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Abstract – Mobile Ad hoc networks (MANETs) represent 

dynamic, self-configuring network environments that provide 

flexible connectivity but are highly susceptible to security 

threats. Intrusion detection systems in MANETs need to 

continuously monitor network traffic for potential intrusions 

and anomalies. This constant monitoring can be energy-

intensive, requiring network nodes to process, analyze, and 

transmit data. Excessive energy consumption by IDS can deplete 

node batteries quickly, leading to network disruptions. This 

research focuses on developing and evaluating an efficient IDS 

proposed for MANETs called Robust Dragonfly-Optimized 

Naive Bayes (RDO-ENB). RDO-ENB operates by fusing the 

simplicity and efficiency of the Enhanced Naive Bayes algorithm 

with the adaptive capabilities of robust Dragonfly Optimization. 

This synergy enables RDO-ENB to continuously and 

dynamically adjust its internal parameters, optimizing its 

intrusion detection performance in real time. It enhances 

accuracy and reduces false positives, making it proficient in 

identifying and mitigating intrusions within the complex and 

ever-evolving environment of MANETs. The dataset employed 

for evaluation is NSL-KDD, a widely used dataset for intrusion 

detection. The results of the IDS implementation demonstrate its 

proficiency in accurately identifying and mitigating intrusions 

while minimizing false positives and conserving valuable energy 

resources. 

Index Terms – Dragonfly, Naive Bayes, Intrusion, MANET, 

Classification, Chaos. 

1. INTRODUCTION 

The dynamic network topology is a hallmark of Mobile Ad 

Hoc Networks (MANETs), distinguishing them from 

traditional wired or fixed infrastructure networks. In 

MANETs, nodes are in a constant state of motion, frequently 

joining or departing from the network at their discretion [1]. 

This dynamic behavior is governed by sophisticated 

algorithms that enable nodes to adapt autonomously to the 

ever-changing network landscape. Without the constraints of 

static infrastructure, MANETs are highly versatile and ideal 

for applications requiring rapid deployment and flexibility. In 

MANETs, the network topology continuously evolves, guided 

by these advanced algorithms. When nodes enter or exit the 

network or change their positions, the network topology 

adjusts accordingly [2]. This dynamic nature allows MANETs 

to thrive in scenarios where traditional networks struggle, 

such as military operations, disaster recovery, and 

collaborative data sharing in mobile or ad hoc settings. 

Despite node movements' unpredictability, MANETs ensure 

uninterrupted data packet delivery, making them invaluable in 

dynamic communication environments. This dynamic 

network topology remains a core characteristic, reflecting 

MANETs' adaptability and resilience in scenarios where 

connectivity must be maintained regardless of changes in 

node locations [3]. 

Intrusion Detection Systems (IDS) are pivotal in 

contemporary cybersecurity strategies [4]. They act as vigilant 

sentinels, tirelessly monitoring computer systems and 

networks for any signs of unauthorized access, malicious 

activities, and potential security threats [5]. The core function 

of IDS is to identify and alert to these threats in real time. IDS 

generates alerts when suspicious activities are detected, 

enabling security teams to investigate and respond promptly, 

reducing potential damage. Despite their crucial role, IDS 

face challenges, such as the potential for generating false 

positives, which require careful tuning. Nevertheless, IDS are 

continually evolving to adapt to the ever-changing landscape 
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of cybersecurity, ensuring the integrity and availability of 

digital assets [6], [7]. 

Intrusion Detection Systems (IDS) in MANETs are the 

frontline defense against various security threats. MANETs 

are dynamic, infrastructure-less networks where nodes 

communicate directly, making them vulnerable to data 

interception, routing attacks, and malicious nodes [8]. IDS in 

MANETs are specialized security mechanisms that promptly 

detect and respond to these threats. These systems 

continuously monitor network traffic, examining data packets, 

communication patterns, and node behaviors for deviations 

from regular operation [9], [10]. When suspicious activities or 

intrusion attempts are identified, IDS triggers alarms or 

initiates protective measures. The unique challenges of 

MANETs, such as node mobility, limited resources, and 

rapidly changing topologies, demand tailored intrusion 

detection solutions [11]. 

1.1. Problem Statement 

Energy efficiency is paramount in IDS deployed in MANETs. 

MANETs often consist of battery-powered mobile devices 

with limited energy resources. These devices play a pivotal 

role in forming the network infrastructure, and their efficient 

operation is essential for the network's sustainability. The 

challenge revolves around designing IDS solutions 

prioritizing energy conservation without compromising the 

network's security. This involves the development of adaptive 

monitoring and detection strategies that can save power by 

intelligently managing the energy-intensive tasks associated 

with intrusion detection. Striking this balance between 

maintaining adequate security and prolonging the lifespan of 

battery-powered nodes is a critical research problem, 

necessitating innovative techniques and algorithms to 

optimize power consumption in MANET-based IDS. 

1.2. Motivation for Problem Statement 

The motivation for addressing energy efficiency in IDS within 

MANETs is twofold and compelling. MANETs often operate 

in scenarios with limited or no access to stable power sources, 

such as disaster response or military deployments. Mobile 

devices with finite battery resources are vital for network 

operation in these contexts. Extending the longevity of these 

devices is mission-critical. The growing complexity of 

network traffic and security threats demands real-time 

analysis, which strains the limited resources of these mobile 

devices. The motivation is to develop innovative techniques 

and algorithms that enable IDS in MANETs to function 

effectively within these energy constraints, thus enhancing the 

network's sustainability and resilience in critical scenarios. 

1.3. Research Objective 

The primary research objective is to design, develop, and 

evaluate an energy-efficient IDS tailored for MANETs. This 

research aims to create a robust IDS with minimal energy 

consumption while sustaining effective security measures. By 

incorporating a Dragonfly-Optimized Naive Bayes approach, 

the research seeks to intelligently adapt IDS monitoring and 

detection strategies to save power and maximize the 

operational lifespan of battery-powered devices within 

MANETs. The central motivation for this research is the 

necessity to enhance the sustainability and resilience of 

MANETs, which are frequently deployed in resource-

constrained scenarios, including disaster response and 

military operations. The research objective is to contribute a 

novel, energy-efficient IDS solution, aligning security with 

the imperative to prolong the lifespan of critical mobile 

devices, thereby bolstering the network's performance in 

mission-critical contexts. 

1.4. Organization of the Paper 

The paper follows a structured organization, beginning with 

the introduction providing context. A thorough literature 

review follows, establishing the background. The core of the 

paper, Section 3, introduces the "Robust Dragonfly-Optimized 

Enhanced Naive Bayes Classifier." Section 4 details the 

dataset used, specifically the NSK-KDD Dataset. 

Performance metrics are discussed in Section 5. Sections 6 

presents results and engages in a detailed discussion. Finally, 

Section 7 offers concluding remarks, summarizing findings 

and potential implications. This organized framework ensures 

a logical progression, guiding readers through the research 

process from introduction to conclusion. 

2. LITERATURE REVIEW 

The current section provides an overview of recent state-of-

the-art literature related to IDS. It highlights a common issue 

encountered in these works: poor performance. The review 

focuses on studies and advancements in IDS that have faced 

challenges in achieving satisfactory detection rates, false 

alarm rates, or other performance metrics. 

"Intelligent IDS" [12] introduces an intelligent IDS 

mechanism tailored for MANETs. It provides an innovative 

solution to enhance network security by actively monitoring 

and identifying potential intrusions. The mechanism includes 

a performance reliability evaluation aspect, ensuring the 

network functions efficiently and securely. "Flow-Based IDS" 

[13] presents a flow-based IDS designed for Vehicular Ad-

Hoc Networks (VANETs). It utilizes context-aware feature 

extraction techniques to identify and respond to security 

threats within vehicular communication. The system's ability 

to analyze communication patterns and extract context-aware 

features enhances its effectiveness in detecting intrusions and 

malicious activities. "Secure Routing with IDS" [14] proposes 

a secure IDS routing protocol specifically engineered for 

MANETs. The protocol is designed to fortify network 

security by actively identifying and mitigating intrusions. It 
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ensures that data routing within the network remains secure 

and potential threats are detected and addressed promptly.  

"IDS with Neuro-Fuzzy Networks" [15] introduces an 

advanced IDS that leverages Exponential Henry Gas 

Solubility Optimization-based Deep Neuro Fuzzy Networks 

within MANETs. The utilization of this cutting-edge 

technology enables more accurate and efficient threat 

detection. It employs optimization techniques and neural 

networks to adapt to the dynamic nature of MANETs and 

improve the network's overall security. "SDN-VANET 

Authentication with Neural Network" [16] introduces an 

innovative authentication approach. It utilizes Rider-Sea Lion 

optimized neural networks for IDS, strengthening the security 

of vehicular communication and the overall VANET 

architecture. The neural network's optimization through 

Rider-Sea Lion techniques enhances its accuracy in 

identifying and responding to intrusions. "Optimized 

Probabilistic Neural Network" [17] presents a novel and 

optimized approach using probabilistic neural networks for 

IDS and categorization. The optimization of the network 

significantly improves its performance in accurately 

identifying and categorizing potential threats.  

"Network Security with Signaling Game" [18] introduces an 

innovative IDS game designed to enhance security in 

vehicular networks. It employs a signalling game-based 

approach, where network entities engage in strategic 

interactions to detect and respond to potential intrusions. By 

treating network security as a game, this approach provides a 

dynamic and adaptive method for identifying and mitigating 

intrusions. "IDS Framework for Healthcare WSNs" [19] 

presents an efficient IDS framework tailored for healthcare 

Wireless Sensor Networks (WSNs). The primary focus is 

mitigating two critical security threats: blackhole and sinkhole 

attacks. These attacks pose significant risks to healthcare data 

integrity and patient safety. The framework provides 

advanced IDS mechanisms that actively monitor and respond 

to suspicious activities. "Transformer Neural Network" [20] 

introduces TNN-IDS, a cutting-edge IDS based on 

Transformer neural networks, designed explicitly for MQTT-

enabled Internet of Things (IoT) networks. This system 

advances the security of IoT devices by providing 

sophisticated IDS capabilities. By leveraging the power of 

Transformer neural networks, it can effectively analyze 

complex and dynamic data patterns in IoT environments. 

"IDS in Clustered Vehicle Networks" [21] employs an 

innovative approach by utilizing invasive weed optimization 

in combination with deep wavelet neural networks to detect 

intrusions in clustered vehicle networks. Invasive weed 

optimization is used to optimize the neural network's 

parameters, enhancing its ability to identify intrusions. The 

deep wavelet neural network enables the analysis of complex 

data patterns within vehicle networks. "Machine Learning-

based IDS" [22] provides an in-depth analysis of IDS 

methodologies in MANETs, focusing on applying machine 

learning strategies. It offers insights into the effectiveness of 

various machine-learning approaches in enhancing network 

security. This analysis is instrumental in identifying the most 

suitable machine-learning strategies for IDS in dynamic and 

self-organizing MANETs. "IDSs for Wireless Mesh 

Networks" [23] delves into the design and analysis of IDSs 

tailored for wireless mesh networks. These systems are 

critical for securing wireless mesh networks and maintaining 

their integrity. It uses various IDS approaches and their 

effectiveness in protecting wireless mesh networks against 

unauthorized access and potential threats. 

2.1. Summary 

The section provides an overview of recent literature on 

Intrusion Detection Systems (IDS) with a focus on addressing 

the common issue of poor performance. Various innovative 

IDS mechanisms are discussed, each tailored to specific 

network environments such as MANETs, VANETs, and IoT 

networks. These mechanisms incorporate advanced 

technologies, including neuro-fuzzy networks and 

Transformer neural networks, to enhance the accuracy and 

efficiency of threat detection. The literature explores novel 

approaches such as game-based security in vehicular networks 

and IDS frameworks designed for healthcare WSNs. The 

above discussed state-of-the-art emphasizes the dynamic 

nature of IDS development and the importance of tailored 

solutions for diverse network architectures. 

2.2. Research Gap 

Several research gaps have been identified within the IDS 

domain from the above-discussed literature. Notable research 

gaps are discussed below: 

 Low Classification Accuracy: Numerous studies have 

reported challenges related to low classification accuracy 

in IDS, especially when dealing with novel attack types or 

sophisticated evasion techniques. This gap necessitates 

further investigation into developing more accurate and 

robust IDS algorithms that effectively differentiate 

between legitimate and malicious network activities. 

 Imbalanced Dataset Handling: Many IDS datasets are 

highly imbalanced, with a significantly larger proportion 

of normal network traffic samples than attack instances. 

This imbalance often leads to biased results and limits the 

overall effectiveness of IDS solutions.  

 Adversarial Machine Learning: The rise of adversarial 

machine learning techniques poses a severe challenge to 

IDS. Researchers should explore methods to enhance the 

resilience of IDS against adversarial attacks and ensure the 

reliability of intrusion detection systems in the face of 

sophisticated adversaries. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2024/224435                 Volume 11, Issue 1, January – February (2024) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       49 

     

RESEARCH ARTICLE 

These research gaps underscore the need for ongoing 

investigation and innovation in IDS to address current 

limitations and adapt to the evolving cybersecurity landscape. 

3. ROBUST DRAGONFLY-OPTIMIZED ENHANCED 

NAIVE BAYES CLASSIFIER 

3.1. Enhanced Naive Bayes Classifier 

The Enhanced Naive Bayes Classifier is an advanced version 

of the traditional algorithm incorporating Taylor series 

expansions or approximations. This enhancement allows it to 

capture more complex relationships and deviations from 

standard parametric probability distributions, making it 

particularly well-suited for datasets with intricate, non-

parametric structures. The Enhanced Naive Bayes Classifier 

can provide a flexible and accurate modelling approach by 

selecting an appropriate reference point and degree for the 

Taylor polynomial. It leverages the Taylor series to create 

polynomial approximations of conditional probabilities, 

thereby better representing the underlying data distribution 

and improving its predictive capabilities. 

3.1.1. Probability Distribution 

In enhancing the Naive Bayes algorithm using the Taylor 

series method, the first step involves precisely defining the 

probability distributions requiring approximation. These 

probability distributions are integral to the Naive Bayes 

classifier's operation. This research aims to approximate the 

conditional probabilities 𝑃(𝑋|𝑌), where 𝑋 signifies a feature, 

and 𝑌 represents a class label. The research aims to express 

𝑃(𝑋|𝑌) as a function of feature 𝑋 and class 𝑌. In the Naive 

Bayes algorithm, these conditional probabilities are pivotal 

for estimating the likelihood of observing a specific feature 

given a particular class. 

𝑃(𝑋|𝑌) 

Where 𝑃(𝑋|𝑌)  is the conditional probability of feature 𝑋 

occurring given the class 𝑌. 

The standard approach in Naive Bayes often assumes 

parametric probability distributions, such as Gaussian, 

Bernoulli, or Multinomial, to model these conditional 

probabilities. In this enhanced approach, this research intends 

to leverage the Taylor series expansion to provide a 

polynomial approximation for 𝑃(𝑋|𝑌). This will allow for the 

incorporation of more complex, non-parametric distributions 

and potentially capture intricate relationships within the data. 

3.1.2. Taylor Series Expansion 

The Taylor series expansion is a technique in mathematics for 

approximating functions by writing them as a sequence of 

polynomials. In the context of enhancing the Naive Bayes 

algorithm, the Taylor series expansion will be employed to 

approximate conditional probabilities, particularly 𝑃(𝑋|𝑌), 

using polynomial representations. Eq.(1) expresses the Taylor 

series expansion of a function 𝑓(𝑥) concerning a fixed point. 

𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2

+
𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯. 

(1) 

where 𝑓(𝑎)  represents the function that aims to approximate, 

𝑎  is the reference point, 𝑓′(𝑎)  is the first derivative of the 

function at 𝑎, 𝑓′′(𝑎) is the second derivative, and so on. 

ENB selects a reference point 𝑎  to represent a particular 

characteristic or parameter related to the conditional 

probability 𝑃(𝑋|𝑌) . The choice of this reference point 

depends on the specific probability distribution and class label 

under consideration. For instance, in a Gaussian distribution, 

𝑎  could be the mean (𝜇)  of feature 𝑋  within class 𝑌 . The 

Taylor series expansion allows us to express 𝑃(𝑋|𝑌)  as a 

polynomial approximation around the reference point 𝑎. This 

mathematical method can potentially capture complex, non-

parametric relationships within the data and enhance the 

expressiveness of the Naive Bayes model. Algorithm 1 

provides the pseudocode of Taylor Series Expansion. 

1. for each class Y 

2. for each feature X 

3. chosen_characteristic := choose_characteristic(Y, X); 

4. reference_point_a := 

calculate_reference_point(chosen_characteristic); 

5. derivatives := calculate_derivatives(Y, X); 

6. taylor_series_polynomial=construct_taylor_polynomial(d

erivatives, reference_point_a); 

7. train_naive_bayes_model();  

8. approximate_probability := 

use_taylor_polynomial(taylor_series_polynomial, X); 

9. enhanced_probability_estimations := 

incorporate_into_naive_bayes(approximate_probability); 

10. end 

11. end 

Algorithm 1 Taylor Series Expansion 

3.1.3. Reference Point Selection 

In enhancing the Naive Bayes algorithm using the Taylor 

series method, selecting a suitable reference point 𝑎 is a 

crucial step. This reference point will be the center around 

which we approximate conditional probabilities 𝑃(𝑋|𝑌) using 

Taylor series expansions. Mathematically, 𝑎  is the chosen 

reference point, and its selection depends on the specific 

probability distribution and class label under consideration. It 
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aligns with the core assumption of Gaussian distributions, 

which place the mean as the central location. Eq.(2) expresses 

the same for a Gaussian distribution. 

𝑃(𝑋|𝑌) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

(𝑃 − 𝜇)2

2𝜎2
) (2) 

Where 𝜇 represents the mean, and 𝜎 is the standard deviation. 

Selecting the reference point (𝑎) is essential because it sets 

the center of the Taylor series expansion. This enables us to 

approximate 𝑃(𝑋 ∣ 𝑌)  as a polynomial with 𝑎  as its center, 

allowing us to capture the underlying distribution's behavior 

around this point. The choice of  𝑎  should align with the 

specific distribution assumptions and properties of the 

conditional probability ENB aims to approximate within the 

Naive Bayes framework. Algorithm 2 provides the 

pseudocode of Reference Point Selection. 

1. for each class Y: 

2. for each feature X: 

3. stribution_type := determine_distribution_type(Y, X) 

4. if distribution_type is Gaussian: 

5. a := calculate_mean(Y, X) 

6. else: 

7. parameter (θ) for P(X|Y). 

8. a := select_a_based_on_distribution(Y, X, 

distribution_type) 

9. if uncertain: 

10. a := calculate_a_data_driven(Y, X) 

11. refine_a_with_model_evaluation(Y, X, a) 

12. a := incorporate_domain_knowledge(Y, X, a) 

Algorithm 2 Reference Point Selection 

3.1.4. Calculate Derivatives 

Calculating derivatives is fundamental in enhancing the Naive 

Bayes algorithm using the Taylor series method. The specific 

derivatives to be calculated depend on the probability 

distribution we are dealing with, as different distributions 

have distinct probability density functions. In the case of a 

Gaussian distribution, this research needs to compute the first, 

second, and potentially higher-order derivatives. The 

Gaussian probability density function for 𝑃(𝑋 ∣ 𝑌)  using 

Eq.(3). 

𝑃( 𝑋 ∣ 𝑌 ) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑋 − 𝜇)2

2𝜎2
)  (3) 

Where 𝜇 represents the mean, and 𝜎 is the standard deviation. 

First Derivative 

Eq.(4) is applied to calculate the first derivative (i.e., (𝑓′(𝑎))) 

where differentiates 𝑃( 𝑋 ∣ 𝑌 )  and 𝑋,  evaluating at the 

reference point 𝑎. 

𝑓′(𝑎) =
𝑑

𝑑𝑋
𝑃( 𝑋 ∣ 𝑌 )|

𝑋=𝑎
 (4) 

Second Derivative 

Eq.(5) is applied to calculate the second derivative (i.e., 

(𝑓′′(𝑎)) ) by taking the first derivative concerning 𝑋  and 

evaluating it at 𝑎: 

𝑓′′(𝑎) =
𝑑2

𝑑𝑋2
𝑃( 𝑋 ∣ 𝑌 )|

𝑋=𝑎

 (5) 

Higher-Order Derivatives 

Higher-order derivatives may also be necessary depending on 

the chosen degree of the Taylor series expansion. 

The three derivatives mentioned above are essential for the 

polynomial approximation of  𝑃( 𝑋 ∣ 𝑌 )  with the Taylor 

series framework, allowing to capture the local behavior of 

the conditional probability distribution around the reference 

point (𝑎) . The precision of these derivative calculations 

influences the accuracy of the approximation. 

3.1.5. Taylor Series Approximation 

This step is significant in representing the conditional 

probabilities in a manner that captures more complex 

relationships and deviations from the standard parametric 

distributions. 

When a function 𝑓(𝑥) is expanded in the Taylor series for a 

fixed point 𝑎 then Eq.(6) is applied. 

𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2

+
𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ 

(6) 

ENB uses this expansion to approximate 𝑃(𝑋 ∣ 𝑌)  as a 

polynomial around the reference point 𝑎, expressed as Eq.(7). 

𝑃(𝑋|𝑌) ≈ 𝑃(𝑎|𝑌) +
𝑑

𝑑𝑥
𝑃(𝑎|𝑌)(𝑋 − 𝑎)

+
1

2!

𝑑2

𝑑𝑥2
𝑃(𝑎|𝑌)(𝑋 − 𝑎)2 + ⋯ 

(7) 

𝑃(𝑋|𝑌) is approximated as a sum of terms, with each term 

representing a derivative evaluated at the reference point 𝑎 

multiplied by a power of (𝑋 − 𝑎) . This polynomial 

approximation allows the expression of conditional 

probabilities more flexibly and non-parametrically. It captures 

the local behavior of the probability distribution around 𝑎 , 
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enabling it to account for more intricate relationships and 

distributions that simple parametric assumptions may not 

adequately model.  

3.1.6. Model Selection 

The selection of an appropriate degree for the Taylor 

polynomial in enhancing the Naive Bayes algorithm is a 

critical step in balancing the trade-off between the model's 

complexity and its ability to accurately capture the underlying 

conditional probability distributions. The choice of the 

polynomial degree influences the quality of the approximation 

and the computational resources required for computation. 

The Taylor polynomial degree determines the number of 

terms included in the polynomial approximation of 𝑃(𝑋 ∣ 𝑌). 

A higher degree incorporates more terms and offers a more 

intricate representation of the distribution, potentially 

capturing finer details. However, this comes at the cost of 

increased computational complexity and the risk of 

overfitting, where the model may become excessively tailored 

to the training data, leading to poor generalization. 

The choice of the Taylor polynomial degree should consider 

the problem's specific characteristics and the data's nature. It 

is often determined through experimentation and validation 

on a validation dataset. Cross-validation techniques can also 

help assess the model's performance across different degrees. 

The mathematical expression for the Taylor polynomial 

approximation is expressed in Eq.(8). 

𝑃(𝑋|𝑌) ≈ 𝑃(𝑎|𝑌) +
𝑑

𝑑𝑥
𝑃(𝑎|𝑌)(𝑋 − 𝑎)

+
1

2!

𝑑2

𝑑𝑥2
𝑃(𝑎|𝑌)(𝑋 − 𝑎)2 + ⋯ 

(8) 

The polynomial degree determines how many terms, such as 

the second and third derivatives, are included in the 

approximation. The pseudocode of the model selection in 

ERB is provided in Algorithm 3. 

1. for each class Y: 

2. for each feature X: 

3. distribution_type := determine_distribution_type(Y, X) 

4. polynomial_degrees_range := [1, 2, 3, 4, ...]  # Define a 

reasonable range 

5. if validation_dataset_unavailable: 

6. training_data, validation_data := 

split_training_data(dataset) 

7. else: 

8. training_data := dataset  

9. best_degree := 0 

10. best_performance := 0 

11. for degree_d in polynomial_degrees_range: 

12. taylor_polynomial := 

construct_taylor_polynomial(degree_d) 

13. train_naive_bayes_model_with_polynomial(Y, X, 

taylor_polynomial) 

14. performance := evaluate_model_performance(Y, X, 

taylor_polynomial, validation_data) 

15. record_performance(degree_d, performance) 

16. if performance > best_performance: 

17. best_degree := degree_d 

18. best_performance := performance 

19. if trade_off_present: 

20. final_degree := make_final_decision(best_degree, 

best_performance) 

21. else: 

22. final_degree := best_degree 

Algorithm 3 Model Selection 

3.2. Robust Dragonfly Optimization 

By nature, Bio-inspired Optimization has the ability to solve 

the complex real world problems [24]–[26]. Robust Dragonfly 

Optimization (RDO) is a nature-inspired optimization 

algorithm- based on dragonflies' swarming behavior. It's used 

to solve complex optimization problems. RDO is an enhanced 

version of the Dragonfly Algorithm [27], incorporating chaos 

theory principles to improve performance. Here's an overview 

of how RDO works: 

1. Initialization: Start by initializing a population of 

dragonflies with random positions and velocities. Each 

dragonfly represents a potential solution to the 

optimization problem. 

2. Objective Function: Define the objective function that 

you want to optimize. This function represents the 

problem you're trying to solve. 

3. Chaos Initialization: Introduce Chaos to the system by 

applying chaos theory principles. This Chaos can be 

introduced by using a chaotic map or a chaotic equation 

to perturb the positions and velocities of the dragonflies. 

4. Movement and Swarming: Dragonflies move through the 

search space by adjusting their positions and velocities. 

Dragonflies in a swarm may communicate with one 

another and work together to fly toward the most 

significant answer thus far. 
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5. Fitness Evaluation: After each step, the dragonflies' 

fitness is calculated using the objective function. 

Dragonflies that move closer to the optimal solution will 

have higher fitness values. 

6. Update Best Solution: Keep track of the best solution 

found so far. This solution is typically the one with the 

highest fitness value. 

7. Chaos-based Update: The chaos-based element of this 

optimization comes into play during the movement and 

interaction process. Chaos can help introduce randomness 

and exploration, preventing the optimization process 

from getting stuck in local optima. 

8. Termination: At least one convergence condition must be 

fulfilled before the optimization stops. Optimizing a 

system is the optimal solution discovered throughout the 

process. 

RDO is designed to enhance the exploration capabilities of 

the basic DFO algorithm. The chaotic elements can introduce 

more randomness, helping to escape local optima and 

potentially find better solutions in complex search spaces. 

3.2.1. Initialization 

In Chaos-based Dragonfly Optimization, the initialization 

process is crucial to set up the initial population of 

dragonflies. These dragonflies represent potential solutions to 

the optimization problem. Each dragonfly is characterized by 

its position, which corresponds to a candidate solution, and its 

velocity, affecting how it explores the search space. 

Mathematically, this step involves defining the initial position 

and velocity vectors for a population of dragonflies. 

Let 𝑇 be the total number of dragonflies in the population. 

The position of the 𝑠 − 𝑡ℎ  dragonfly can be represented as 𝑝𝑠 

in a 𝑌 −dimensional search space, where 𝑌 is the problem's 

dimensionality. The velocity of the 𝑠-th dragonfly is denoted 

as 𝑟𝑠 . Initialization typically involves assigning random values 

to these vectors within the problem-specific search space 

bounds. Eq.(9) is applied for initializing the position, and 

Eq.(10) is applied for the velocity. 

𝑝𝑠 = (𝑝𝑠1, 𝑝𝑠2, … . . , 𝑝𝑠𝑌), 𝑠 = 1,2, … 𝑇 (9) 

𝑟𝑠 = (𝑟𝑠1, 𝑟𝑠2, … . . , 𝑟𝑠𝑌), 𝑠 = 1,2, … 𝑇 (10) 

These initial positions and velocities lay the foundation for 

the dragonflies to start their search and optimization process 

in the chaotic environment, a hallmark of Chaos-based 

Dragonfly Optimization. 

3.2.2. Objective Function 

In RDO, after the initialization of the dragonfly population, 

the next critical step is to define the objective function that the 

algorithm seeks to optimize. This objective function is 

denoted as 𝑔(𝑝), represents the problem that needs a solution. 

Mathematically, it quantifies how well a candidate solution 𝑝 

performs in the optimization problem. The objective function 

is highly problem-specific and varies based on the nature of 

the optimization task. The goal is to find the optimal set of 

parameters or variables 𝑝 = (𝑝1, 𝑝2, … . , 𝑝𝑌) that results in the 

minimum or maximum value of the objective function, and it 

can be expressed in Eq.(11) and Eq.(12). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑔(𝑝) (11) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑔(𝑝) (12) 

The RDO aims to iteratively explore and refine the dragonfly 

population in search of the combination of variables that 

optimizes the objective function, providing a solution to the 

underlying problem. This optimization process will 

continuously evaluate the objective function throughout the 

algorithm's execution. 

3.2.3. Chaos Initialization 

RDO incorporates chaos theory principles into the 

optimization process to introduce unpredictability and 

exploration. This is done through chaos initialization, which 

perturbs the positions and velocities of the dragonflies using a 

chaotic map or equation. A logistic map (commonly used as a 

chaotic map) is defined in Eq.(13). 

𝑝𝑡+1 = 𝑏. 𝑝𝑡 . (1 − 𝑝𝑡) (13) 

Where 𝑝𝑡  is the current value, 𝑝𝑡+1  is the next value, and 𝑏 is 

the control parameter determining the chaotic behaviour. The 

Logistic Map is just one example, and various chaotic maps 

or equations can be employed depending on the specific 

requirements of the optimization problem. 

In RDO, these chaotic maps are used to perturb the positions 

and velocities of dragonflies. This perturbation introduces 

randomness into the system, preventing the algorithm from 

getting stuck in local optima and promoting search space 

exploration. The chaotic influence can be incorporated using 

Eq.(14) as follows for both position (𝑝𝑠)  and velocity (𝑟𝑠) 

vectors of the 𝑠-th dragonfly: 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛:   𝑝𝑠 = 𝑝𝑠 + 𝛿. 𝑢𝑠 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦:   𝑟𝑠 = 𝑟𝑠 + 𝛿. 𝑢𝑠 
(14) 

Where 𝛿  and 𝛾 are scaling factors, and 𝑢𝑠  represents the 

chaotic perturbation generated from the chaotic map or 

equation. 

Chaos initialization plays a crucial role in diversifying the 

dragonfly population's search space exploration, enhancing 

the algorithm's chances of finding global optima and robust 
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solutions. Algorithm 4 provides the overall pseudocode of the 

initialization process via Chaos. 

1. def initialize_dragonflies(): 

2. for each dragonfly s: 

3. p_s := generate_random_position() 

4. r_s := assign_initial_velocity() 

5. def initialize_best_solution(): 

6. p_best := set_random_initial_solution() 

7. fitness_p_best := calculate_fitness(p_best) 

8. for iteration in range(1, max_iterations + 1): 

9. chaotic_perturbation_vectors := 

apply_chaos_initialization() 

10. update_positions_and_velocities(chaotic_perturbation_ve

ctors) 

11. evaluate_fitness() 

12. update_best_solution() 

13. optimization result. 

14. return p_best, fitness_p_best 

Algorithm 4 Chaos Initialization 

3.2.4. Movement and Swarming 

In RDO, the movement and swarming phase is where the 

dragonflies dynamically adjust their positions and velocities 

to explore the search space and find optimal solutions. This 

step is crucial for the convergence of the optimization 

process. Dragonflies move intending to approach the best 

solution found so far and, when appropriate, interact with one 

another to exchange information. The movement of a 

dragonfly can be described mathematically in Eq.(15). 

𝑁𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛: 𝑝𝑠 = 𝑝𝑠 + 𝑟𝑠 (15) 

Where 𝑝𝑠  represents the new position of the 𝑠-th dragonfly 

and 𝑟𝑠  is the velocity vector of that dragonfly. This equation 

indicates that each dragonfly moves in the direction specified 

by its velocity. 

Dragonflies can also be influenced by the best solution found 

so far. Based on this information, they may adjust their 

velocity to approach the optimal solution. This can be 

represented as Eq.(16). 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝑟𝑠 = 𝑟𝑠 + 𝜃. (𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑠) (16) 

Where 𝜃 is a learning or step size parameter, and 𝑝𝑏𝑒𝑠𝑡  is the 

position of the currently best solution. 

The swarming aspect involves interactions among dragonflies 

to share information or coordinate movements. This can be 

implemented through social interactions, such as attraction or 

repulsion forces, depending on the optimization problem's 

characteristics. The movement and swarming step enable 

dragonflies to adapt their positions and velocities to explore 

the search space efficiently, guided by both their movements 

and the global information represented by the best solution 

found thus far. Algorithm 5 provides the overall pseudocode 

of Movement and Swarming. 

1. for each dragonfly s: 

2. update_position(s) 

3. adjust_velocity_towards_best_solution(s) 

4. incorporate_social_interactions(s) 

5. swarming step. 

6. update_population() 

Algorithm 5 Movement and Swarming 

The Movement and Swarming step is a core component of 

RDO, allowing dragonflies to adapt their positions and 

velocities based on their movements and the global 

information represented by the best solution. It helps the 

dragonflies explore the search space efficiently and converge 

toward optimal solutions. 

3.2.5. Fitness Evaluation 

The fitness evaluation step in RDO is a critical process after 

each movement and swarming iteration. During this phase, 

the quality of each dragonfly's solution is assessed based on 

the objective function that the algorithm aims to optimize. 

The objective function, denoted as 𝑔(𝑝), quantifies how well 

a candidate solution 𝑝  performs in the given optimization 

problem. The fitness of the 𝑠-th dragonfly (i.e., 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑠) is 

determined by evaluating its solution using the objective 

function expressed in Eq.(17). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑠 = 𝑔(𝑝𝑠) (17) 

The objective function value measures how close a 

dragonfly's current position is to the optimal solution. 

Dragonflies that move closer to the optimal solution will yield 

higher fitness values. Therefore, in the fitness evaluation step, 

each dragonfly's position is assessed for its suitability as a 

potential solution to the optimization problem. The fitness 

values serve as the basis for the algorithm to identify and 

track the best solution (𝑃𝑏𝑒𝑠𝑡) found so far. Dragonflies with 

higher fitness values contribute to the refinement of the global 

solution, and this information guides the optimization process 

toward convergence. The fitness evaluation step plays a 

crucial role in the decision-making process of RDO, 
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determining the quality of candidate solutions and directing 

the algorithm towards better solutions throughout its 

execution. Algorithm 6 provides the overall pseudocode of 

Fitness Evaluation. 

1. initialize_empty_fitness_array() 

2. for each dragonfly s: 

3. position_s := extract_dragonfly_position(s) 

4. fitness_s := evaluate_fitness(position_s) 

5. append_fitness_value(fitness_s) 

6. return Fitness 

Algorithm 6 Fitness Evaluation 

3.2.6. Update Best Solution 

In the RDO algorithm, updating the best solution represents a 

fundamental aspect of the optimization strategy. This step 

involves continuously tracking and maintaining the best 

solution found throughout the optimization process. The best 

solution is typically the one with the highest fitness value, 

corresponding to the optimal solution discovered so far. The 

best solution (𝑃𝑏𝑒𝑠𝑡) it is updated based on the fitness values 

of the dragonflies in the population. It can be represented as 

Eq.(18). 

If 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑠 > 𝑔(𝑃𝑏𝑒𝑠𝑡), then set 𝑃𝑏𝑒𝑠𝑡 = 𝑝𝑠 (18) 

Where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑠  represents the fitness value of the 𝑠 -th 

dragonfly, and 𝑔(𝑃𝑏𝑒𝑠𝑡)  denotes the fitness value of the 

current best solution.  

Eq.(18) checks whether a dragonfly's solution's fitness is 

higher than the current best solution's. If it is, the best solution 

is updated to the 𝑠-th dragonfly's position, capturing the most 

promising solution found during the optimization process. 

Updating the best solution ensures that the RDO converges 

toward the optimal solution in the search space. As the 

dragonflies explore and adapt, the best solution evolves, 

guiding the algorithm toward better solutions and ultimately 

contributing to the successful optimization of the objective 

function. Algorithm 7 provides the overall pseudocode of 

Update Best Solution. 

1. P_best := P_1 

2. g_best := g_1 

3. for each dragonfly s from 2 to T: 

4. if g_s > g_best: 

5. g_best := g_s 

6. P_best := extract_dragonfly_position(s) 

7. return P_best 

Algorithm 7 Update Best Solution 

3.2.7. Chaos-Based Update 

The chaos-based update introduces randomness by perturbing 

the positions and velocities of dragonflies. This perturbation 

is accomplished using chaotic maps or equations, typically 

applied after the regular movement and swarming steps. 

Chaos helps inject a level of disorder into the system, 

enabling the dragonflies to escape local optima and explore 

uncharted regions of the search space. The chaos-based 

update can be represented mathematically as Eq.(19) 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛: 𝑝𝑠 = 𝑝𝑠 + 𝛿. 𝑢𝑠 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝑟𝑠 = 𝑟𝑠 + 𝛾. 𝑢𝑠 
(19) 

Where 𝛿  and 𝛾  are scaling factors, and 𝑢𝑠  is the chaotic 

perturbation generated from a chosen chaotic map or 

equation. Algorithm 8 provides the overall pseudocode of 

Chaos-based Update. 

1. initialize_scaling_factors() 

2. for each dragonfly s: 

3. p_s := retrieve_position(s) 

4. r_s := retrieve_velocity(s) 

5. u_s := retrieve_chaotic_perturbation(s) 

6. update_position_and_velocity(s, p_s + δ * u_s, r_s + γ * 

u_s) 

7. return Updated_Population(P), Updated_Velocities(R) 

Algorithm 8 Chaos-Based Update 

Algorithm 8 introduces chaos-based perturbations to the 

positions and velocities of dragonflies within the population. 

The chaotic perturbations are generated using chaotic maps or 

equations, and their impact is controlled by the scaling factors 

𝛽 and 𝛾. The chaos-based update introduces randomness into 

the system, enhancing exploration and preventing the 

algorithm from being trapped in local optima. 

3.2.8. Termination 

The termination step serves as the final stage of the 

optimization process, determining when and how the 

algorithm concludes its search for the optimal solution. The 

termination criteria might vary, but usually, the optimization 

process continues for a preset amount of iterations or until a 

convergence requirement is fulfilled.  

Mathematically, the termination condition can be expressed as 

Eq.(20) and Eq.(21). The termination is attained, and either 

Eq.(20) or Eq.(21) is achieved. 
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𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  (20) 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎  (21) 

Where "𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛" represents the current iteration number, 

" 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 " is the maximum allowable number of 

iterations, and "𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎" is a boolean condition 

indicating whether the algorithm has met specific 

convergence criteria. The algorithm proceeds as long as the 

termination condition evaluates to true. Algorithm 9 provides 

the overall pseudocode of the Termination part. 

1. iteration := 1 

2. while iteration <= max_iterations and not 

convergence_criterion_met: 

3. Chaos-based Update). 

4. initialize() 

5. move() 

6. evaluate_fitness() 

7. update_best_solution() 

8. chaos_based_update() 

9. iteration += 1 

10. if iteration <= max_iterations and not 

convergence_criterion_met: 

11. else: 

12. break 

13. return P_best 

Algorithm 9 Termination 

This algorithm controls the optimization process by 

monitoring the number of iterations and the satisfaction of the 

convergence criterion. It iteratively performs the optimization 

steps until the maximum number of iterations is reached or 

the convergence criterion is met. The best solution, 𝑃𝑏𝑒𝑠𝑡 , is 

returned as the output, representing the algorithm's optimal 

solution within the defined constraints. 

3.3. Fusion of RDO and ENB 

The fusion of Robust Dragonfly Optimization (RDO) and 

Enhanced Naive Bayes (ENB) offers a powerful synergy 

between bio-inspired optimization and probabilistic 

classification. By leveraging RDO's feature selection and 

parameter optimization capabilities, ENB's performance is 

significantly enhanced. RDO efficiently identifies the most 

relevant features and fine-tunes ENB's parameters, resulting 

in a robust and accurate classification model. This fusion 

ensures ENB operates optimally on training and real-world 

data. It is a valuable tool for various applications, from data 

mining to machine learning tasks, where precise classification 

is crucial. Algorithm 10 provides the overall pseudocode of 

RDO-ENB. 

1. initialize_population() 

2. for each dragonfly: 

3. evaluate_fitness(dragonfly) 

4. for iteration in range(1, max_iterations + 1) or until 

convergence: 

5. update_positions_with_RDO() 

6. for each dragonfly: 

7. evaluate_fitness(dragonfly) 

8. best_position := select_best_position() 

9. trained_ENB_classifier := 

train_ENB_classifier(best_position) 

10. if validation_dataset_available: 

11. validate_ENB_classifier(trained_ENB_classifier, 

validation_dataset) 

12. optimized_ENB_classifier := trained_ENB_classifier 

Algorithm 10 RDO-ENB 

In RDO-ENB, the RDO optimizes the feature selection 

process and parameter tuning for ENB, ensuring the classifier 

is fine-tuned for the specific dataset. This approach can lead 

to improved classification accuracy and generalization 

capabilities. 

4. ABOUT DATASET 

The NSK-KDD Dataset is a pivotal resource in network 

security, renowned for its extensive data collection. This 

dataset comprises a staggering 5,209,458 records. It plays a 

central role in developing, testing, and assessing intrusion 

detection systems (IDS) and other network security solutions. 

However, network traffic data often suffers from issues 

related to data duplication, which can compromise the 

precision and reliability of analysis. Researchers focus on the 

1,152,281 unique records within the NSK-KDD dataset to 

address this.  

These unique entries are meticulously curated to ensure they 

capture distinct network activities without redundancy. These 

records are foundational in developing IDS and are vital for 

training machine learning models to differentiate between 

regular network traffic and various network attacks. Network 

security experts and researchers rely heavily on these unique 

records for their precision and reliability in developing robust 

intrusion detection systems. Table 1 lists the Dataset’s Feature 

Information. This research study considers the distinct records 

and aims to accurately identify actual instances of intrusion. 
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5. PERFORMANCE METRICS 

5.1. Precision 

Precision assesses the relevance of retrieved items. It 

calculates the ratio of relevant items retrieved to the total 

number of retrieved items, helping to evaluate how well a 

system finds pertinent content. Eq.(22) provides the 

computation of precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
 

(22) 

5.2. Recall 

Recall measures the ability of the system to correctly identify 

intrusions or attacks out of all actual intrusions. It quantifies 

the proportion of true intrusions detected by the IDS over the 

total actual intrusions that occurred. High recall in IDS is 

crucial as it ensures that a significant portion of actual attacks 

is detected, minimizing the chances of false negatives (i.e., 

missed intrusions). Eq.(23) provides the computation of 

recall. 

𝑅𝑒𝑐𝑎𝑙𝑙

=
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑑 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠
 

(23

) 

5.3. Classification Accuracy 

Classification Accuracy is the proportion of correctly detected 

intrusions out of the total number of intrusions in a dataset. It 

quantifies how often the model's predictions match the actual 

class labels. Eq.(24) provides the computation of 

classification accuracy. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠
 

(24) 

5.4. F-Measure 

In IDS, the F-measure balances precision and recall, ensuring 

the system correctly identifies intrusions while minimizing 

false alarms. It is calculated as the harmonic mean of 

precision and recall. Eq.(25) provides the computation of F-

Measure. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (25) 

5.5. Matthews Correlation Coefficient  

In IDS, the Matthews Correlation Coefficient (MCC) is used 

to assess the overall classification quality, accounting for both 

true and false positives and negatives. It considers the balance 

between intrusions and non-intrusions, making it a valuable 

metric for evaluating the effectiveness of an IDS. Eq.(26) 

provides the computation of MCC. 

𝑀𝐶𝐶

=
𝑇𝑃 × 𝑇𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁))(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

× 100 

(26) 

5.6. Fowlkes-Mallows Index 

In IDS, the Fowlkes-Mallows Index (FMI) can be viewed as a 

metric that evaluates the similarity between the clusters 

generated by the IDS and the actual distribution of intrusions. 

It provides insights into how well the IDS identifies patterns 

and groups intrusions together. Eq.(27) provides the 

computation of FMI. 

𝐹𝑀𝐼 =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝐹𝑃 + 𝐹𝑁)
 × 100 (27) 

6. RESULTS AND DISCUSSION 

6.1. Precision and Recall Analysis 

Figure 1 serves as a visual representation of the precision and 

recall metrics, which are pivotal for assessing IDS 

performance. The result values of Figure 1 are tabulated in 

Table 2. 

 

Figure 1 Precision and Recall Analysis 

LSO-FFNN optimizes a feed-forward neural network using 

LSO. This algorithm dynamically adjusts the neural network's 

weights and biases to minimize the classification error, 

ultimately improving its ability to distinguish between normal 

and malicious network activities. LSO-FFNN achieved a 

Precision of 52.257% and a Recall of 49.247%, suggesting 

that it maintains a relatively balanced trade-off between 

precision and recall. 

ABC-DA-ANN integrates the ABC algorithm and the DA 

with an ANN. These optimization techniques adaptively 

update the neural network's parameters to improve its 

intrusion detection performance. ABC-DA-ANN achieved a 
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Precision of 60.955% and a Recall of 60.795%, indicating a 

well-balanced performance. This algorithm effectively 

classifies intrusions while maintaining a relatively low false 

positive rate. 

RDO-ENB combines the Dragonfly Optimization technique 

with a Naive Bayes classifier, enhancing the Naive Bayes 

model's performance in intrusion detection. The Dragonfly 

Optimization algorithm iteratively adapts the Naive Bayes 

classifier's parameters. RDO-ENB performed exceptionally 

well, with a Precision of 74.615% and a Recall of 77.198%. 

This indicates that the algorithm accurately classifies 

intrusions while maintaining high precision. It effectively 

captures a significant portion of actual intrusions, making it 

an attractive choice for intrusion detection applications where 

precision and recall are crucial. 

Table 2 Precision and Recall Values 

Classification Algorithms Precision Recall 

LSO-FFNN 52.257 49.247 

ABC-DA-ANN 60.955 60.795 

RDO-ENB 74.615 77.198 

These algorithms leverage different optimization techniques 

to fine-tune the parameters of their underlying machine-

learning models. The result values from Table 2 reflect their 

varying performance in terms of precision and recall. LSO-

FFNN exhibits a balanced performance with room for 

improvement. ABC-DA-ANN balances precision and recall, 

and RDO-ENB outperforms others by achieving high 

precision and recall. These algorithms contribute to intrusion 

detection by offering diverse approaches to enhancing the 

accuracy and efficiency of the systems. 

6.2. Fowlkes-Mallows Index and Matthews Correlation 

Coefficient Analysis 

Figure 2 offers a comprehensive view of the performance of 

various classification algorithms in intrusion detection. The 

FMI and MCC are key evaluation metrics to assess these 

algorithms' efficacy. Both metrics are crucial for measuring 

the algorithms' abilities to correctly classify intrusions while 

considering the balance between true and false positives. 

LSO-FFNN combines locust swarm optimization with a feed-

forward neural network to optimize the network's parameters 

for intrusion detection. The FMI and MCC values for LSO-

FFNN are represented in Table 3. The working mechanism 

involves iteratively adjusting the neural network's weights and 

biases through locust swarm optimization to minimize 

classification errors. These adjustments enhance the network's 

ability to distinguish between normal and malicious network 

activities. The results show that LSO-FFNN has achieved an 

FMI of 50.730% and an MCC of 3.527%. While it 

demonstrates moderate performance, there is room for 

improvement in MCC, which indicates the algorithm's 

potential for enhancing its ability to capture the true positive 

rate while minimizing false positives. 

ABC-DA-ANN integrates the ABC algorithm and the DA 

with an ANN. This fusion enhances the neural network's 

performance for intrusion detection. The FMI and MCC 

values for ABC-DA-ANN are provided in Table 3. The 

working mechanism involves adapting the neural network's 

parameters using ABC and DA to optimize its ability to 

classify intrusions. The results indicate that ABC-DA-ANN 

achieves an FMI of 60.875% and an MCC of 24.416%. These 

values signify a substantial improvement compared to LSO-

FFNN, indicating its potential to effectively capture true 

positives while maintaining a reasonable balance with false 

positives. 

 
Figure 2 FMI and MCC Analysis 

Table 3 Result Values of FMI and MCC 

Classification Algorithms FMI MCC 

LSO-FFNN 50.730 3.527 

ABC-DA-ANN 60.875 24.416 

RDO-ENB 75.896 50.625 

RDO-ENB combines the Dragonfly Optimization technique 

with a Naive Bayes classifier to improve intrusion detection. 

The FMI and MCC values for RDO-ENB are shown in Table 

3. The working mechanism involves iteratively adapting the 

parameters of the Naive Bayes model using the Dragonfly 

Optimization algorithm. This enhances the Naive Bayes 

classifier's performance for intrusion detection. The results 

demonstrate that RDO-ENB excels, achieving an FMI of 

75.896% and an MCC of 50.625%. These results signify its 

exceptional performance in effectively classifying intrusions 
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with high MCC, making it a strong contender for intrusion 

detection applications demanding high precision and recall. 

Figure 2 provides a detailed visual representation of the 

performance of these classification algorithms, utilizing the 

results from Table 3. Each algorithm contributes to the field 

of intrusion detection through its unique working mechanism, 

resulting in varying levels of FMI and MCC. While LSO-

FFNN exhibits moderate performance, ABC-DA-ANN shows 

a significant improvement, and RDO-ENB outperforms others 

by achieving high FMI and MCC values. These algorithms 

are pivotal in advancing the accuracy and efficiency of 

intrusion detection systems. 

6.3. Classification Accuracy and F-Measure Analysis 

 The visual representation in Figure 3 unfolds classification 

accuracy and F-Measure analysis for a diverse array of 

intrusion detection algorithms. LSO-FFNN combines locust 

swarm optimization with a feed-forward neural network to 

optimize parameters for intrusion detection. It iteratively 

adjusts the neural network's weights and biases to minimize 

classification errors, enhancing its ability to distinguish 

between normal and malicious activities. LSO-FFNN 

achieved a classification accuracy of 51.741% and an F-

measure of 50.707%. These results indicate moderate 

performance, with potential for improvement in accuracy and 

F-Measure. 

 
Figure 3 Classification Accuracy and F-Measure Analysis 

ABC-DA-ANN integrates the ABC and DA with an artificial 

neural network, optimizing parameters for intrusion detection. 

It adaptively updates the neural network's parameters using 

ABC and DA, enhancing intrusion detection. ABC-DA-ANN 

achieved a classification accuracy of 62.255% and an F-

Measure of 60.875%, representing a significant improvement 

compared to LSO-FFNN, with effective intrusion 

classification and balanced F-Measure. RDO-ENB combines 

the Dragonfly Optimization technique with a Naive Bayes 

classifier, enhancing intrusion detection. It iteratively adapts 

the parameters of the Naive Bayes model using the Dragonfly 

Optimization algorithm, leading to superior performance. 

RDO-ENB excels with a classification accuracy of 75.304% 

and an F-Measure of 75.885%, indicating exceptional 

accuracy and efficient intrusion classification with a high F-

Measure. Figure 3 visually represents the performance of 

these classification algorithms using the results from Table 4. 

Each algorithm contributes to the field of intrusion detection 

through its unique working mechanism, resulting in varying 

classification accuracy and F-measure levels. While LSO-

FFNN shows moderate performance, ABC-DA-ANN exhibits 

significant improvement, and RDO-ENB outperforms others 

with high classification accuracy and F-measure values. These 

algorithms play a crucial role in advancing the accuracy and 

efficiency of intrusion detection systems. 

Table 4 Result Values of FMI and MCC 

Classification 

Algorithms 

Classification 

Accuracy 
F-Measure 

LSO-FFNN 51.741 50.707 

ABC-DA-ANN 62.255 60.875 

RDO-ENB 75.304 75.885 

7. CONCLUSION 

The intricate nature of MANETs demands innovative 

solutions to address their unique security challenges. While 

vital, the constant monitoring required by IDS in MANETs 

can significantly strain network resources, particularly energy. 

The research introduced an energy-efficient IDS, Robust 

Dragonfly-Optimized Naive Bayes (RDO-ENB), combining 

the simplicity of the Enhanced Naive Bayes algorithm with 

the adaptive capabilities of robust Dragonfly Optimization. 

RDO-ENB optimizes intrusion detection accuracy and 

minimizes false positives, which is crucial for the dynamic 

MANET environment. The successful utilization of the NSL-

KDD dataset and the impressive results emphasize RDO-

ENB's potential to enhance security while conserving 

valuable energy resources. This research contributes to the 

resilience and sustainability of MANETs in the face of 

evolving security threats. The continuous adaptation of RDO-

ENB's parameters ensures its efficiency in real-time intrusion 

detection. 
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