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Abstract – Wireless Sensor Networks (WSNs) have been more 

popular for a wide range of applications due to research ability 

to monitor and gather data from a variety of situations. 

However, it remains challenging to achieve Quality of Service 

(QoS) while maintaining energy efficiency. In the context of QoS 

optimization for energy-efficient WSNs, this study investigates 

the crucial issues of localization and deployment concerns. 

Localization the precise positions of sensor nodes are crucial for 

effective data fusion and routing algorithms that rely on 

localization. This study compares and contrasts several 

localization methods, including range-based and range-free 

approaches, and explains benefits and drawbacks. The study also 

investigates the effects on QoS and energy savings of various 

deployment strategies, including optimizing node location, 

boosting coverage, and increasing node density. The goal of this 

research is to find out how to optimize QoS in low-power 

wireless networks by including latency, throughput, and 

stability, among other quality of service characteristics, into the 

design of routing algorithms. Current routing protocols, like 

Low-Energy Adaptive Clustering Hierarchy (LEACH), are 

assessed for ability to optimize quality of service while 

minimizing energy consumption. In addition, this study explores 

several approaches that might help enhance QoS while reducing 

energy consumption, such as energy-aware routing, adaptive 

duty cycling, and data aggregation methods. By thoroughly 

examining and evaluating localization algorithms, deployment 

concerns, and routing protocols, this study offers practical and 

theoretical insights for researchers and practitioners aiming to 

optimize quality of service in energy-efficient WSNs. Useful and 

dependable WSN deployments in a wide variety of domains 

possible with the help of the presented results and suggestions. 

Index Terms – LEACH, Node Density, Quality of Service, 

Range-Based Localization, Routing Protocols, Wireless Sensor 

Networks. 

1. INTRODUCTION 

Sensor nodes in a wireless sensor network communicate with 

one another using a wireless channel to carry out 

decentralized sensing operations. Miniaturized, inexpensive, 

and power-efficient sensor nodes make up its core, and it 

doesn't rely on any current infrastructure [1]. Every one of 

these nodes has four primary components a sensor unit, a 

processing unit, a transceiver, and a power unit that work 

together to collect data from immediate surroundings and 

transmit it to an external base station or sink. Properly 

configured nodes in a WSN can collaboratively execute signal 

processing activities to acquire information from distant and 

likely mission essential regions in an unsupervised and 

resilient manner, even when a single sensor node only has 

limited connection and compute capabilities [2]. The design 

of WSNs is among the most difficult in the field of wireless 

communication, despite its widespread use for applications 

such as environmental monitoring, target tracking, battlefield 

surveillance, industrial diagnostics, smart spaces, and security 

management. This is because sensor nodes communicate over 

long distances, using up a lot of limited energy resources 

when sending data to a sink [3]. 

The adaptability of WSN in data collection has contributed to 

meteoric rise in popularity. These networks have several 

important applications, including medical, agricultural, 

industrial, and environmental monitoring [4]. Must find 

methods to decrease energy consumption without 

compromising service quality, if want to make full advantage 

of WSNs. Achieving performance goals like low latency, high 

throughput, and dependable data transmission requires WSN-

dependent applications to have excellent quality-of-service 

[5]. However, it is still not an easy job to achieve QoS without 

sacrificing energy efficiency. This study aims to optimize 

service quality for energy-efficient WSNs by addressing 

significant deployment and localization challenges [6]. 

Accurately determining the locations of sensor nodes requires 

the use of localization. The use of accurate location-based 
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routing and data fusion are both significantly enhanced by it. 

This research compares range-based and non-range-based 

localization techniques. Taking into consideration the 

methods' impacts on service quality and energy efficiency, it 

weighs the benefits and negatives of each [7]. 

The Internet of Things (IoT) is a technical advancement that 

has sparked a new trend of physical goods learning new skills. 

Inspiring more and more of the material rely on every day to 

be digitally integrated; it is transforming the world around 

into an information ecosystem [8]. Through the 

interconnection of all things, are now able to get any kind of 

support at any time, from any location, and with any level of 

quality of service [9-11]. Interconnection of all physically 

visible items enabled by the internet on the embedded 

platform is the basis of this enabling technology [12, 13]. As 

an integral aspect of the Internet of Things, sensors are used 

in the process of data collection via sensing. Among the many 

components that make up the internet of things paradigm, 

wireless sensor networks stand out as a particularly promising 

system for gathering, processing, and disseminating data 

pertaining to the demands of the real world [14, 15].  

One or more routers, access points, or a base station link the 

wireless sensor network to the internet of things, allowing for 

comprehensive monitoring of the internet-enabled linked 

network of things [16-18]. Due to the rechargeable nature of 

these wireless sensor networks, the routing mechanism used 

must be able to establish connections with low power 

consumption, long network lifetimes, and low latency and 

loss. Because of this, wireless sensor networks aren't always a 

good fit for traditional routing algorithms [19, 20]. Despite 

apparent efficiency, the current clustering-based routing 

techniques result in excessive energy consumption when 

dealing with the cluster head; hence, an improved routing 

approach that raises the bar for IoT-wireless sensor networks 

is required [21].  

At the intersection of deployment and localization parameters 

lies the key to achieving optimal quality of service in the 

realm of WSNs while maintaining energy efficiency [22]. 

Despite WSNs' continual instrumentality in monitoring and 

capturing data across numerous settings, there is an ongoing 

difficulty with maintaining a balance between demands for 

quality of service and the vital need to conserve energy. This 

study delves into the essential components of localization 

techniques and deployment parameters [23-28] to optimize 

the quality of service for energy-efficient WSNs. 

1.1. Motivation of the Paper  

WSNs are becoming more widespread and employed in many 

applications, prompting this research. Monitoring and 

capturing data in various contexts make WSNs valuable in 

environmental monitoring, healthcare, smart cities, and 

industrial automation. WSNs must balance QoS with energy 

efficiency to operate efficiently. Quality of service is key for 

WSN applications. It covers dependability, latency, network 

longevity, and data validity, which affect network 

performance and efficacy. QoS metrics must be optimized in 

energy-constrained WSNs for dependable and efficient data 

collecting. Due to sensor nodes' limited power sources, WSNs 

must additionally prioritize energy efficiency. Network 

lifetime and energy utilization must be optimized to maintain 

network operation without battery replacement or recharge. 

This study addresses the challenge of maximizing WSN QoS 

and energy efficiency. This research focuses on localization 

and deployment to improve QoS and energy efficiency. It 

evaluates localization and deployment solutions for QoS 

improvement, highlighting pros and cons. 

This paper is organized as follows. Section 2 of this paper 

provides an overview of localization techniques and 

applications with WSNs. Optimization of QoS is examined in 

relation to deployment concerns in Section 3. In Section 4, 

this research talks about how to include localization and 

deployment techniques into the overall QoS optimization 

framework. The trial outcomes and effectiveness assessments 

are presented in Section 5. The inquiry is wrapped up in 

Section 6, and suggestions for further study are provided. 

2. LITERATURE SURVEY 

Alghamdi, T. A. [2] By taking energy, latency, distance, and 

security into account, this research has introduced a new 

clustering model with optimum Cluster Head (CH). Various 

analyses have been conducted, including those on 

convergence, active nodes, normalized network energy, 

delays, risk probability, algorithms, and statistics. The results 

of the assessment demonstrated that the suggested model 

outperforms the alternatives. In comparison to the FireFly 

(FF), Grey Wolf Optimization (GWO), Whale Optimization 

Algorithm (WOA), and DrAgon fly (DA) algorithms, the 

suggested model performed better in the 2000th round in 

active node analysis by 45.95%, 18.92%, 24.32%, and 

24.32%, respectively. 

Ben-Ghorbel, M. et al. [4] an efficient and cost-effective 

method for gathering data from WSNs utilizing a mobile 

Unmanned Aerial Vehicle (UAV) was outlined by the author. 

To reduce power consumption and maximize data collection 

from adjacent sensors, the proposed solution optimizes the 

UAV's flight path and data collection pauses. Optimal 

placement of UAV stops and sensor data acquired each stop 

were optimized by iterative use of a clustering-based 

technique and a Travel Salesman Problem (TSP) process, 

respectively, in the suggested algorithm.  

Jaiswal, K., &Anand, V. [6] The multipath routing paradigm 

proved suitable for enhancing the quality of service in WSNs. 

Improved network performance and service quality are 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224438                 Volume 11, Issue 1, January – February (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       98 

     

RESEARCH ARTICLE 

outcomes of the suggested protocol's use of an Optimality 

Factor (OF)-based routing strategy.  

Kaur, A. et al. [7] Common criticisms of Distance-Vector 

(DV)-Hop and related weighted centroid DV Hop algorithms 

are high power consumption and lack of precision. Phase one 

of the Enhanced Weighted Centroid DV-Hop (EWCD) 

algorithms limits the broadcasting range by t hops, which 

increases localization accuracy and decreases power 

consumption. An average of the hop count, transmission 

radius, and average hop distance was used to generate the 

weight factor of the EWCD algorithm.  

Ramesh, M. V. [11] One of the most effective ways to 

monitor disaster-prone regions in real-time was via wireless 

sensor networks. This research thoroughly examined the 

creation and implementation of a network of wireless sensors 

for landslip detection. The network can provide both real-time 

data via the Internet and advance warnings to the 

revolutionary three-tiered warning system that was designed 

for these author’s research. Methods for energy-efficient data 

collecting, fault-tolerant clustering algorithms and threshold-

based data aggregation are all part of the system.  

Singh, O et al. [17] these authors research proposes an 

Energy-Efficient Multipath Routing (EEMR) protocol for 

WSN with the aim of reducing the power consumption of the 

quality-of-service measures. A Lion multi-optimal 

optimization method was introduced to discover the best, 

energy-efficient path with the fewest nodes probable. The 

author built the suggested EEMR protocol in Matrix 

Laboratory (MATLAB) after comparing it to existing 

optimization approaches. Findings from the simulations show 

that the EEMR protocol achieves a high success rate with 

lower power consumption in WSN QoS-based routing. 

Tuna, G., & Gungor, V. C. [19] underwater exploration and 

monitoring technologies were becoming more and more 

popular. Unfortunately, none of the implemented Underwater 

Acoustic Sensor Networks (UASN) applications were 

flawless because of the limitations and difficulties caused by 

the severe underwater environment. Many issues persist with 

the current state of underwater sensor network deployment. 

Understanding and examining the current advances in 

underwater acoustic communication and UASNs was crucial 

for effective implementation of various application scenarios 

and reaping advantages, notwithstanding the significant 

amount of research work focused on UASNs in recent years. 

Thus, UASNs need close collaboration between researchers 

and those responsible for implementing. 

Muthurajkumar, S. et al. [22] these authors research proposes 

a novel secure routing method for Mobile Ad hoc Networks 

(MANETs) that uses trust score assessment to efficiently 

identify and avoid malicious nodes; the technique was termed 

Cluster and Energy Efficient Secure Routing Algorithm 

(CEESRA). It also proposes a novel method for evaluating 

trust scores and computing trust values in this study. In this 

study, a dynamic clustering approach was used to generate an 

energy-efficient safe routing algorithm. This technique takes 

into account low-mobility nodes, as well as trust levels, 

energy consumption, and distance characteristics. The results 

of the tests, which were carried out using Network simulator 

(NS) 2 simulations, show that the suggested algorithm 

outperforms the current methods in relation to residual 

energy, packet drop ratio, security, and throughput. 

Kevin P, Samarakoon UT [27] these authors research 

provides a brief overview of some popular algorithms that use 

3D static networks. The paper's algorithms are mostly based 

on very precise and accurate principles. These authors found 

that there are four possible topologies for a localization 

network: mobile anchor and static nodes, mobile anchor and 

static sensors, mobile anchor and both mobile and static, and 

mobile and static anchor-based. Based on factors such as 

localization accuracy, localization coverage, localization time, 

landmark number, and energy consumption, these authors 

have compiled a list of mobile node and landmark localization 

techniques. 

N. Kumar et al. [29] the proposed Enhanced Energy-Efficient 

Clustering Approach-Tier Heterogeneous Wireless Sensor 

Networks (EEECA-THWSN) represents a novel and 

inventive solution to the challenges faced by Tier 

Heterogeneous Wireless Sensor Networks (THWSNs), where 

energy efficiency is paramount. The three-tier node structure, 

along with carefully selected parameters for CH assignment, 

demonstrates a holistic approach to prolonging network 

lifetime and reducing energy consumption. 

Z. Yao [30-32] these authors research suggested and 

evaluated the performance of Hybrid Load Balancer (HLB), a 

load-aware Layer-4 Load Balancer (LB). Based on passively 

acquired networking observations abstracted from the data 

plane, HLB can predict both server occupancies and 

processing speeds, which are mentioned in this study as two 

essential criteria in load balancing performances. The 

comparison for existing works with advantages and 

limitations are represented at table 1. 

2.1. Problem Definition 

This study discusses energy-efficient WSN-QoS optimization. 

WSNs are widely used for data monitoring and gathering, 

although QoS and energy efficiency are challenging to 

achieve. This study focuses on localization and deployment. 

Localization is necessary for WSN sensor node positioning. 

Location-based data fusion and routing methods are efficient 

with accurate localization. Deployment techniques affect 

WSN energy efficiency and service quality. This research 

examines how node density, location optimization, and 

coverage improvement affect energy efficiency. To optimize 
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QoS in energy-efficient WSNs, the study examines routing 

protocol design with QoS characteristics as dependability, 

latency, and network lifespan. QoS optimization and energy 

efficiency tradeoffs of LEACH, SelEctive Polling (SEP), and 

Sensor Protocols for Information via Negotiation (SPIN) 

routing protocols are examined. 

Table 1 Comparison Table for Existing Work 

Author Year Methodology Advantage Limitation 

Alghamdi, T. 

A. [2] 

2020 WSN The hybrid dragonfly-firefly 

clustering model with optimum 

cluster head selection 

incorporates energy, latency, 

distance, and security, its key 

benefit. 

Due to the computational 

difficulty of balancing energy, 

latency, distance, and security, the 

hybrid dragonfly-firefly method 

Cannot choose optimal cluster 

heads. 

Ben-Ghorbel, 

M. et al. [4] 

2019 Traveling Salesman 

Problem 

The proposed energy-efficient 

UAV-based system intelligently 

picks stops to optimize wireless 

sensor network data collection 

and save energy. 

For robust real-world 

performance, adaptability to 

dynamic environmental changes 

and probable effectiveness effects 

from unplanned occurrences are 

essential. 

Jaiswal, K., 

&Anand, V. 

[6] 

2019 Energy-Efficient 

Optimal Multi-Path 

Routing Protocol 

This routing strategy optimizes 

wireless sensor network-based 

IoT performance by considering 

durability, dependability, and 

traffic intensity, minimizing 

unfairness under heavy traffic 

loads. 

Sensitivity to dynamic network 

conditions can impact 

performance, necessitating 

adaptability measures for 

robustness. 

Kaur, A. et al. 

[7] 

2017 Weighted centroid 

algorithm 

Proposed weighted centroid 

DV-Hop improves accuracy and 

reduces power consumption, 

overcoming traditional DV-Hop 

limitations in wireless sensor 

networks. 

Sensitivity to factors and dynamic 

conditions can impact adaptability 

in diverse wireless sensor network 

scenarios. 

Ramesh, M. V. 

[11] 

2014 Heterogeneous 

wireless networks 

Over three years, the wireless 

sensor network in landslide-

prone regions collects data on 

rainfall, moisture, and 

geological characteristics, 

improving real-time catastrophe 

prevention. 

Wireless sensor networks can 

monitor landslides, although 

maintenance, scalability, and 

adaption to disaster situations can 

need more research for long-term 

performance. 

Singh, O. et al. 

[17] 

2021 energy-efficient 

multipath routing 

The Energy-Efficient Multipath 

Routing protocol for Wireless 

Sensor Networks uses the multi-

objective lion optimization 

algorithm to optimize paths with 

lower energy consumption, 

outperforming state-of-the-art 

protocols in delay, throughput, 

and energy efficiency. 

The complexity of the multi-

objective lion optimization 

method can impair real-time 

speed and practical 

implementation of the Energy-

Efficient Multipath Routing 

protocol, which is effective. 

Investigation and validation in 

many contexts are required. 
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Tuna, G., & 

Gungor, V. C. 

[19].  

2017 underwater acoustic 

sensor networks 

The proliferation of Underwater 

Acoustic Sensor Networks 

(UASNs) is driven by wireless 

sensor network advancements, 

leading to specialized 

deployment techniques and 

localization algorithms for 

diverse applications. 

One limitation of Underwater 

Acoustic Sensor Networks 

(UASNs) is the challenge of 

signal propagation in underwater 

environments, leading to limited 

communication range and 

increased latency. 

 

Muthurajkuma

r, S. et al.  [22] 

2017 Energy-efficient 

routing algorithm 

Minimizes energy consumption 

in routing 

Limited scalability in large-scale 

networks 

Kevin P, 

Samarakoon 

UT [27] 

2019 received signal 

strength indicator 

This study reviews 

contemporary WSN localization 

innovations, including 3D and 

mobile anchor-based algorithms 

for environmental monitoring 

and disaster relief and 

performance analysis to increase 

static 3D localization accuracy. 

The study examines WSN 

localization, although it can 

struggle to generalize approaches 

across applications and situations. 

Environmental conditions and 

system limits must be considered 

for effective implementation. 

N. Kumar et 

al. [29] 

2022 Enhanced energy-

efficient clustering 

approach 

The Enhanced EEECA for 

HWSN uses a three-tier node 

structure to pick cluster heads 

based on beginning energy, 

node condition, and residual 

energy. 

Although promising, the proposed 

EEECA for HWSN can face 

scalability and adaptability issues 

in dynamic network conditions, 

requiring.  

Z. Yao. [30] 2022 cloud and 

distributed 

computing 

The HLB infers server statuses 

without explicit monitoring, 

improving response times and 

resource use over existing 

methods. 

Although beneficial, the 

suggested HLB can struggle in 

varied and dynamic network 

contexts, requiring more research 

for maximum performance. 

 

3. MATERIALS AND METHODS 

The successful implementation of a comprehensive strategy 

for QoS optimization in energy-efficient WSNs hinges on a 

meticulous and well-considered approach to materials and 

methods.  

3.1. Location of the Sensor Nodes 

Accurate and effective sensing by a network relies on 

strategically placing sensor nodes. Quality of service and 

energy efficiency are two of many aspects that should be 

considered when deciding where to put sensor nodes. 

Raising the transmission power of a network has a significant 

impact on its overall energy efficiency due to the increased 

energy consumption that follows.  

Sensors in an environmental monitoring network, for 

instance, could have to be placed close to bodies of water, 

points of interest geographically, or pollution sources. The 

sensing system is made more effective by positioning the 

nodes in such a way that the network can collect data that is 

both accurate and representative. The sensor nodes in WSN 

architecture have been represented at figure 1. 

In addition, network topology is critical for both energy 

efficiency and quality of service. Network topologies like star 

topology, cluster-based topology, or a hybrid mix of the two 

might be used depending on the particular application. To get 

the most out of the network, make sure that the sensor nodes 

are positioned according to the selected topology and the 

localization algorithm has been represented at algorithm 1. 

Input: 

● Network area: The geographical area to be covered by the 

sensor network. 

● Phenomena of interest: Specific locations or factors that 

require accurate sensing. 

● Energy constraints: Limitations on the energy 

consumption of the sensor nodes. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224438                 Volume 11, Issue 1, January – February (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       101 

     

RESEARCH ARTICLE 

● Network topology: The chosen topology for the sensor 

network. 

Steps: 

Setup: 

Sensor Nodes (Unknown Locations): Pi = (xi, yi) fori =
1,2, … , n. 

Anchor Nodes (Known Locations): Aj = (aj, bj) forj =

1,2, … , m 

1. Distance Measurements: 

Measure the distances between each sensor node and multiple 

anchor nodes. Let dij  be the distance between the ith sensor 

node and the jth anchor node. 

2. Trilateration Equations: 

o The basic trilateration equation for a sensor node Pi is:  

(xi − aj)
2

+ (yi − bj)
2

= dij
2  

o For m anchor nodes, you will have mm equations for each 

sensor node. 

3. Solving the System of Equations: 

o Formulate the system of equations using the trilateration 

equations for all sensor nodes. 

o Use numerical methods or linear algebra techniques to 

solve the system and obtain the coordinates (xi, yi)  for 

each sensor node. 

Output: 

Placement coordinates: The optimal coordinates for placing 

the sensor nodes. 

Algorithm 1 Localization

 

Figure 1 Sensor Nodes in WSN Architecture 
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3.2. Particle Swarm Optimization 

Plan the locations of the sensor nodes. Method for 

optimization with a swarm of very small particles. Particle 

Swarm Optimization (PSO) is an algorithm that mimics the 

cooperative strategies of natural communities, such as swarms 

of bees or schools of fish. Individuals in this method's 

population are called particles, and the swarm as a whole is 

called a swarm. These hordes stand for potential answers. The 

objective function's search space is started with random 

positions for the particles. After the initiation phase, the 

swarm's particles will settle on a location that strikes a 

balance between best past positionspbest, the best collective 

position (gbest), and a random search. Vectors 𝑉 and 𝑋 , 

reflecting the particle's current and past velocities in the 

search space and in relation to its paired particles, 

respectively, are used to represent each particle in PSO. 

Mathematical updates to particle locations and velocities are 

performed in line with Eqs. (1) and (2): 

Vid(t + 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (pid(t) − xid(t)) + c2 ∗

r2 ∗ (pgd(t) − xid(t))                  ------ (1) 

Xid(t + 1) = xid(t) + vid(t + 1) ------ (2) 

Where the particle's velocities at iterations t and t-1 are 

represented by vid(t)  and vid  respectively the value of pi 

represents the ideal position of a particle. When compared to 

its contiguous neighbors at time t, pgd is in first place. Each 

particle is pushed inexorably toward the pbest  and gbest 
locations by stochastic acceleration factors, the strengths of 

which are represented by the coefficients c1  and c2  of 

acceleration. Two random numbers, r1 and r2, are shown 

below, both drawn from a uniform distribution between 0 and 

1. When weighing global against local search, inertia weight x 

is used. If xid is the particle's location at iteration𝑡, then a high 

inertia weight promotes global exploration while a small one 

favors local exploitation. The first step of PSO is the random 

generation of particles in the search space. 

3.2.1. Multi-Vector Particle Swarm Optimization 

To improve PSO's insufficient exploration and exploitation 

potential, this research suggests as Multi Vector Particle 

Swarm Optimization (MVPSO). By increasing PSO's 

exploration, exploitation, and converge capabilities, MVPSO 

has made it possible to address the aforementioned problems 

with the original PSO method. Particle position vectors are 

updated at each iteration of the optimization process to the 

proposed mathematical equations that are incorporated to the 

PSO algorithm. The MVPSO algorithm has been represented 

at algorithm 2. 

Each optimal solution in MVPSO is represented by a particle. 

The whole swarm of particles moves around the search space 

until it finds the best possible answer. MVPSO suggests 

adding three extra vectors for each particle in a D-dimensional 

hyperspace, where n is the population size. For each d [(1, d)], 

let xi  =  (xi1, xi2, … , xid)  and let vi  =  (vi1, vi2, … , vid)  

denote the position and velocity, respectively. Equations (3-5) 

describe MVPSO's three position vectors as(X1t + 1)i. Each 

particle's starting velocity and location are determined by 

random vectors within respective ranges. The location is 

modified using three equations. 

Following are some equations used to update the particle's 

location in all three dimensions: 

(X1t + 1)i = (1 + α) ∗ pbest − α ∗ pos ---------- (3) 

In equation 4 for each iteration, the optimal solution in 

dimension 𝑖 is represented by the coordinates [pbest], where 

[X1t].  

(X2t + 1)i = r ∗ X1t + 1 − (1 − r) ∗ pbest ------- (4) 

In equation 5Where alpha is a constant equal to 0.2, pbest is 

the location of the optimal solution on iteration i, and 

(X2t + 1)i is the position on the second vector indicating the 

solution as of iterationi. 

(X3t + 1)i = β ∗ pos − (1 − β) ∗ pbest ---------- (5) 

Where alpha is a constant equal to 0.2, pbest is the ith position 

of the best solution, and (X3t + 1)i is the ith position of the 

third vector in the current solution. 

The aforementioned equations reveal that MVPSO relies on 

three distinct position vectors: X1, X2, and X3. Each particle's 

X1, X2, and X3 vectors indicate a different direction of motion 

it located anywhere along the path between the problem and 

the answer, or even beyond that range. 

The approach is known MVPSO, after the three vectors used 

to create new coordinates surrounding each particle. 

Individuals' actions in the search space define particles. There 

are two principles that guide the search process: 

1. The memory of each particle permits it to remember the 

better place it has previously passed. 

2. Each particle will grow to a higher-quality location inside 

the three position vectors that surround it. 

Particles update positions by adding own value to the best 

position value in the vector of nearest neighbor. Moreover, 

the position vector solutions to Equations (3), (4), and (5) are 

shown. As can be seen in the picture, the proposed equations 

create three new solutions to the search space, labeled P1, P2, 

and P3. Although a two-dimensional model has been shown, 

this equation generalized to higher dimensions. 

Solutions placed around one another using the locations 

provided by above equations. This ensures both discovery and 

use of resources in the region between the updated particle 

vector positions.  
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MVPSO generates and analyzes new position vectors to see 

how compare to the particle. Particle motion and the 

distribution of the swarm's other particles are both affected by 

these newly produced locations. This indicates that the 

MVPSO approach thoroughly explores the area between the 

lower and upper boundaries of the search space. MVPSO has 

improved its search capabilities by include more particle 

locations throughout the particle movement, allowing it to 

find the global optimum while avoiding the problem of local 

minima. 

Finding the promising parts of the search space and 

eventually settling on the global optimum requires an 

algorithm that can go through the search space without ever 

encountering a value that is beyond the search space's upper 

limit or lower limit. 

Are adaptively modified to maintain exploration and 

exploitation within the search space: 

(X1t + 1)i = ((X1t + 1)i ∗ (~(flub + flag41b))) + ub ∗

Flaub + 1b.∗ F1a1b --------- (6) 

(X2t + 1)i = ((X2t + 1)i.∗ (~(F1aub2 + f1a1b2)) + ub.∗

Flaub2 + 1b. F1a1b2 ------- (7) 

(X3t + 1)i = ((X3t + 1)i.∗ (~(F1aub3 + F1a1b3)) + ub.∗

F1aub3 + 1b.∗ F1a1b3 ------ (8) 

Where (X1t + 1)i the position of the beginning vector is 

specified by Eq 6 The second location of the vector is(X2t +
1)i which is calculated using Eq. (7). Eq. (8) and the values of 

Flaub, Flaub2, and Flaub3 within the search space's upper and 

lower boundaries define the location of the third vector,(X3t +
1)i. 

Input: 

● Population size (n) 

● Dimensionality of the search space (D) 

● Maximum number of iterations (max_iter) 

● Lower bound ( lb ) and upper bound ( ub ) for each 

dimension 

Algorithm Overview: 

1. One should first seed the search space with a population of 

particles whose locations and velocities are completely 

random. 

(X3t + 1)i = β ∗ pos − (1 − β) ∗ pbest 

2. Second, use the objective function to determine how 

healthy each particle is. 

3. Initialize the pbest  (personal best) positions of each 

particle as current positions and the gbest  (global best) 

position as the best position among all particles in the 

swarm. 

(X2t + 1)i = r ∗ X1t + 1 − (1 − r) ∗ pbest 

4. For each iteration (t) up to the maximum number of 

iterations:  

a. Update the three position vectors (X1, X2, and X3) of 

each particle based on the equations (3), (4), and (5) 

provided. 

(X1t + 1)i = ((X1t + 1)i ∗ (~(flub + flag41b))) + ub

∗ Flaub + 1b.∗ F1a1b 

c. Update the particle velocities and positions using equations 

(1) and (2) provided, considering the pbest  and gbest 
positions.  

Output: 

Optimal solution found by the algorithm. 

Algorithm 2 MVPSO 

 

Figure 2 MVPSO Architecture 
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Each particle's location and speed define its trajectory across 

the search region. Each particle's fitness is calculated using 

the problem's objective function. The method then sets each 

particle's pbest position to its present location and the gbest 
position to the particle's position relative to the rest of the 

swarm. After this initialization phase, the main iteration loop 

starts, and at each iteration, the algorithm modifies the 

position vectors of each particle using the equations from 

previous iterations (equations 6, 7, and 8). Particles' methods 

of searching and capitalizing on the best places identified so 

far are outlined by these equations. The MVPSO algorithm 

has been represented at figure 2. 

3.3. Received Signal Strength Indication 

The path-loss prediction process begins when reference 

samples have been gathered. To begin, N points will be used 

for making forecasts. The closest reference point is then 

determined for each forecast point. Path-loss estimated using 

reference data such as the distance between a reference 

location and an A wireless sensor point or the Received 

Signal Strength Indicator (RSSI). This equation estimates the 

path-loss at each given forecast pointn: 

PLn[dB] = p0k
− 10nlog10 (

dpn

dok

) ------ (9) 

In equation 9 the circles representing predictions are white, 

whereas the circles representing references are dark. The 

closest reference point is indicated by the number under the 

prediction point in the set of numbers shown before the circle. 

The suggested technique has the potential benefit of allowing 

the user to choose own number of prediction points. Despite 

being able to fill as many prediction points as feasible, this 

research employs the same amount of the prediction samples 

to provide a level playing field with current systems. The new 

model drastically saves the time spent collecting samples by 

cutting down on the number of samples needed. Path-loss at 

the reference point is highly correlated with path-losses at the 

prediction spots since the two are physically near to one 

another. 

Wireless Fidelity signal attenuation is very variable and 

susceptible to interference in the densely packed display hall 

of a science and technology museum. The acquisition 

terminal's signal strength is not constant, even when it is 

collecting data from the same A wireless sensor point from 

the same location. That is to say, the range of possible 

variations in signal intensity is quite narrow. In order to 

mitigate the impact of random fluctuations on the final 

computed result, this research employs a technique that 

averages the results of many acquisitions and measurements. 

However, in practice, even if many a wireless sensor points 

are gathered from the same location, fluctuations will have 

distinct amplitude changes. The RSSI algorithm has been 

represented at algorithm 3. 

Input: 

● Reference samples: a set of N reference points with 

associated path-loss values and corresponding coordinates 

(dpn, PLn) for n = 1 to N. 

● Forecast points: a set of M forecast points with 

corresponding coordinates dok for k = 1 to M. 

Algorithm Overview: 

1. Initialize an empty list to store the predicted path-loss 

values for each forecast point: PLpredicted = [] 

2. For each forecast point k from 1 to M: 

a. Calculate the distance between the forecast point and all 

reference points:  

PLn[dB] = p0k
 

b. Determine the closest reference point to the forecast point 

based on the minimum distance calculated in the previous 

step. 

PLn[dB] = p0k
− 10nlog10 (

dpn

dok

) 

c. Estimate the path-loss at the forecast point using the 

distance between the forecast point and the closest 

reference point: PL_predicted_kPLn[dB] = p0k
− 10n 

where dpn  is the distance between the closest reference 

point and the forecast point 

Output: 

Predicted path-loss values for each forecast point (PLpredicted) 

based on the reference data. 

Algorithm 3 Received Signal Strength Indication 

3.4. Routing Algorithm 

The CH will be selected by the threshold during the startup 

phase and will announce them as the CH across the network. 

The remaining nodes will join the group with the strongest 

signal. To facilitate the transmission of data from each CH in 

its own frame, the corresponding CH will use a mechanism. 

The radio component consumes unnecessary energy while 

communicating with other nodes or base stations. 

How far away a CH node is from the Base Station (BS) is the 

primary factor in how much power it requires. If the distance 

is higher than dc, the multipath fading model bεmpd4 is used 

to describe the loss of transmission power, whereas otherwise 

the free space model bεfsd2 is used. The fs andmp notations 

stand for the amplifier power per bit processed in the free-

space and multipath models, respectively. The following 

equation 10 used to represent the energy lost during the 

LEACH protocol: 
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ET(b, d) = {bEelec + bεfsd2, > 𝑑𝑐bEelec + bεmpd4, d > 𝑑𝑐  

        ----- (10) 

The distance crossing (dc), the total Energy Dissipation (ED), 

the number of bits (b), and the number of meters (d) are all 

variables in this equation. The Threshold-sensitive Energy 

Efficient sensor Network-Hierarchical Clustering (TEEN-HC) 

algorithm has been represented at algorithm 4. In equation 

(11) power loss in electrical components per bit due to 

variations in digital coding, modulation, and filtering; exactly 

how long it takes for data to travel from one place to another. 

ET−elec(b) = bEelec   ------- (11) 

Input: 

● b: Number of bits of data to be transmitted. 

● d: Distance between the CH node and the BS. 

● dc: Crossover distance. 

● Eelec: Energy dissipation per bit in electronic components. 

● bεfs: Amplifier power per bit processed in the free-space 

model. 

● bεmp: Amplifier power per bit processed in the multipath 

fading model. 

Algorithm Overview: 

1. If d is greater than dc: a. Calculate the energy dissipation 

using the multipath fading model: ET(b, d) = {bEelec +
bεfsd2, > 𝑑𝑐bEelec + bεmpd4, d > 𝑑𝑐 

2. If d is less than or equal to dc: a. Calculate the energy 

dissipation using the free space model: ET−elec(b) =
bEelec 

3. Return the total energy dissipation ET 

Output: 

ET: Total energy dissipation by the transmitter. 

Algorithm 4 TEEN-HC 

3.5. QOSEN (QoS Optimization for SENsors) 

Weighted Fair Queuing (WFQ) is a technique often employed 

in QoS-enabled sensor networks. WFQ is a scheduling 

technique that uses weighted flows to distribute network 

resources equitably. The WFQ algorithm prioritizes traffic 

based on how much bandwidth it needs to complete a given 

task. The following formula is used by the method to allocate 

bandwidth fairly to a given flow in equation 12: 

Fairshare = (
Weightofflow

SumofWeightsofallFlows
) ∗ TotalBandwith -- (12) 

The weight of a flow indicates its relative relevance or 

priority in the network; the overall weight given to all flows 

in the network is shown by the sum of weights; and the total 

bandwidth shows the entire available bandwidth in the 

network. 

Theft algorithm prioritizes the highest-weighted flows while 

still allowing the lowest-weighted flows access to the 

network's capacity. The sensor network now provides fairness 

and QoS guarantees to the weighted distribution of 

bandwidth. Algorithm 5 shows QOSEN algorithm. 

Input: 

● Weights: List of weights assigned to each flow in the 

network. 

● total_bandwidth : Total available bandwidth in the 

network. 

Algorithm Overview: 

1. Calculate the sum of weights of all flows: sum_weights = 

sum(weights) 

2. Initialize an empty list fair_shares to store the fair shares 

of bandwidth. 

3. For each flow in the network:  

a. Calculate the fair share using the formula: fair_share  = 

(weight / sum_weights) * total_bandwidth 

b. Append the fair_share to the fair_shares list. 

Return the fair_shares list. 

Output: 

fair_shares : List of fair shares of bandwidth allocated to each 

flow. 

Algorithm 5 QOSEN 

4. RESULTS AND DISCUSSION 

In this research compare the suggested strategy to THWSN 

[29] and load aware [30] in the NS-2 simulation setting. 

Parameters like as energy consumption, throughput, average 

delay, packet delivery ratio, number of nodes, and so on are 

used to quantify the performance of the recommended 

solution in an NS-2 simulation setup. The Simulation 

Parameters value table has been represented at table 2. 

The suggested paradigm for optimizing QoS in energy-

efficient WSNs stands out because of its all-encompassing 

approach. The model provides a detailed look at important 

parts of WSN design by analyzing deployment factors 

including node density, location, and coverage optimization, 

and by carefully looking at localization methods, including 

range-based and range-free approaches. The study ensures a 

fair assessment of trade-offs between energy economy and 

QoS optimization capabilities by integrating QoS parameters 
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into routing protocols and doing comparison evaluations with 

current protocols like LEACH. 

The proposed model takes a multi-pronged approach to 

optimize QoS for energy-efficient WSNs, leading to superior 

outcomes. The paper examines and contrasts several 

localization strategies, focusing on range-based and range-free 

approaches, by carefully evaluating deployment and 

localization difficulties. Investigated in this study are the 

effects on quality of service and energy savings of various 

deployment options, such as increasing the density of nodes, 

improving their coverage, and optimizing research placement. 

Optimizing the network as a whole, the model also 

incorporates stability, throughput, and latency critical quality 

of service into routing algorithm design. 

Table 2 Simulation Parameters 

Parameters Value 

Simulation Time 900(s) 

Number of Nodes 0 to 52 

Data Rate 1Mbps 

Routing Protocol TEEN-HC 

Bandwidth 2 Mb 

Simulation Area 1300 x 2250 m 

Transmission Range 250m 

Threshold 100dbm 

MAC 802.11 

Power monitor threshold 120dbm 

4.1. Throughput 

Throughput= 
Number of Packet Size

Arrival Time duration∗Successful average Packet size

     --------- (13) 

Table 3 compares the three techniques' performance based on 

experimental data, showing throughput levels for THWSN, 

Load_Aware, and Localization and Deployment 

Considerations (LDC). There is a positive association 

between packet size and data transmission efficiency, because 

all three techniques show a proportional gain in throughput as 

the packet size rises. It is worth mentioning that the 

Load_Aware method consistently achieves better throughput 

optimization results than THWSN and LDC, regardless of the 

size of the packet. The results show that, for example, with a 

200-packet size, THWSN gets a throughput of 0.700, while 

Load_Aware gets 0.870 and LDC gets 0.95. The importance 

of load-aware techniques in improving the overall throughput 

of Wireless Sensor Networks is shown by the fact that this 

trend remains consistent across different packet sizes. 

Equation 13 represents the throughput formula. The findings 

highlight the need of optimization of quality of service for 

energy-efficient WSNs taking load-awareness and 

localization-deployment into account. 

Table 3 Throughput Comparison Table 

 Throughput Levels 

Packet 

Size THWSN Load_Aware 

LDC 

50 0.180 0.220 0.25 

100 0.360 0.440 0.50 

150 0.530 0.650 0.70 

200 0.700 0.870 0.95 

250 0.880 1.090 1.20 

Figure 3 shows the throughput of a routing system. Message 

transmission accuracy has been greatly improved using LDC. 

Throughput is compared, showing that LDC is superior to 

Load aware. Throughput levels are shown along the Y axis, 

while time is shown along the X axis. 

 
Figure 3 Throughput Comparison Chart 

4.2. Time Delay 

Time Delay= 
NumberofSensornodes

energyconsumptionforsendingpacketsatatimesxforwardingtimeinms
 

           ------ (14) 

To better understand the temporal efficiency of the wireless 

sensor network topologies, table 4 displays the end-to-end 
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delay results for various node counts under three alternative 

strategies: THWSN, Load_Aware, and LDC. A regular 

pattern shows how various tactics affect communication 

latency as the number of nodes grows. The Load_Aware 

method effectively minimizes the time required for data 

transmission inside the network, as seen by consistently 

reduced end-to-end delay values compared to THWSN and 

LDC across all node counts. At 100 nodes, for example, 

THWSN and LDC both show somewhat longer delays of 

0.685, but Load_Aware manages an end-to-end latency of 

0.650. This pattern remains consistent regardless of the 

number of nodes, highlighting how effective Load_Aware is 

in maximizing end-to-end latency. Equation-14 represents the 

time delay formula. 

Table 4 Time Delay Comparison Table 

 Time (End to End Delay) 

 

Number of Nodes THWSN Load_Aware LDC 

10 0.070 0.070 0.065 

20 0.140 0.135 0.130 

40 0.270 0.275 0.260 

60 0.410 0.415 0.390 

80 0.545 0.550 0.520 

100 0.685 0.685 0.650 

In Figure 4, shows a comparison of delays for various cluster 

values. A system's or network's cluster value, shown on the x-

axis, is a parameter or variable that establishes the total 

number of clusters. In a network design, the cluster value 

controls how nodes are divided into clusters. The chart 

displays the delay values on the y-axis. 

 

Figure 4 Delay Comparison Chart 

4.3. Packet Delivery Ratio (PDR) 

PDR= 
Number of Packets Receive

Total Packets
∗ 100  ------- (15) 

Table 5 Packet Delivery Ratio Comparison Table 

 Packet Delivery Ratio 

Number of packets THWSN Load_Aware LDC 

50 95 95 96 

100 98 97 98 

150 98 98 99 

200 99 99 99 

250 99 99 99.2 

If you want to know how reliable data transmission is in 

wireless sensor network topologies, look at table 5. It shows 

the results of the packet delivery ratio for different packet 

counts under three different techniques: THWSN, 

Load_Aware, and LDC. Load_Aware continually displays the 

same or slightly better packet delivery ratios as THWSN and 

LDC, and it maintains a high degree of successful data 

delivery across all packet volumes. With a performance of 

99.2% at 250 packets, Load_Aware surpasses THWSN and 

LDC, both of which achieve 99% packet delivery rates. This 

trend remains consistent across different packet volumes, 

demonstrating that Load_Aware is successful in optimizing 

packet delivery. The packet delivery ratio calculated using 

Equation 15. In order to improve the performance and service 

quality of wireless sensor networks, the findings highlight the 

significance of load-awareness in ensuring more dependable 

packet delivery. 

 

Figure 5 Packet Delivery Ratio Comparison 

Figure 5 shows the ratio of packet delivery over time. The 

delivery ratio, shown on the y-axis, is the proportion of 
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packets that make it from sending node to receiving node in a 

network. 

4.4. Communication Overhead 

Table 6 Communication Overhead Comparison Table 

 Communication Overhead 

Number of Nodes THWSN Load_Aware LDC 

10 80 85 75 

20 160 150 145 

40 320 300 285 

60 450 450 420 

80 630 600 550 

100 800 750 720 

For varied node counts and three distinct techniques 

(THWSN, Load_Aware, and LDC), table 6 displays the 

results of the communication overhead as a function of bytes. 

Suggest ways to improve the wireless sensor network setups' 

data exchange efficiency. Load_Aware consistently 

demonstrates superior performance, exhibiting lower 

communication overhead values compared to both THWSN 

and LDC across all node counts. For instance, at 100 nodes, 

Load_Aware achieves a communication overhead of 720 

bytes, outperforming THWSN (800 bytes) and LDC (750 

bytes). This pattern persists across different node counts: at 40 

nodes, Load_Aware has an overhead of 285 bytes, while 

THWSN and LDC register higher values of 320 and 300 

bytes, respectively. 

 

Figure 6 Communication Overhead Comparison 

A network's communication overhead compared over time is 

seen in Figure 6. The x-axis shows the passage of time over a 

certain observational or experimental interval. Nodes in a 

network are able to communicate with one another up to a 

certain distance, which is shown on the y-axis as 

communication range. 

4.5. Energy 

Energy= 
NumberofSensornodes

Energyconsumptionforsendingpacketsatatimes
x 100    (16) 

Table 7 Energy Comparison Table 

 Energy Level in Joules 

Number of Nodes THWSN Load_Aware LDC 

10 85 80 70 

20 165 155 140 

40 330 310 280 

60 490 460 430 

80 650 620 570 

100 810 770 715 

With different numbers of nodes, table 7 shows the outcomes 

of three alternative strategies—THWSN, Load_Aware, and 

LDC—for wireless sensor network configurations, helping to 

better understand the patterns of energy usage. In joules, the 

outcomes are shown. Load_Aware consistently uses less 

power than THWSN and LDC, regardless of the number of 

nodes in the network. So, at 100 nodes, Load_Aware has a 

higher energy level than both THWSN (810 joules) and LDC 

(770 joules), as seen in equation 16. Load_Aware effectively 

reduces power consumption, since this pattern is true 

irrespective of the number of nodes. At 40 nodes, THWSN 

measures 330 joules and LDC 310 joules, while Load_Aware 

measures just 280 joules. In order to extend the operational 

lifetime of resource-constrained wireless sensor networks, this 

research results emphasize the significance of load-awareness 

in lowering power usage. 

 
Figure 7 Energy Consumption Comparison 
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As shown in Figure 7, a comparison of network energy usage 

seen graphically. 

5. CONCLUSION 

This research brought attention to the significance of 

deployment and localization in improving the service quality 

of energy-efficient Wireless Sensor Networks (WSNs). The 

research contrasted range-based versus range-free methods of 

localization. The research also looked at how different 

deployment tactics, such improving coverage and optimizing 

node placement and density, affected quality of service and 

energy efficiency. Data routing algorithms for low-power 

WSNs optimized service by considering network lifespan, 

latency, and dependability. This research tested LEACH, 

SEP, and SPIN, three routing protocols, to see which one 

would provide the best balance of energy savings and service 

quality. In order to enhance QoS while decreasing power 

consumption assessed data aggregation, adaptive duty 

cycling, and energy-aware routing. This study pertains to 

energy-efficient WSNs and covers topics such as localization 

strategies, deployment issues, and routing protocols. 

Academics and professionals aiming to enhance service 

quality find the findings useful. This research designed and 

implemented reliable WSN installations across numerous 

domains using the results and suggestions. The goal of this 

study is to find a way for WSNs that can provide quality of 

service while yet being energy efficient. Improved routing 

protocols, localization, and scalability might pave the way for 

smart, application-specific, power-efficient WSNs. Future 

work on WSNs could focus on making more energy efficient 

and improving Quality of Service (QoS) so that are more 

widely used. 
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