutions. 

The chaotic movement of fireflies in EFOIRP is an iterative 

process. Fireflies continuously update their positions using the 

logistic map-based chaotic dynamics, exploring the search 

space stochastic. This iterative process allows for the gradual 

refinement of the firefly population and the convergence 

towards optimal solutions. This integration enables fireflies to 

explore the search space efficiently and effectively, enhancing 

the algorithm’s ability to find optimal solutions to complex 

optimization problems. 

3.4.4. Light Intensity and Attractiveness Update 

In this phase, fireflies’ light intensity and attractiveness are 

updated using the logistic map. These updates are crucial in 

guiding the fireflies towards brighter individuals and 

influencing their movement in optimization. A firefly’s light 
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intensity represents its fitness or objective function value. It 

indicates the quality of the solution represented by the firefly. 

The light intensity, denoted as 𝐼(𝑖), is updated based on the 

logistic map-generated value, 𝐿(𝑖) , and can be expressed 

mathematically as Eq.(11). 

𝐼′(𝑖) = 𝐿(𝑖) ∗ 𝐼(𝑖) (11) 

Where 𝐼(𝑖)  represents the current light intensity of firefly 𝑖, 
and 𝐿(𝑖) is the value generated by the logistic map equation 

for firefly 𝑖 . The logistic map introduces chaos and 

randomness into the update process, allowing for various 

changes in light intensity. 

The attractiveness between two fireflies, 𝑖  and 𝑗 , is 

determined by their respective light intensities and the 

distance between them. The attractiveness, 𝐴(𝑖, 𝑗) , can be 

calculated using the light intensity values, 𝐼(𝑖) and 𝐼(𝑗), and 

the distance, 𝑑(𝑖, 𝑗), between fireflies 𝑖 and 𝑗. An exponential 

function is a standard method to calculate attractiveness, 

resulting in Eq.(12). 

𝐴(𝑖, 𝑗) = 𝑒𝑥𝑝(∗ 𝛾 ∗ 𝑑(𝑖, 𝑗)) (12) 

Where 𝛾  is a scaling parameter that controls the rate of 

attractiveness decay as the distance between fireflies 

increases. The exponential function captures the inverse 

relationship between attractiveness and distance, ensuring that 

fireflies closer to each other have higher attractiveness. 

The updated attractiveness, 𝐴′(𝑖, 𝑗), between fireflies 𝑖 and 𝑗 

is obtained by multiplying the initial attractiveness, 𝐴(𝑖, 𝑗), 

with the value generated by the logistic map for firefly 𝑖 , 

denoted as 𝐿(𝑖): 

𝐴′(𝑖, 𝑗) = 𝐴(𝑖, 𝑗) ∗  𝐿(𝑖) (13) 

Where 𝐿(𝑖)  is a value between 0 and 1 generated by the 

logistic map equation, the logistic map introduces chaotic 

dynamics into the attractiveness update process, enhancing 

diversity and randomness. 

The updated light intensity and attractiveness values guide the 

movement of fireflies in the search space. Fireflies adjust their 

positions based on the updated attractiveness values, moving 

towards brighter fireflies with higher attractiveness. This 

iterative process ensures fireflies converge towards optimal 

solutions by continuously changing their positions based on 

the chaos-guided attractiveness mechanism. 

3.4.5. Movement and Optimization 

In this phase, the fireflies’ positions are updated based on 

their attractiveness and the chaotic dynamics introduced by 

the logistic map. This step aims to guide the fireflies towards 

more promising regions in the search space. The updated 

position of a firefly, 𝑥′(𝑖), is determined by considering the 

attractiveness of neighbouring fireflies and the present 

position of the firefly. The new position is calculated as a 

weighted average between the current position, 𝑥(𝑖), and the 

position of the brightest firefly, 𝑥(𝑗) , influenced by their 

attractiveness. This can be mathematically represented as 

Eq.(14). 

𝑥′(𝑖) = 𝑥(𝑖) + 𝛽 ∗ 𝐴(𝑖, 𝑗) ∗ (𝑥(𝑗) − 𝑥(𝑖)) + 𝐿(𝑖) (14) 

Where 𝛽 is a step size factor that controls the impact of the 

attractiveness, 𝐴(𝑖, 𝑗), on the movement of firefly 𝑖. The term 

(𝑥(𝑗)  −  𝑥(𝑖)) represents the direction vector from firefly 𝑖 to 

firefly 𝑗, indicating the direction towards the brightest firefly. 

𝐿(𝑖)  is the value generated by the logistic map equation, 

adding a chaotic element to the movement of firefly 𝑖. 

The term 𝛽 ∗ 𝐴(𝑖, 𝑗) ∗ (𝑥(𝑗) − 𝑥(𝑖))  determines the 

magnitude and direction of the movement towards the 

brightest firefly. The attractiveness, 𝐴(𝑖, 𝑗), provides a weight 

that scales the influence of the direction vector (𝑥(𝑗) − 𝑥(𝑖)). 

A higher attractiveness value leads to a stronger attraction 

towards the brighter firefly. The logistic map-generated value, 

𝐿(𝑖), introduces chaotic dynamics to the firefly’s movement. 

It adds a random perturbation to the updated position, 

promoting exploration and avoiding convergence to local 

optima. The chaotic movement provided by 𝐿(𝑖) enhances the 

algorithm’s ability to thoroughly explore the search space, 

improving the chances of finding optimal solutions. The 

iterative nature of this step ensures that fireflies continuously 

adjust their positions based on attractiveness and chaotic 

dynamics. The process iterates until a stopping criterion is 

met, indicating the algorithm’s convergence towards optimal 

solutions. 

3.4.6. Iterative Refinement 

In this phase, the fireflies’ positions are adjusted using the 

firefly’s inherent movement characteristics and the concept of 

boundary handling. This step ensures that the fireflies remain 

within the feasible region of the search space. Boundary 

handling mechanisms are incorporated to prevent fireflies 

from moving outside the defined boundaries of the problem. 

These mechanisms restrict the movement of fireflies towards 

infeasible regions and maintain the integrity of the search 

process. To enforce boundary handling, the positions of the 

fireflies are checked after each movement iteration. If a firefly 

violates the boundary constraints, its position is adjusted to 

bring it back within the feasible region. Various techniques 

can be employed for boundary handling, such as reflection, 

randomization, or penalty functions, depending on the 

specific problem requirements. 

One common approach is the reflection method, where the 

position of a firefly is reflected within the boundaries. 
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Mathematically, the reflection operation can be expressed as 

Eq.(15). 

𝑥(𝑖)𝑛𝑒𝑤 = 2 ∗ 𝑏 − 𝑥(𝑖)𝑜𝑙𝑑  (15) 

Where 𝑥(𝑖)𝑛𝑒𝑤  represents the new position of firefly 𝑖  after 

the reflection, 𝑥(𝑖)𝑜𝑙𝑑  is the previous position, and 𝑏  is the 

boundary value corresponding to the violated boundary 

constraint. 

Another technique involves randomization, where the position 

of a firefly is randomly reset within the feasible region. This 

approach adds stochasticity to the movement and allows for 

exploring different areas within the boundaries. Additionally, 

penalty functions can assign a penalty value to fireflies 

violating boundaries. The penalty value is then incorporated 

into the fitness evaluation, discouraging fireflies from 

venturing into infeasible regions. Combining boundary-

handling mechanisms ensures that fireflies remain within the 

feasible region throughout the optimization process. By 

preventing fireflies from moving outside the boundaries, 

EFOIRP maintains the integrity of the search space 

exploration and improves the algorithm’s convergence 

towards optimal solutions. The boundary handling techniques 

utilized in Step 6 are problem-specific and depend on the 

nature of the optimization problem. It is essential to tailor 

these mechanisms to accommodate the specific constraints 

and requirements of the problem. 

Input: 

 Problem-specific objective function 𝑓(𝑥) to be optimized 

 Number of fireflies (population size) 𝑁 

 Maximum number of iterations maxiter 

 Bounds (lower and upper limits) for each problem variable 

Output: 

 Optimal solution 𝑥𝑜𝑝𝑡  that minimizes the objective 

function 𝑓(𝑥) 

 The minimum objective function value 𝑓𝑜𝑝𝑡  achieved by 

𝑥𝑜𝑝𝑡 

Procedure: 

Step 1: Initialize the firefly population by generating 𝑁 

fireflies using the logistic map and mapping them to 

the problem variable bounds. 

Step 2: Evaluate the fitness value for each firefly based on the 

objective function 𝑓(𝑥). 

Step 3: Set the iteration counter iter = 0. 

Step 4: While iter<maxiter: 

a) Using the logistic map, update the attractiveness between 

fireflies based on their fitness values and distances. 

b) Adjust the firefly positions based on the updated 

attractiveness values, incorporating chaotic movement 

using the logistic map. 

c) Evaluate the fitness value for each firefly using the 

updated positions. 

d) Update the optimal solution 𝑥𝑜𝑝𝑡  and the minimum 

objective function value 𝑓𝑜𝑝𝑡  based on the best fitness 

value. 

e) Increment the iteration counter iter = iter + 1. 

Step 5: Return the optimal solution 𝑥𝑜𝑝𝑡 and the minimum 

objective function value 𝑓𝑜𝑝𝑡. 

Algorithm 3 EFOIRP 

4. SIMULATION SETTINGS 

Researchers strive to design and optimize intricate network 

architectures, and a revolutionary tool has emerged: GNS3 

(Graphical Network Simulator-3). This cutting-edge network 

simulation software takes users on a transformative journey 

into virtual networks. With its captivating interface and 

advanced features, GNS3 allows users to unleash their 

creativity and expertise, crafting complex network topologies 

that mirror real-world environments.  

Table 1 Simulation Settings 

Simulation Setting Value(s) 

Node Count 1500 

Network Area Size 150m x 225m 

Topology Random Graph 

Traffic Pattern Poisson 

Simulation Duration 900 seconds (i.e., 15 minutes) 

Deployment Model Event-Driven 

Obstacle Placement Random 

Transmit Energy 0.1 Joules/bit 

Receive Energy 0.05 Joules/bit 

Idle Energy 1.0 mW 

Sleep Energy 0.1 mW 

Battery Capacity 2000 mAh 

Simulation Environment GNS-3 

Experimental Repetitions 10 
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As they delve into the depths of this virtual landscape, 

network engineers gain invaluable hands-on experience, fine-

tuning configurations and experimenting with various 

protocols. GNS3’s ability to seamlessly integrate real network 

hardware and virtual machines sets it apart. Users harness the 

power of virtualization, emulating routers, switches, and other 

devices with unparalleled precision. Engineers can analyze 

traffic, capture packets, and meticulously analyze network 

behavior as their virtual networks spring to life. What sets 

GNS3 apart from the rest is its spirit of innovation. It 

seamlessly integrates with external virtualization platforms, 

amplifying its capabilities and expanding the possibilities for 

network simulation. With automation and orchestration at 

their fingertips, users can orchestrate network deployments, 

automate configurations, and unleash the full potential of their 

networks. Embark on a journey with GNS3, the gateway to a 

world where network simulations transcend boundaries, 

fostering creativity, expertise, and the limitless exploration of 

network architectures. The various simulation settings are 

shown in Table 1. 

5. RESULTS AND DISCUSSION 

5.1. Packet Delivery Ratio 

The Packet Delivery Ratio Result Graph (i.e., Figure 1) 

presents the average packet delivery ratios achieved by three 

routing algorithms: DORA, PSORS, and EFOIRP, as shown 

in Table 2. 

 

Figure 1 Packet Delivery Ratio Analysis 

The average packet delivery ratio for DORA is 41.16%. This 

means that, on average, DORA successfully delivers 

approximately 41.16% of the packets in the network. DORA’s 

relatively lower packet delivery ratio suggests there may be 

challenges in effectively routing packets to their intended 

destinations, resulting in a higher packet loss rate or 

unsuccessful delivery. The average packet delivery ratio for 

PSORS is 50.43%. This indicates that, on average, PSORS 

achieves a higher rate of successful packet delivery, 

delivering around 50.43% of the packets in the network. The 

PSORS helps optimize the path selection process, improving 

the chances of successful packet delivery and enhancing the 

overall packet delivery ratio. The EFOIRP routing protocol 

demonstrates the highest average packet delivery ratio among 

the three algorithms, with a value of 78.00%. This implies 

that, on average, EFOIRP successfully delivers approximately 

78.00% of the packets in the network. The EFOIRP 

incorporates the principles of firefly optimization to select 

routes that maximize packet delivery intelligently. This 

efficient route selection process contributes to the 

significantly higher packet delivery ratio achieved by 

EFOIRP. 

Table 2 Packet Delivery Ratio Result Values 

Nodes DORA PSORS EFOIRP 

150 51.81 58.67 86.02 

300 49.79 56.48 83.66 

450 47.48 53.69 82.81 

600 46.80 53.06 81.29 

750 45.12 52.17 78.89 

900 39.91 50.31 76.70 

1050 35.53 48.33 74.78 

1200 34.01 45.68 74.31 

1350 31.99 43.82 71.80 

1500 29.16 42.02 69.69 

Average 41.16 50.43 78.00 

The Packet Delivery Ratio Result Graph and Table 2 

highlight that EFOIRP achieves the highest average packet 

delivery ratio, followed by PSORS and DORA. This indicates 

that EFOIRP’s routing mechanism, inspired by firefly 

optimization, enhances packet delivery efficiency. PSORS 

demonstrates an average packet delivery ratio, while DORA 

exhibits a lower delivery ratio, suggesting room for 

improvement in routing performance. 

5.2. Throughput 

Figure 2 presents the throughput analysis of three routing 

algorithms: DORA, PSORS, and EFOIRP. Throughput refers 

to the amount of data that can be successfully transmitted over 
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a network within a given time period. Figure 2 compares the 

performance of these algorithms in terms of their throughput 

values. 

DORA is a routing algorithm that has been analyzed in the 

throughput analysis. The average throughput achieved by 

DORA is 37.52. Although it exhibits a relatively lower 

throughput than the other two algorithms, it still offers a 

viable option for data transmission. DORA prioritizes routing 

based on destination nodes, aiming to establish efficient paths 

for data transmission. While it may not achieve the highest 

throughput, its routing strategy can still contribute to effective 

network communication. 

 

Figure 2 Throughput Analysis 

PSORS demonstrates a higher average throughput of 50.48. 

This algorithm utilizes the concept of particle swarm 

optimization to optimize routing paths in the network. By 

simulating the behaviour of particles in a swarm, PSORS 

dynamically adjusts the routes to enhance data transmission 

efficiency. The results indicate that PSORS outperforms 

DORA in throughput, suggesting its potential for improving 

network performance through intelligent routing optimization. 

EFOIRP exhibits the highest average throughput of 75.87 

among the three algorithms. Inspired by the behaviour of 

fireflies, EFOIRP focuses on optimizing routing paths by 

dynamically adjusting the attractiveness of nodes. This 

approach allows efficient data transmission by prioritizing 

beautiful nodes along the routes. The significant difference in 

average throughput between EFOIRP and the other two 

algorithms demonstrates the effectiveness of its optimization 

strategy, making it an appealing choice for networks where 

high throughput is crucial. 

Table 3 Throughput Result Values 

Nodes DORA PSORS EFOIRP 

150 33.05 46.27 71.68 

300 33.49 46.81 72.81 

450 34.23 48.36 73.79 

600 35.35 48.64 74.53 

750 36.02 50.10 74.69 

900 36.72 50.91 75.45 

1050 40.69 52.68 75.69 

1200 41.29 52.78 78.62 

1350 41.90 53.81 79.73 

1500 42.51 54.51 81.70 

Average 37.52 50.48 75.87 

 

The throughput analysis (Table 3) compares three routing 

algorithms: DORA, PSORS, and EFOIRP. While DORA 

offers a viable option with a lower average throughput of 

37.52, PSORS achieves a higher throughput of 50.48 by 

leveraging particle swarm optimization. However, EFOIRP 

surpasses both algorithms with an average throughput of 

75.87, showcasing its remarkable performance in optimizing 

routing paths inspired by the behaviour of fireflies. The 

choice of routing algorithm ultimately depends on the specific 

network requirements, with EFOIRP standing out as a highly 

efficient solution for achieving superior data transmission 

capacity. 

5.3. Packet Delay 

Figure 3 compares packet delay performance for three routing 

algorithms: DORA, PSORS, and EFOIRP. The average 

packet delay values for each algorithm are provided as 

follows: DORA has an average packet delay of 12,884.4 ms, 

PSORS has an average packet delay of 10,703.2 ms, and 

EFOIRP has the lowest average packet delay of 5,554.6 ms. 

The packet delay metric measures the time a packet travels 

from its source node to its destination node in a network. It is 

an important performance indicator as it directly affects the 

quality of service experienced by network users. Lower 

packet delay values indicate more efficient routing 

algorithms, as they enable faster delivery of packets, reducing 

latency and improving real-time communication. 
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Figure 3 Packet Delay Analysis 

Table 4 Packet Delay Result Values 

Nodes DORA PSORS EFOIRP 

150 12455 9903 3419 

300 12490 9966 3434 

450 12512 10284 3895 

600 12549 10341 4001 

750 12767 10492 4548 

900 12982 10552 5885 

1050 13090 10675 6472 

1200 13206 11079 6993 

1350 13253 11348 7048 

1500 13540 12392 9851 

Average 12884.4 10703.2 5554.6 

In Figure 3, it is evident that EFOIRP outperforms both 

DORA and PSORS regarding packet delay. With an average 

delay of 5,554.6 ms, EFOIRP exhibits the shortest delivery 

time among the three algorithms. This indicates that EFOIRP 

optimizes the routing paths effectively, resulting in faster 

transmission of packets and minimal congestion in the 

network. 

DORA and PSORS show higher average packet delay values 

compared to EFOIRP. DORA has the highest delay of 

12,884.4 ms, indicating that it may suffer from suboptimal 

routing decisions or inefficient path selection. PSORS 

performs better than DORA but still has a higher delay than 

EFOIRP, with an average delay of 10,703.2 ms. These results 

suggest that PSORS achieves a moderate optimisation level 

but is still outperformed by the more advanced EFOIRP 

algorithm. 

Figure 3 demonstrates that EFOIRP is the most efficient 

routing algorithm among the three compared, as it achieves 

the lowest average packet delay. This indicates that EFOIRP 

optimizes the routing paths effectively, resulting in faster 

packet transmission and improved overall network 

performance. While having higher delays, DORA and PSORS 

may still be viable options depending on specific network 

requirements and constraints. However, for applications 

where low latency and fast packet delivery are crucial, 

EFOIRP stands out as the superior choice. The comparative 

analysis of the result is shown in table 4. 

5.4. Energy Consumption 

Figure 4 illustrates a comparative analysis of energy 

consumption among three distinct routing algorithms: DORA, 

PSORS, and EFOIRP. The energy consumption values, 

expressed as percentages, are in Table 5. 

 

Figure 4 Energy Consumption Analysis 

DORA emerges as the routing algorithm with the highest 

energy consumption among the three, with an average energy 

consumption of 82.98%. This high energy usage can be 

attributed to DORA’s routing strategy, potentially involving 

longer paths or additional overhead associated with message 
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transmission or processing. Consequently, DORA may not be 

the optimal choice in scenarios where energy preservation is 

critical. PSORS exhibits a relatively lower energy 

consumption, averaging 65.74%. This suggests that PSORS 

provides more energy-efficient routing solutions compared to 

DORA. The improved energy efficiency of PSORS can be 

attributed to its utilization of the particle swarm optimization 

mechanism, enabling better optimization of routing paths and 

resource utilization. By harnessing swarm intelligence, 

PSORS achieves enhanced energy efficiency while 

maintaining effective communication within the network. 

EFOIRP outperforms both DORA and PSORS regarding 

energy efficiency, demonstrating the lowest energy 

consumption among the three algorithms, with an average 

value of 33.78%. EFOIRP adopts a routing protocol inspired 

by the behavior of fireflies, allowing for dynamic adjustment 

of routing paths based on the energy status of nodes. This 

adaptive approach enables EFOIRP to minimize energy 

consumption by leveraging the most energy-efficient paths 

available. Consequently, EFOIRP proves to be an optimal 

choice for energy-constrained scenarios, where energy 

preservation and the prolongation of network lifetime are 

paramount. 

Figure 4 comprehensively compares energy consumption 

among the DORA, PSORS, and EFOIRP routing algorithms. 

DORA exhibits the highest energy consumption at 82.98%, 

while PSORS demonstrates improved energy efficiency at 

65.74%. However, EFOIRP stands out as the most energy-

efficient algorithm, with an average energy consumption of 

33.78%. These results emphasize the significance of carefully 

selecting a routing algorithm that aligns with the network’s 

specific energy constraints and requirements. 

Table 5 Energy Consumption Result Values 

Nodes DORA PSORS EFOIRP 

150 74.51 56.39 26.68 

300 75.61 57.94 27.90 

450 77.90 60.36 31.49 

600 81.21 60.98 31.56 

750 82.27 61.51 31.59 

900 84.47 68.90 33.66 

1050 86.63 69.51 34.80 

1200 87.80 71.74 38.26 

1350 88.75 73.96 38.97 

1500 90.63 76.16 42.89 

Average 82.98 65.74 33.78 

5.5. Network Life Time 

In Figure 5, the comparison of network lifetime among the 

three routing algorithms (i.e., DORA, PSORS, and EFOIRP) 

reveals valuable insights into their respective performance. 

Network lifetime refers to the duration a wireless network can 

operate effectively before the depletion of energy resources. It 

is critical to consider when designing and implementing 

wireless network routing protocols. 

DORA, with an average network lifetime of 17.19%, falls on 

the lower end of the spectrum. This algorithm likely employs 

a destination-oriented approach, where the routing decisions 

are primarily based on the intended destination of the data 

packets. While DORA achieves some level of energy 

efficiency, it is outperformed by both PSORS and EFOIRP 

regarding network lifetime. This suggests that DORA may not 

fully optimize energy consumption and fails to use more 

sophisticated optimization techniques. PSORS demonstrates a 

significant improvement in network lifetime, achieving an 

average of 37.41%.  

This algorithm incorporates particle swarm optimisation 

principles, drawing inspiration from particles’ collective 

behaviour in a search space. PSORS likely employs a 

population of virtual particles representing network nodes 

communicating and exchanging information to identify 

optimal routing paths. By leveraging the swarm intelligence 

of particles, PSORS can effectively balance energy 

consumption across the network, resulting in a more extended 

network lifetime than DORA. 

 

Figure 5 Network Lifetime Analysis 
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The most notable performance is observed in EFOIRP, which 

achieves an average network lifetime of 72.08%. This routing 

protocol draws inspiration from the energizing behaviour of 

fireflies. Fireflies exhibit a fascinating phenomenon where 

they synchronize their flashing patterns to optimize their 

mating success.  

EFOIRP likely incorporates similar principles to dynamically 

adjust routing paths based on the “illumination” 

characteristics of virtual fireflies representing network nodes. 

By adapting the routing paths based on the brightness of 

neighbouring nodes, EFOIRP can achieve an exceptional 

level of energy optimization and prolong the network lifetime 

significantly. 

The comparison presented in Figure 5 and Table 6 

underscores the importance of utilizing advanced optimization 

techniques in routing algorithms for wireless networks. While 

DORA provides a moderate improvement over conventional 

methods, PSORS and EFOIRP demonstrate the potential of 

bio-inspired optimization approaches. PSORS significantly 

extends the network lifetime, and EFOIRP emerges as the 

most efficient algorithm, achieving the highest network 

lifetime of 72.08%.  

These findings emphasize the significance of exploring 

nature-inspired algorithms to enhance the energy efficiency 

and overall performance of wireless networks, ultimately 

contributing to the sustainability and longevity of such 

systems. 

Table 6 Network Lifetime Result Values 

Nodes DORA PSORS EFOIRP 

150 24.81 50.53 79.65 

300 23.96 49.68 79.36 

450 21.13 46.24 74.33 

600 18.71 44.56 73.76 

750 17.63 37.49 73.24 

900 16.73 31.14 70.47 

1050 13.43 29.72 69.54 

1200 12.77 29.14 66.99 

1350 12.22 27.86 66.73 

1500 10.51 27.79 66.69 

Average 17.19 37.41 72.08 

6. CONCLUSION 

This paper addressed the impact of physical obstructions on 

routing performance in IoT-based Cloud Wireless Sensor 

Networks (IC-WSN) for greenhouse farming. The proposed 

Energizing Firefly Optimization-Inspired Routing Protocol 

(EFOIRP) offers a novel approach to overcoming the 

challenges of physical obstructions. By conducting 

comprehensive site surveys, characterizing obstructions, and 

considering signal strength and alternative routing paths, 

EFOIRP intelligently adapts to obstructions and ensures 

reliable data transmission. This research aimed to enable 

seamless data transmission and monitoring in greenhouse 

farming, ultimately leading to optimal conditions for plant 

growth and increased crop yields. EFOIRP enables real-time 

monitoring of environmental parameters by minimising signal 

interference and disruptions, facilitating precise control over 

greenhouse conditions and efficient resource management. 

The research objectives were successfully achieved by 

developing adaptive routing algorithms, evaluating their 

performance through simulations or experiments, 

investigating scalability, and validating effectiveness in real-

world greenhouse farming scenarios. The proposed EFOIRP 

algorithm demonstrates promising results in enhancing the 

performance of IC-WSN in greenhouse environments. Future 

work can focus on further optimizing the EFOIRP algorithm 

and exploring its applicability in other IoT-based 

environments. 
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