
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 914

RESEARCH ARTICLE

A Load Balancing Aware Task Scheduling using

Hybrid Firefly Salp Swarm Algorithm in Cloud

Computing

Pankaj Jain

Department of Computer Science and Engineering, Banasthali Vidyapith, Niwai, India.

mail2pankajjain@gmail.com

Sanjay Kumar Sharma

Department of Computer Science and Engineering, Banasthali Vidyapith, Niwai, India.

ssanjay@banasthali.in

Received: 21 July 2023 / Revised: 13 November 2023 / Accepted: 30 November 2023 / Published: 30 December 2023

Abstract – Cloud computing is an evolutionary computational

model which provides on-demand scalable and flexible resources

by the pay-per-use concept. Due to the flexibility of cloud,

several organizations are setting up more data centers and

switching their businesses to the cloud technology. These

industries need a proper load balancing to ensure the efficient

resources utilization, which reduces resource wastage and helps

to optimize costs. Optimal resource allocation can be achieved

through efficient task scheduling and load-balancing. An

efficient scheduling with load-balancing allocates resources in a

balanced way and optimizes the quality of service (QoS)

parameters. Task migration is the best way to balance the load.

This paper hybridizes the Salp Swarm Algorithm (SSA) with the

Firefly Algorithm (FFA), named as Hybrid Firefly Salp Swarm

Algorithm (HFFSSA). This approach utilizes FFA's operators to

enhance the exploitation capability of SSA by functioning as a

local search. Further, a load balancing (LB) heuristic is proposed

and incorporated with HFFSSA, named as Load Balancing Salp

Swarm Algorithm (LBFFSSA). For verification, the presented

work is evaluated by two experimental series. First HFFSSA is

tested on global benchmark functions, where it shows its

superiority over other existing metaheuristic approaches such as

Firefly Algorithm (FFA), Grey Wolf Algorithm (GWO), Particle

Swarm Optimization (PSO), and Salp Swarm Algorithm (SSA).

In the second series, the LB-FFSSA is evaluated on real datasets

(Planet Lab and NASA) using CloudSim Simulator; again,

results outperform similar metaheuristics. The simulation results

show that LB-FFSSA significantly reduces makespan and

improves resource utilization. Furthermore, the proposed

algorithm minimizes the Load imbalance Factor (LIF) by

migrating the task from an over utilized virtual machine to an

underutilized one. It also shows improvement in waiting time

and throughput. Simulation results prove that proposed model

improves by an average up to 32.3%, LIF by 50.4%, throughput

by 42.1%, resource utilization by 40%, and waiting time by

50%.

Index Terms – Cloud Computing, Hybrid Task Scheduling,

Firefly (FFA), Salp Swarm Algorithm (SSA), Task Migration,

Load Balancing.

1. INTRODUCTION

Cloud Computing (CC) is becoming a reliable and trusted

computing technology that enhances the utilization of

virtualized resources and services for end users [1, 2]. It

provides software and hardware as computing resources. To

manage resource sharing in a heterogeneous

environment, Task Scheduling (TS) with efficient load

balancing plays a key role [3, 4]. TS is an NP-hard problem

[5] that needs to be optimized in CC. The primary goal of TS

is to allocate the resources to the user's task while optimizing

at least one Quality of Service (QoS) parameter [6], such as

cost, makespan, etc. This distribution of tasks on

heterogeneous resources must be done in a balanced way to

improve resource utilization. The assignment of tasks on a

resource is denoted load. The load balancing mechanism

transfers the excess load from an overloaded to an unloaded

resource. Zhou et al. [7] showed importance of load balancing

in task scheduling and presented a survey of various literature

that used metaheuristic for load balancing.

Several heuristic such as HEFT [8], MAX-MIN [9], Round

Robin [10] and metaheuristic approaches such as PSO[11],

SSA[12], GWO[13], of TS and load balancing exist in

literature [14-16]. Metaheuristics algorithms improve the

efficiency of heuristic algorithms [17].

In 2017, Mirjalili et al. [12] introduced a nature-inspired

meta-heuristic optimization approach named Salp Swarm

Algorithm (SSA). Author [18] also proved the efficacy of

SSA by optimizing the Extreme Learning Machine. Further,

Jain et al. [19, 20, 21] proved the efficiency of SSA in their

literature. Later, Abualigah et al. [22] reviewed SSA

thoroughly and showed its strengths and weaknesses. SSA has

only one controlling parameter and excellent potential to

explore the search space, leading to determining the feasible

region with the optimal solution. These are the reasons which

mailto:mail2pankajjain@gmail.com
mailto:ssanjay@banasthali.in

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 915

RESEARCH ARTICLE

make SSA suitable for task scheduling. Additionally, FFA

[23] has the extraordinary ability to exploit the feasible region

to determine the optimal solution. Therefore, hybridizing SSA

and FFA is more beneficial in finding the optimal solution.

Therefore, this work hybridizes FFA and SSA, called as

Hybrid Firefly Salp Swarm Algorithm, abbreviated as

HFFSSA. HFFSSA allocates tasks to Virtual Machines (VMs)

to optimize QoS parameters. Further, a heuristic technique

(LB) is proposed that reschedules the best-obtained solution

from HFFSSA to achieve load balancing called LB- FFSSA.

1.1. Problem Definition

In task scheduling, assigning tasks to the appropriate VMs

while maintaining promised QoS and SLA is always a big

challenge. On the other hand, an imbalanced distribution of

tasks on VMs may lead the SLA violation and performance

degradation. After task assignment, if some VMs are

overloaded and some are underloaded, a load-balancing

technique is needed to balance the load to achieve optimal

resource utilization. Due to the heterogeneous nature of tasks

and resources, efficient task scheduling with a balanced

distribution of tasks is still a crucial issue in cloud computing.

So, the objective of the paper is to propose a task scheduling

algorithm that optimizes makespan, resource utilization,

throughput, and waiting time and a load balancing heuristic

that minimizes load imbalance factor.

The significant contribution of the proposed work:

 This work proposes a hybrid metaheuristic HFFSSA for

task scheduling that optimizes makespan, resource

utilization, throughput, and waiting time.

 This proposed HFFSSA is combined with the proposed

load balancing (LB) heuristic, i.e., LB-FFSSA that

improves the load imbalance factor.

 The novelty of HFFSSA is tested on 13 benchmark

functions. Results are compared with existing

metaheuristics FFA, SSA, PSO, and GWO.

 LB-FFSSA is simulated on CloudSim, where workloads

are provided through real-world datasets from Planet Lab

[24] and NASA [25].

 LB-FFSSA is compared with other existing algorithms,

this work schedules tasks on a similar VM configuration,

which is used by Amazon EC2 [26].

The remaining of the paper is categorized as follows: Section

2 gives a literature review of existing approaches. Section 3

briefly describes the Salp Swarm Algorithm and Firefly

Algorithm. Section 4 represents QoS Metrics, and Section 5

proposes a Hybrid Firefly Salp Swarm Algorithm (HFFSSA)

and LB-FFSSA. In section 6, Performance Evaluation is done,

where the proposed work is evaluated with 13 benchmark

functions, and then the comparative analysis is done using

CloudSim and two real datasets. Finally, section 7 concludes

the work.

2. REVIEW OF PREVIOUS STUDIES

In cloud computing, task scheduling algorithms assign client

tasks to concerned resources under various scheduling

constraints such as deadline, cost, or profit. It causes

scheduling a complicated problem; thus, it falls in an NP-

Hard category [27]; therefore, heuristic or metaheuristic

algorithms are more suitable than traditional algorithms.

However, the solution produced by heuristic algorithms often

engages with the local optima, far from the global optimal

[28]. However, metaheuristic algorithms are the best approach

to overcome local optima [29, 30]. Furthermore, when the

scheduler assigns the task on Virtual Machines (VM), it must

consider the Quality of Service (QoS) parameters. QoS

parameters include makespan, response time, throughput,

cost, load imbalance, and deadline [31].Load balancing is also

an essential aspect of task scheduling, ensuring the even

distribution of tasks. The main objective of load balancing is

to decrease the imbalance in the system, which is achieved by

migrating tasks from the overutilized VM to the underutilized

VM. Scheduling on an overloaded VM may decrease the

overall performance of the CC [32].

Thanka, M. R. et al.[33] presented an improved Artificial Bee

Colony-based algorithm for QoS-aware scheduling and

security. They focused on security and QoS-aware parameters

such as makespan, load imbalance, task migration, and cost.

The tasks may be dependent or independent of each other and

are scheduled over VM. For evaluation purposes, they used

CloudSim but compared their work only with ABC. D.

Ramesh et al.[34] introduced a nature-inspired heuristic VM

load balancing (HFQ-LB) technique in which load balancing

has been achieved by fair queuing and VM migration.

Initially, tasks are assigned to VM, and the load is

continuously examined; VM is migrated to another

underloaded Host if needed. They use the CloudSim

Simulator tool for evaluation and further validate their work

regarding makespan and resource utilization. They compared

their work with various algorithms. In [35], the Author

presented a binary PSO algorithm for load-balanced tasks for

scheduling that minimizes cost and time complexity. The

objective function of this proposed work is to maximize the

difference in completion time among various VMs to identify

the underloaded and overloaded VMs. They optimize waiting

time, makespan, load imbalance, and resource utilization.

Further, the algorithm is evaluated using the CloudSim

simulator, and results show the superiority of proposed

algorithm.

Adhikari, M. et al.[36] proposed an algorithm of load

balancing for long-term processes called Load Balancing

Resource Clustering (LB-RC). In this approach, they

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 916

RESEARCH ARTICLE

identified the optimal clusters of resources and cluster centers

for fast convergence using a metaheuristic BAT algorithm.

They also proposed a dynamic task assignment policy to

attain minimum execution time and makespan within

limitations. Finally, they evaluate and compare their work

with the help of the CloudSim simulator. Alguliyev, R. M. et

al.[37] proposed an algorithm named αPSO-TBLB, which is a

task-based algorithm. This algorithm selects tasks from an

over utilized VM to an underutilized VM. This proposed work

minimizes the task transfer time and execution time. They

tested their work using jswarm and CloudSim. The result

shows that they equally distributed tasks among VM and

achieved optimal task scheduling.

Hanine, M., et al.[38] presented an improved simulated

annealing (SA) based algorithm for load balancing. This

approach is divided into two steps; in step 1, the approach

identifies the load threshold value for each to identify an

overloaded VM, and in step 2, the task is allocated to VM

using improved SA. The acceptance probability of SA is

modified In this work. The results produced by the CloudSim

simulation tool show that they could distribute tasks among

VM in fewer time intervals. Still, they compare their results

only with static approaches. Kruekaew B. et al. [39] proposed

a multi-objective scheduling algorithm (MOABCQ) that is

based on Artificial Bee Colony and Q-learning. This work

focused on optimizing load balancing and task scheduling.

They use multi-objective fitness functions consisting of cost,

makespan, and resource utilization. They also use First Come

First Serve (FCFS) and Longest Job First (LJF). Performance

evaluation of proposed work is done using CloudSim and

compared with existing balancing and scheduling techniques

such as FCFS, Max-Min, Q-Learning, MOCS, and MOPSO.

For this analysis, they use three datasets named Google Cloud

Jobs (GoCJ), Random, and Synthetic workload. The result

shows they improve makespan, cost, resource utilization, and

throughput.

Zhou, Z. et al. [40] proposed an MGGS algorithm in which

the Modified Genetic Algorithm is blended with Greedy

Strategy (GS). MGGS optimizes the task scheduling

procedure. This approach is capable of finding optimized

solutions in less iteration. For evaluation, MGGS was

compared with existing algorithms based on average response

time, total completion time, and total cost, and they found it

better. For this purpose, they used CloudSim Toolkit but did

not use any real dataset. Neelima P. et al. [41] presented a

load-balancing aware task scheduling algorithm using the

Adaptive Dragonfly Algorithm (ADA), a blend of dragonfly

and firefly algorithms. In this approach, they use a multi-

objective function to decide on scheduling. Finally, the

performance of the presented algorithm is assessed based on

distinct metrics, i.e., execution time and cost, using the

CloudSim simulator tool and compared with existing

algorithms. Still, they needed to evaluate their approach to

any benchmark function.

George et al.[42] proposed a model fractional IWSOA for

load balancing. Initially, they allocated tasks using round

robin algorithm. Then proposed work migrates tasks from

overloaded VMs to underloaded VMs. The work can be

improved by adopting other powerful optimization technique,

i.e., machine learning algorithms. Ramya et al. [43] proposed

HDWOA-LBM that is a load balancing mechanism that

hybridized dingo and whale optimization algorithm. It

effectively balanced the load and in additional improved

throughput, resource utilization, and reliability.

After analyzing the above literature, the work focuses on

improving the performance of LB-FFSSA with efficient

resource utilization and load balancing in task scheduling.

Therefore, the key objectives are: decreasing makespan, load

imbalance factor, and waiting time while at the same time

increasing resource utilization and throughput.

3. BACKGROUND

3.1. Salp Swarm Algorithm

As mentioned above, in 2017, Mirjalili proposed a nature-

inspired swarm-based algorithm called Salp Swarm

Algorithm (SSA). This algorithm is inspired by the natural

swarming behavior of Salp(s). The main aim of Salp(s) is to

obtain better and more effective locomotion; therefore, these

salps create a salp chain and relocate by applying

synchronized updates and foraging. Figure 1 represents the

Salp chain which contains two types of Salp, one Leader Salp,

which leads all the remaining Salp, and the second Follower

Salp, which follows the leader Salp. Leader Salp updates its

position to approach a food source. Meanwhile, the food

source also updates its position by obtaining a solution, so the

salp chain automatically moves toward the optimum solution.

Here a food source is the best-obtained solution. The leader

salp updates its position using equation 1

pos
1
𝑗 = {

FS𝑗+r1 ((up
𝑗

− low𝑗) 𝑟2+low𝑗) 𝑟3 ≥ 0.5

FS𝑗 − 𝑟1 ((up
𝑗

− low𝑗) 𝑟2+low𝑗) 𝑟3 < 0.5
} (1)

Here,

FSj = Food source, upj and lowj are Upper bound and Lower

bound, respectively, in the jth dimension

pos1
j
 = Position of Leader Salp in jth dimension

r2 and r3 are Random Numbers from 0 to 1 and r1 =

Controlling parameter used to balance exploitation and

exploration.

It is computed using equation 2:

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 917

RESEARCH ARTICLE

r1 = 2e−(
4m

maxiteration
)

2

 (2)

Here, m is current iteration and maxiteration is total number

of iterations.

The position of follower salp can be updated as given in

equation 3:

pos
i

j
=

1

2
(pos

i

j
+pos

i−1

j
) (3)

Where pos
i

j
 is the follower’s position in the jth dimension for i

>1

Algorithm 1 shows the standard SSA Algorithm.

1. Initialize the number of iterations = maxiteration, upper,

Population size

np, lower, it=1.

2. Initialize salp population SPx ∀ x =1: np

3. while (it < maxiteration)

4. Calculate the fitness function for each salp.

5. Assign best-fitted salp as a leader and remaining as

follower salp.

6. Assign the best-obtained solution to FS

7. Update r1 using equation 2.

8. for every salp SPx

9. if(x=1)

10. leader salp position updated using equation 1

11. else

12. follower salp position updated using equation 3

13. end of loop

14. Update the salp population using upper and lower

15. End while

16. Return FS

Algorithm 1 Salp Swarm Algorithm

Figure 1 The Salp Chain [21]

3.2. Firefly Algorithm (FFA)

FFA is a nature-inspired meta-heuristic algorithm proposed

by Xin-She Yang in 2009 that simulates the flashing manners

of fireflies. The FFA is motivated by flashing patterns and

behavior at night.

From introductory physics, it is apparent that intensity of light

is reciprocal proportion to square of distance, therefore

variation in attractiveness with the distance from a source a

can be defined by using equation 4:

β(r) = β0e−(γr2) (4)

Where β0 represents attractiveness at r = 0, γ represents light

absorption coefficient for a given medium.

If a firefly Xj is brighter than any other firefly Xi in the search

space, then the firefly Xi will move towards Xj using given

equation 5:

Xi
t+1 = Xi

t + β0e−(γrij
2)(Xj

t − Xi
t) + αtΕi

t (5)

Where rij denotes the distance between ith and jth fireflies

αt is a randomized parameter with 0 ≤ αt ≤ 1, which controls

the randomness and, Εi
t represents the vector of random

numerals drawn by the Gaussian function or uniform

function, or any other distribution function, and the 't'

Iteration number. αt is computed using equation 6:

αt = α0 δ−t (6)

Where α0 denotes the initial randomness scaling factor or

range, and δ is the essential cooling factor; 0 ≤ δ ≤ 1

Algorithm 2 shows the FFA Algorithm.

1. Initialize lower, upper, number of iterations =

maxiteration, population size np,it=1.

2. Initialize fireflies population SPx (x=1 to np).

3. Calculate the fitness value for every solution SPx called

using fit(SPx)

4. Determine the light absorption coefficient

5. while it<maxiteration

6. Calculate the fitness function of each firefly

7. for each SPi ∀ i =1: np

8. for each SPi ∀ j =1: np

9. if fit(SPi)>fit(SPj)

10. Move the ith firefly towards the jth firefly using equation 5

11. end if

12. Update attractiveness using equation 4

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 918

RESEARCH ARTICLE

13. End for

14. End for

15. Determine the best solution.

16. End while

17. return the best solution

Algorithm 2 Firefly Algorithm (FFA)

4. QUALITY OF SERVICE (QOS) METRICS

Let Ti denote a set of tasks, where i ∈ {1: n}, and a set of the

virtual machines as VMj, where j ∈ {1: m}. Here' n' and 'm'

are no. of tasks and no. of VMs, respectively. These tasks and

VMs are independent and heterogeneous.

4.1. Makespan (MS)

If the same task is scheduled on a different VM, execution

time (ET) may vary. The sum of the start time (ST) and ET

taken for any VM to run all the tasks is known as Finishing

Time (FT), and so as Maximum FT is referred to as

makespan. It is better to have a minimal makespan for better

load balancing. Further, if the execution time of ith task (Ti)on

a jth virtual machine (VMj) is ETij, then execution time can be

characterized by equation 7 as:

ETij =
leni

capVMj
+

leniinfile

BWVMj
 (7)

leni represents the length of taski, leniinfile denotes the input

file's length of the ith task, and capVMj and BWVMj denote the

capacity and Bandwidth of VMj, respectively.

The finishing time of ith task (Ti) on jth virtual machine VMj

can be calculated using equation 8 as:

FTij = STi + ETij (8)

The makespan can be defined as given in equation 9

MS = max (FTij) (9)

4.2. Resource Utilization (RU)

In scheduling, maximum resource utilization and minimum

makespan are two conflicting QoS parameters. They shared

an inverse relationship [44, 45]. Makespan is a consumer-

driven QoS parameter; however, resource utilization service

provider-driven parameter [46]. RU can be calculated by the

ratio of the total Execution Time and capacity of the VM. In

continuation of the above, RU of jth VM can be formulated

using equation 10 as below.

RUJ =
∑ ETij

n
i=1

MS
 (10)

Average RU can be calculated using equation 11

RUAVG =
∑ RUj

m
j=1

m
 (11)

4.3. Waiting Time

It can represent by the difference between finishing time and

execution time as given in equation 12.

WTi = FTi − ETi

 (12)

Where i ∈ {1, 2, 3….n}

4.4. Throughput

This parameter indicates the number of tasks finished per unit

of time. It is calculated using equation 13

Throughput =
No of the task finished Successfully

makespan
 (13)

4.5. Fitness function

In this work, Fitness Function is defined as given in equation

14:

fit = Minimize (MS) (14)

Here MS has been calculated by equation 9.

5. PROPOSED LB-FFSSA MODEL

Figure 2 represents the proposed model for task scheduling

and load balancing. First, a cloud user submits the task to

Cloud Service Provider (CSP).CSP allocates the cloud

resources, i.e., VMs to these tasks. This model schedules the

tasks on VMs using proposed HFFSSA and balances the load

in VMs using proposed Load balancing (LB) heuristics.

Description of each component of the proposed model is

given below:

5.1. User’s Task

In simulation-based assessment, it is vital to commit an

investigation using actual workload traces. Here, two real

datasets are used, Planet Lab and NASA Ames iPSC/860.

Planet Lab traces is furnished as a part of the CoMon project,

which is accessible from Beloglazov's GitHub repository

(https://github.com/beloglazov/planetlab-workload-traces). In

this, CPU utilization data is fetched from 1000+ VMs from

various heterogeneous servers located at 500 different places

around the globe.

It takes five minutes intervals for utilization measurements.

Based on CPU utilization, this data is divided into ten

categories. Each category represents a single-day workload,

and each trace file has 288 readings. Workload traces were

measured from March 2011 to April 2011. For the

experiments, one-day workload (20110303) traces are used.

For NASA Ames iPSC/860 hypercube, workload traces were

fetched from 128 iPSC/860 nodes between October 1995 and

December 1995. This workload consists of a mixture of

interactive and batch jobs. This setup is located at NASA

Ames Research Center.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 919

RESEARCH ARTICLE

Figure 2 Proposed LB-FFSSA Model

5.2. Cloud Resources

In Cloud Computing, computing resources provide from a

virtual infinity pool of resources. These computing resources

are known as Virtual Machines (VM), which consist of CPU

cores, RAM, network bandwidth, cost, and other essential

components. This work considers a single cloud data center

model similar to the one offered by Amazon EC2. This

datacenter consists of six heterogeneous VM types, listed in

table 1, and two heterogeneous hosts, with enough capacity to

serve all the VMs. These VM types belong to the general

purpose instance group of the US East region. Proposed work

assumes a set of virtual machines as VMj, where j ∈ {1: m}.

Table 1 VM Instance type based on Amazon EC2 [26]

VM

TYPE

Bandwidth

 (Mbps)

VCPU RAM(Gib) Price ($)

a1.xlarge 3,500 4 4 0.102

a1.metal 3,500 16 16 0.408

t4g.small 2,085 2 2 0.0168

t4g.large 2,780 2 8 0.16

t3.mediu

m

2085 2 4 0.03

t3.xlarge 2780 4 32 0.05

5.3. Hybrid Firefly Salp Swarm Algorithm (HFFSSA)

This province shows the hybridization of two metaheuristic

optimization approaches, SSA and FFA, and forms a new

optimization algorithm, HFFSSA. This new approach utilizes

the benefits of both SSA and FFA to map tasks with VMs in

efficient way. Algorithm 3 shows the steps of HFFSSA.

Firstly parameters are initialized in line 2, followed by

defining the fitness function using equation 14. Line 3 defines

fitness function using equation 14. This fitness function is

selects the solution having minimum makespan. In line 4, the

salp population is randomly initialized. After that, line 5

calculates fitness of each population. In line 6, the best

solution and best fitness are assigned to gbestsolution and

gbestfitness, respectively. From lines 7 -13, the solution is

updated using FFA (equation 5), but if condition in line 11 is

not satisfied, it is updated using SSA using equation 3(line

17). After updating the solution, amend it by lower and upper

(line 19). Then line 20 calculates the fitness value for the

solutions, and lines 21-23 update gbestfitness and

gbestsolution. This complete process is repeated till the

maxiteration. After the maxiteration, line 27 calls

load_balance function for the final solution. This

load_balance function equally distributes the load among

VMs. Equal distribution of load improves resource utilization

and minimize load imbalance factor.

Global best solution is the best position among all the salp. It

is assigned using line 22 in the propose HFFSSA. Local best

solution is the salp’s best position among all the iteration. It is

assigned using lines 11 &12.

Input: Tasks Ti, where i ∈ {1: n}

Output: Allocation of Ti on VMj, where j ∈ {1: m}.

1. Start

2. Initialize lower, upper, number of iterations maxiteration,

Population size np

3. Define fitness function (fit) using Equation 14

4. Initialize the salp population SPx ∀ x =1: np randomly

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 920

RESEARCH ARTICLE

5. Calculate the fitness of each solution //fit(SPx)

6. Initialize gbestsolution ⃪ solution of minimum fitness,

gbestfitness ⃪ minimum fitness value

7. while (it<maxiteration)

8. for each solution SPx(x=1 to np)

9. flag=0

10. for solutions SPi (i=1 to x)

11. if (fit(SPx)> fit(SPi))

12. Update SPx using equation 5

13. flag=1

14. end if

15. end for

16. if flag is zero

17. Update SPx using equation 3

18. end if

19. Amends the solution based on lower and upper

20. Calculate fit(SPx) using equation 14

21. if fit(SPx) < gbestfitness

22. Assign gbestsolution ⃪ SPx

23. Assign gbestfitness ⃪ fit(SPx)

24. end if

25. end for

26. end while

27. Call load_balance(gbestsolution) //Algorithm 4

28. return gbestsolution

29. End

Algorithm 3 HFFSSA

5.4. Load Balancing HFFSSA (LB-FFSSA)

In task scheduling, load balancing is a vital aspect affecting

the entire system's performance. It is a technique in which a

client's task is distributed among multiple servers to increase

resource utilization and decrease makespan and execution

time. A proper load balancing technique can (a) stop

overloaded and underloaded situations, (b) improve the VM's

efficiency (c) reduce makespan.

To identify load imbalances in Cloud Environment, compare

VM's Load (LoadVM) with the average load on all VMs

(AvgLoadVM). It is determined by calculating the difference

from the average load. The present load of ith VM is

calculated using equation 15, where LENtaskj
 is the length of

the jth task allotted to ith VM, PCVMi
 is the total processing

capacity of ith VM, and allot refers to the total allocated task

to ith VM.

LoadVM𝑖
=

∑ LENtask𝑗
Allot
j=1

PCVM𝑖

 (15)

Here, processing capacity of ith VM can be determined by

equation 16, where PEnum is the number of the processing

element allotted to the VM, PElen is the length of the

processing element in a million instructions per second

(MIPS), VMBandwidth is allocated Bandwidth of ith VM, and

VMRAM is allotted RAM of ith VM.

PCVM = PEnum * PElen * VMBandwidth * VMRAM (16)

The average load of VM can be calculated using equation 17.

‘m’ is the total no. of VM.

AvgLoad
VM

=
∑ LoadVMI

m
i=1

m
 (17)

Further Load imbalance factor (LIF) can be calculated by

using equation 18

 LIFVM =
∑ |AvgLoadVM−LoadVMI

|m
i=1

m
 (18)

Based on load, VMs are categorized into three parts : (a)

Overloaded – where VM has more load compared to Average

Load, (b) Balanced - where VM has equal load compared to

Average Load; and (c) Underloaded - where VM has less load

compare to Average Load. When unbalanced, the tasks are

migrated from the overloaded VM to the underloaded VM.

Algorithm 4 shows the load balancing heuristic.

load_balance (gbestsolution)

1. Start

2. for each VMj ∀ j =1: m

3. Determine the present load of VM (LoadVM𝑖
) using

equation 15

4. end for

5. Determine the average load (AvgLoad
VM

) using equation

17

6. for each VMj ∀ j =1: m

7. if (LoadVM𝑗.
<𝐴𝑣𝑔𝐿𝑜𝑎𝑑𝑉𝑀)

8. VMj is grouped into Underloaded

9. else if (Load
VM𝑗.

>𝐴𝑣𝑔𝐿𝑜𝑎𝑑𝑉𝑀)

10. VMj is grouped into Overloaded

11. else VM is grouped as Balanced

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 921

RESEARCH ARTICLE

12. end if

13. end if

14. end for

15. Arrange the Overloaded group in decreasing order and

the Underloaded in non-decreasing order

16. for each task in each overloaded VM, search for the best

suitable Underloaded VM according to capacity.

17. Update the underloaded and overloaded group

18. End

Algorithm 4 Load_balance Heuristic

6. PERFORMANCE EVALUATION

This work used two experimental series to evaluate the

presented work's quality in this part. In the first series, well-

established benchmark functions, and in the next series,

proposed work is tested using two real dataset workload

traces, Planet Lab and NASA Ames iPSC/860. Both the series

are compared with four metaheuristic techniques, namely

SSA [12], FFA [23], GWO [13], and PSO [47].

6.1. Experimental Setup

The proposed work is simulated on a laptop operating on

Intel® Core™ i5-7200U CPU @ 2.50GHz × 4 with 8 GB of

memory using the CloudSim [48] simulator tool. CloudSim is

a simulator that provides a virtualized environment for the

user to model, simulate and experiment with cloud

applications. It also supports on-demand provisioning.

6.2. Parameters Setting

The simulation environment consists of a data center with six

types of VM instances, as shown in table 1. For both

experimental series, population size and maximum iteration

consider as 50 and 1000, respectively. In both experiment

series, the total no of VMs are taken 25, 50, 75,100, 125, and

150. However, the number of tasks scheduled on VMs is 1052

and 5000 for Planet Lab and NASA, respectively. Each

reading is calculated by running the experiment 10

independent times, and their mean value is noted as final

result. Table 2 represents the parameters used in algorithms.

Table 2 Parameters Used in Algorithms

Algorithms Parameters

HFFSSA
r1 =2𝑒−(

4∗𝑚

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

2

 , r2 and r3 - Random Numbers from 0 to 1

β0 = 1; and γ is a light absorption coefficient for a given medium;

αt is a randomized parameter with 0 ≤ αt ≤ 1

α0 is the initial randomness,

𝛿 is the essential cooling factor(from 0.95 to 0.97).

SSA r2 and r3 are Random Numbers from 0 to 1

FFA β0 = 1; and γ is a light absorption coefficient for a given medium;

αt is a randomized parameter with 0 ≤ αt ≤ 1

α0 is the initial randomness .

𝛿 is the essential cooling factor(from 0.95 to 0.97).

GWO a=Random Numbers from 0 to 1

PSO Acceleration coefficients C1, C2 = 1.5

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 922

RESEARCH ARTICLE

6.3. Experiment Test Series 1: Benchmark function and

Evaluation

HFFSSA is analyzed and examined on 13 well-known

benchmark functions in table 3. Furthermore, HFFSSA is

compared with other famous metaheuristics, SSA, FFA, PSO,

and GWO. The results after comparison are listed in table 4,

which contains the worst, mean, and best deviation of fitness

value. The results show that HFFSSA obtains a better fitness

value than SSA, FA, GWO, and PSO for all functions except

f7. For f2,f3,f4,f5,f6, and f12 HFFSSA gives optimum results.

Table 3 Benchmark Functions

F
u

n
ct

io
n

N
am

e

F
u

n
ct

io
n

 N
o

Function Description Range

D
im

en
si

o
n

Global

Minimum

A
ck

le
y

f1
−𝑎𝑒𝑥𝑝 (−𝑏√

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1) − 𝑒𝑥𝑝 (

1

𝑑
∑ 𝑐𝑜𝑠𝑑

𝑖=1 (𝑐𝑥𝑖)) + 𝑎 +

𝑒𝑥𝑝(1)

𝑥𝑖 ∈ [
−32.768,

32.768
],

∀𝑖 = 1, . , 𝑑

n

𝑓(𝑥∗)
= 0, 𝑎𝑡 𝑥∗

= (0, . . ,0)

G
o

ld
 S

ti
en

f2

𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)] ∗ [30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1

2 +
48𝑥2 − 36𝑥1 ∗ 𝑥2 + 27𝑥2

2)]
𝑥𝑖 ∈ [−2,2] 2

𝑓(𝑥∗)
= 3𝑎𝑡 𝑥∗

= (0, −1)

B
U

K
IN

N
.6

 f3 𝑓(𝑥) = 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|

𝑥1 ∈ [−15, −5]

, 𝑥2 ∈ [−3,3]
2

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (−10,1)

S
p

h
er

e

f4 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

𝑥𝑖 ∈ [−5.12,5.12]

∀𝑖 = 1, . . , 𝑑
d

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (0, . . . ,0)

B
o

h
ac

h
ev

sk
y

f5

𝑓1(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1) − 0.4𝑐𝑜𝑠(4𝜋𝑥2) +
0.7𝑓2(𝑥) = 𝑥1

2 + 2𝑥2
2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1)𝑐𝑜𝑠(4𝜋𝑥2) +

0.3𝑓3(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3𝑐𝑜𝑠

𝑥𝑖 ∈ [−100,100]

∀𝑖 = 1,2
2

𝑓𝑗(𝑥∗)

= 0, 𝑎𝑡 𝑥∗

= (0,0), ∀𝑗
= 1,2,3

D
ro

p
-

W
av

e

F
u

n
ct

io
n

f6 𝑓(𝑥) =
−1 + 𝑐𝑜𝑠 (12√𝑥1

2 + 𝑥2
2)

. 05(𝑥1
2 + 𝑥2

2) + 2

𝑥𝑖 ∈ [−5.12,5.12]

∀𝑖 = 1,2
2

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (0,0)

B
o

o
th

f7 𝑓(𝑥) = (𝑥1 + 2𝑥2 + 7)2 + (2𝑥1 + 𝑥2 − 5)2
𝑥𝑖 ∈ [−10,10]∀𝑖
= 1,2

2

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (1,3)

B
ea

le

f8
𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2

2)2 +
(2.625 − 𝑥1 + 𝑥1𝑥2

3)2

𝑥𝑖 ∈ [−4.5,4.5]∀𝑖
= 1,2

2
𝑓(𝑥∗) = 0, 𝑥∗

= (3,0.5)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 923

RESEARCH ARTICLE
F

u
n

ct
io

n

N
am

e

F
u

n
ct

io
n

 N
o

Function Description Range

D
im

en
si

o
n

Global

Minimum

In
v

er
te

d

C
o

si
n

e
W

av
e

f9
𝑓(𝑥) = ∑ 𝑒

−(𝑥𝑖
2+𝑥𝑖+1

2 +0.5𝑥𝑖𝑥𝑖+1)

8𝑛−1
𝑖=1

∗ 𝑐𝑜𝑠(4√𝑥𝑖
2 + 𝑥𝑖+1

2 + 0.5𝑥𝑖𝑥𝑖+1)

𝑥𝑖 ∈ [−5,5]∀𝑖
= 1, . . , 𝑛

n
𝑓(𝑥∗)
= −𝑛 + 1

B
an

an
a

sh
ap

e

f10 𝑓(𝑥) =
−100

10[(𝑥1 + 1)2 − (𝑥2 + 1)2] + 𝑥1
2 + 4

𝑥𝑖 ∈ [−1.5,1.5],

 𝑥𝑖 ∈ [−2.5, .5]
2

𝑓(𝑥∗)
= −25, 𝑥∗

= (0)

R
o

se
n

b
ro

ck

F
u

n
ct

io
n

f11 𝑓(𝑥) = ∑[100(𝑥𝑖 + 1 + 1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

𝑥𝑖 ∈ [−5,10]∀𝑖
= 1, . . , 𝑑𝑥𝑖

∈ [
−2.048,

2.048
] ∀𝑖

= 1, . . , 𝑑

n
𝑓(𝑥∗) = 0, 𝑥∗

= (1, . . ,1)

T
h

re
e

h
u

m
p

ca
m

el

f12 𝑓(𝑥) = 2𝑥1
2 − 1.05𝑥1

4 +
𝑥1

6

6 + 𝑥1

𝑥2 + 𝑥2
2

𝑥𝑖 ∈ [−5,5]∀𝑖
= 1,2

2

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (0,0)

E
as

o
m

f13 𝑓(𝑥) = −𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠(𝑥2)𝑒𝑥𝑝(−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2)
𝑥𝑖 ∈ [−100,100]

∀𝑖 = 1,2
2

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (𝜋, 𝜋)

Table 4 Comparison Results of Benchmark Functions

Function

No

Metrics HFFSSA FFA SSA GWO PSO

f1

Best 4.40E-16 19.52678095 6.2148682 20.9087011 1.21E+01

Mean 4.09E-01 1.96E+01 1.12E+01 21.185129 1.26E+01

Worst 1.22737352 19.57565031 13.476681 21.3306324 1.32E+01

f2

Best 3 3 3 3 3.08

Mean 3.00E+00 3.00E+00 3.03E+00 3.00000013 3.3

Worst 2.99999 3 3.0390328 3.00000039 3.67

f3

Best 0 0.005321134 0.0061328 0.26533978 7.78E-02

Mean 0 1.77E-02 6.90E-03 0.30530532 1.20E-01

Worst 0 0.042311452 0.007642 0.32353482 1.87E-01

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 924

RESEARCH ARTICLE

f4

Best 0 2.02E-24 2.5084002 2832.89282 2.62E+01

Mean 0 7.85E-01 4.18E+00 3661.56312 2.90E+01

Worst 0 2.355692017 5.8455072 4266.45283 3.13E+01

f5

Best 0 0.00E+00 7.33E-15 0 2.74E-01

Mean 0 0.00E+00 3.84E-14 0 3.17E-01

Worst 0 0.00E+00 3.12E-14 0 4.02E-01

f6

Best -1 -0.93624533 -0.99796 -1 -9.36E-01

Mean -1 -9.36E-01 -9.57E-01 -1 -9.67E-01

Worst -1 -0.93624533 -0.936179 -1 -9.97E-01

f7

Best 0 1.52E-28 3.09E-13 1.43E-09 9.91E-04

Mean 1.67E-01 2.46E-25 1.02E-10 4.02E-09 6.10E-03

Worst 0.5011 6.68E-25 3.01E-10 7.18E-09 1.01E-02

f8

Best 2.95E+00 3.63E-27 0.0033244 0.49189747 5.61E-03

Mean 2.95E+00 1.09E-26 1.00E-02 4.96E-01 3.23E-01

Worst 2.95E+00 2.09E-26 0.0158038 0.49803542 9.46E-01

f9

Best -19.5389692 -11.9898383 -12.64006 -22.657141 -9.60E+00

Mean -1.26E+01 -6.95E+00 -1.18E+01 -22.328024 -7.61E+00

Worst -11.309857 -2.93E-07 -10.77779 -21.78783 -6.51E+00

f10

Best -2.50E+01 23.42221271 -3.25E+08 -92642.501 -2.95E+05

Mean -26.857968 1.99E+01 -4.61E+09 -10895286 -1.34E+05

Worst -30.573905 16.0716999 -1.31E+10 -2.55E+07 -8.95E+04

f11

Best 3.90E+01 37.41 76.36 38.4486491 6.89E+02

Mean 3.90E+01 3.78E+01 9.29E+01 37.8766618 8.57E+02

Worst 3.90E+01 38.33 108.98 37.1852367 9.66E+02

f12

Best 0 2.75E-26 2.84E-14 0 5.61E-04

Mean 0 3.01E-26 6.14E-13 0 1.33E-03

Worst 0 3.54E-26 1.40E-12 0 1.97E-03

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 925

RESEARCH ARTICLE

f13

Best -1 -1 -1 -1 -1.24E-01

Mean -.980521 -6.67E-01 -9.50E-01 -1 -4.96E-02

Worst -9.42E-01 0.00E+00 -0.892552 -1 -6.59E-05

6.4. Experiment Test Series 2 and Evaluation

The performance of the proposed work is also analyzed using

Planet Lab and NASA datasets by comparing it with the

existing metaheuristic algorithm concerning for QoS metrics

given in section 4. For comparison, all the algorithms are

implemented in the same environment.

6.4.1. Results and Discussion

As discussed above, the experiment runs on two real-world

datasets, one from Planet Lab and another from NASA.

Tables 5 and 6 show the obtained result. After analysis of

table 5, it is observed that LB-FFSSA performs better than

others. Initially, when the number of VMs was less, it showed

superiority over others. However, as the number of VM

increased, the scheduling of tasks became effortless; thus, the

difference between proposed work performance and others

became lesser. Comparative graphs for discussed QoS are

shown in figure 3 to figure 7 using the Planet Lab dataset, and

figure 8 to figure 12 contain results using NASA.

 Makespan

It can be observed by figures 3 and 8 that LB-FFSSA

minimizes makespan as compared to competitive algorithms.

It is calculated using equation (9). For Planet Lab workload,

LB-FFSSA minimizes makespan by an average of 20.7%,

22.3%, 15.1%, and 24.7% compared to PSO, GWO, SSA, and

FFA, respectively. For NASA workload, LB-FFSSA

minimizes makespan by an average of 11.8%, 32.3%, 16%,

and 15.2% compared to PSO, GWO, SSA, and FFA,

respectively.

 Load Imbalance Factor (LIF)

Figures 4 and 9 show that proposed work minimizes LIF as

compared to other algorithms. It is calculated using equation

18. For Planet Lab workload, LB-FFSSA minimizes LIF by

an average of 41%, 35%, 31.6%, and 65.8% compared to

PSO, GWO, SSA, and FFA, respectively. For NASA

workload, LB-FFSSA minimizes LIF by an average of 29.9%,

22%, 34%, and 50.4% compared to PSO, GWO, SSA, and

FFA, respectively.

 Throughput

Figures 5 and 10 show that LB-FFSSA improves throughput

as compared to other algorithms. It is calculated using

equation 13. LB-FFSSA improves throughput by an average

of 18.6%, 13%, 19.1%, and 42.1% for Planet Lab workload

and 8.5%, 10.6%, 10.6%, and 23.4% for NASA workload

compared to PSO, GWO, SSA, and FFA, respectively.

 Resource Utilization (RU)

It can be seen by figures 6 and 11 that proposed model

efficiently improves RU using LB heuristic. RU is calculated

using equation 11. LB-FFSSA improves RU by an average of

20%, and 40% for Planet Lab workload and 33.3%, and

33.3% for NASA workload compared to GWO and FFA,

respectively.

 Waiting Time

Figures 7 and 12 show that LB-FFSSA minimizes waiting

time compared to other competitive algorithms. It is

calculated using equation 12. LB-FFSSA improves WT by an

average of 26.5%, 13.8%, 16.7%, and 50% for Planet Lab

workload and 12.8%, 6%, 19.3%, and 36.3% for NASA

workload compared to PSO, GWO, SSA, and FFA,

respectively.

Figure 3 Makespan of Proposed and Existing Algorithm

Using Planet Lab Dataset

Figure 4 Load Imbalance of Proposed and Existing Algorithm

Using Planet Lab Dataset

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 926

RESEARCH ARTICLE

Table 5 Comparative Results of the Existing and the Proposed Algorithm for QoS Metrics Using Planet Lab Dataset

QoS Metrics No. of VM

Algorithms

PSO GWO SSA FFA LB-FFSSA

M
ak

es
p

an

(S
ec

)

25 19.915 20.191 15.79 19.899 15.713

50 10.775 11.717 10.902 11.316 8.082

75 7.62 6.804 7.896 8.484 6.141

100 6.09 7.635 6.466 6.891 5.549

125 6.091 5.563 5.639 6.256 4.848

150 4.59 4.397 4.817 5.125 3.764

Average 9.2 9.4 8.6 9.7 7.3

L
o

ad
 I

m
b

al
an

ce

25 5.487 5.477 3.072 7.643 2.942

50 2.696 1.999 2.766 5.766 1.459

75 1.777 1.204 2.022 4.293 1.057

100 1.394 1.352 1.459 1.557 0.879

125 1.044 1.006 1.259 2.285 0.933

150 1.034 0.825 0.888 1.068 0.768

Average 2.2 2 1.9 3.8 1.3

R
es

o
u

rc
e

U
ti

li
za

ti
o

n
 (

in
 %

)

25 0.5827 0.5731 0.566 0.4081 0.5835

50 0.5248 0.4285 0.5122 0.3499 0.591

75 0.4828 0.4926 0.4781 0.2958 0.5157

100 0.4515 0.3565 0.4311 0.4149 0.5005

125 0.3744 0.3911 0.3942 0.2741 0.465

150 0.3912 0.4129 0.3812 0.3349 0.4581

Average 0.5 0.4 0.5 0.3 0.5

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 927

RESEARCH ARTICLE

T
h

ro
u
g

h
p
u

t

25 44.68 44.1 56.34 31.27 56.69

50 81.89 81.31 80.87 51.88 108.27

75 114.88 132.04 110.83 62.46 141.63

100 143.65 149.04 134.13 106.93 177.2

125 157.69 165.83 153.28 99.52 181.92

150 186.95 208.28 189.61 166.25 230.84

Average 121.6 130.1 120.8 86.4 149.4

W
ai

ti
n

g
 T

im
e

(i
n

 S
ec

)

25 7.821 7.733 5.333 9.836 5.374

50 4.085 2.712 4.114 7.433 3

75 2.761 2.184 2.894 6.088 2.077

100 2.184 1.996 2.226 2.414 1.723

125 1.695 1.625 1.862 2.874 1.502

150 1.605 1.409 1.445 1.583 1.332

Average 3.4 2.9 3 5 2.5

Figure 5 Throughput of Proposed and Existing Algorithm Using Planet Lab Dataset

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 928

RESEARCH ARTICLE

Figure 6 Resource Utilization of Proposed and Existing Algorithm Using the Planet Lab Dataset

Figure 7 Waiting Time of Proposed and Existing Algorithm Using the Planet Lab Dataset

Table 6 Comparative Results of the Proposed and Existing Algorithm for QoS Metrics Using NASA Ames iPSC/860

QoS Metrics No. of VM
Algorithms

PSO GWO SSA FFA LB-FFSSA

M
ak

es
p

an
 (

in
 S

ec
)

25 1044.5 938.7 984.8 824.1 660.3

50 622.6 910.3 704 677.8 589.4

75 563.1 896.3 607.1 631.3 554.7

100 542 888.5 588.3 650.7 539

125 545.3 686.8 579.8 618.3 531

150 509.4 691.7 550.1 566.4 500.9

 637.8 835.4 669 661.4 562.6

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 929

RESEARCH ARTICLE

L
o

ad
 I

m
b

al
an

ce

25 277.31 160.86 269.33 328.71 150.7

50 143.06 145.59 156.04 229.76 105.49

75 106.64 132.47 118.81 188.94 70.46

100 89.92 101.88 108.95 118.09 76.85

125 81.05 70.68 86.9 107.3 68.67

150 70.63 80.47 76.7 113.7 66.94

 128.1 115.3 136.1 181.1 89.9

R
es

o
u

rc
e

U
ti

li
za

ti
o

n
 (

in
 %

)

25 0.453 0.44 0.48 0.246 0.546

50 0.353 0.264 0.337 0.238 0.386

75 0.262 0.153 0.243 0.151 0.267

100 0.213 0.168 0.201 0.136 0.219

125 0.162 0.149 0.159 0.124 0.164

150 0.177 0.127 0.139 0.106 0.179

 0.3 0.2 0.3 0.2 0.3

T
h

ro
u

g
h
p

u
t

25 3.62 4.14 3.69 2.68 4.53

50 4.33 4.11 4.13 2.9 4.68

75 4.54 3.82 4.36 3.4 4.63

100 4.44 4.16 4.34 4.43 4.49

125 4.51 4.55 4.19 4.21 4.77

150 4.52 4.3 4.26 4.14 4.8

 4.3 4.2 4.2 3.6 4.7

W
ai

ti
n

g
 T

im
e

(i
n

 S
ec

)

25 23.88 18.24 22.81 31.54 17.93

50 13.58 12.45 14.06 19.41 11.77

75 10.91 11.38 12.6 10.94 9.9

100 9.65 9.89 11.34 18.03 9.11

125 8.79 8.76 10.07 10.76 8.38

150 8.24 8.72 9.94 12.19 8.05

 12.5 11.6 13.5 17.1 10.9

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 930

RESEARCH ARTICLE

Figure 8 Makespan of Proposed and Existing Algorithms Using NASA Dataset

Figure 9 Load Imbalance of Proposed and Existing Algorithms Using NASA Dataset

Figure 10 Throughput of the Proposed and Existing Algorithm Using the NASA Dataset

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 931

RESEARCH ARTICLE

Figure 11 Resource Utilization of Proposed and Existing Algorithms Using the NASA Dataset

Figure 12 Waiting Time of Proposed and Existing Algorithms Using the NASA Dataset

7. CONCLUSION AND FUTURE WORK

This research work proposes an efficient LB-FFSSA

algorithm in a cloud computing environment to achieve

optimal load balanced task scheduling. This algorithm

optimizes makespan, resource utilization, waiting time,

throughput, and load imbalance factor. LB-FFSSA works in

two phases 1) Task allocation is accomplished using proposed

HFFSSA, i.e., hybridization of FFA and SSA. 2) Then, the

best result is rescheduled using the proposed load-balancing

(LB) heuristic. This load balancing is required in industries to

meet the efficient resources utilization, which reduces

resource wastage and helps to optimize costs. The HFFSSA is

tested on 13 global benchmark functions, and it is proved that

HFFSSA outperforms other metaheuristics. These benchmark

functions are used to evaluate the performance of

metaheuristic. If an algorithm performs well on these

benchmark test then it can be used as effective approach to

solve real- world problems. Further, the proposed LB-FFSSA

is evaluated using CloudSim on two real workloads (Planet

lab and NASA) and compared with other metaheuristics, i.e.,

SSA, GWO, FFA, and PSO. Simulation results proves that

proposed model improves by an average up to 32.3%, LIF by

50.4%, throughput by 42.1%, resource utilization by 40%,

and waiting time by 50%. In the future, the work can be

extended by optimizing energy to reduce carbon footprint.

Other QoS parameters such as, cost, reliability, and

availability can be considered in future work.

REFERENCES

[1] Mell, Peter, and Timothy Grance. "Cloud computing: recommendations

of the national institute of standards and technology." NIST, Spec.

Pub (2011): 800-145.
[2] Dillon, Tharam, Chen Wu, and Elizabeth Chang. "Cloud computing:

issues and challenges." 2010 24th IEEE international conference on

advanced information networking and applications. Ieee, 2010.
[3] Moharana, Shanti Swaroop, Rajadeepan D. Ramesh, and Digamber

Powar. "Analysis of load balancers in cloud computing." International

Journal of Computer Science and Engineering 2.2 (2013): 101-108.
[4] Mahmud, Shahid, Rahat Iqbal, and Faiyaz Doctor. "Cloud enabled data

analytics and visualization framework for health-shocks

prediction." Future Generation Computer Systems 65 (2016): 169-181.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 932

RESEARCH ARTICLE

[5] Masdari, Mohammad, et al. "A survey of PSO-based scheduling

algorithms in cloud computing." Journal of Network and Systems
Management 25.1 (2017): 122-158.

[6] Kalra, Mala, and Sarbjeet Singh. "A review of metaheuristic scheduling

techniques in cloud computing." Egyptian informatics journal 16.3
(2015): 275-295.

[7] Zhou, Jincheng, et al. "Comparative analysis of metaheuristic load

balancing algorithms for efficient load balancing in cloud
computing." Journal of Cloud Computing 12.1 (2023): 1-21.

[8] Sakellariou, Rizos, and Henan Zhao. "A hybrid heuristic for DAG

scheduling on heterogeneous systems." 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings.. IEEE, 2004.

[9] Aissi, Hassene, Cristina Bazgan, and Daniel Vanderpooten.

"Complexity of the min–max and min–max regret assignment
problems." Operations research letters 33.6 (2005): 634-640.

[10] Pradhan, Pandaba, Prafulla Ku Behera, and B. N. B. Ray. "Modified

round robin algorithm for resource allocation in cloud

computing." Procedia Computer Science 85 (2016): 878-890.

[11] Eberhart, Russell, and James Kennedy. "A new optimizer using particle

swarm theory." MHS'95. Proceedings of the sixth international
symposium on micro machine and human science. Ieee, 1995.

[12] Mirjalili, Seyedali, et al. "Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems." Advances in engineering

software 114 (2017): 163-191.

[13] 13Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis.
"Grey wolf optimizer." Advances in engineering software 69 (2014):

46-61.

[14] Shishira, S. R., A. Kandasamy, and K. Chandrasekaran. "Survey on
meta heuristic optimization techniques in cloud computing." 2016

international conference on advances in computing, communications

and informatics (ICACCI). IEEE, 2016.
[15] Thakur, Avnish, and Major Singh Goraya. "A taxonomic survey on load

balancing in cloud." Journal of Network and Computer Applications 98

(2017): 43-57.
[16] Ghomi, Einollah Jafarnejad, Amir Masoud Rahmani, and Nooruldeen

Nasih Qader. "Load-balancing algorithms in cloud computing: A

survey." Journal of Network and Computer Applications 88 (2017): 50-
71.

[17] Madni, Syed Hamid Hussain, et al. "An appraisal of meta-heuristic

resource allocation techniques for IaaS cloud." (2016).
[18] Faris, Hossam, et al. "Salp swarm algorithm: theory, literature review,

and application in extreme learning machines." Nature-inspired

optimizers: theories, literature reviews and applications (2020): 185-
199.

[19] Jain, Richa, and Neelam Sharma. "A QoS aware binary salp swarm

algorithm for effective task scheduling in cloud computing." Progress in
Advanced Computing and Intelligent Engineering: Proceedings of

ICACIE 2019, Volume 2. Springer Singapore, 2021.

[20] Jain, Richa, and Neelam Sharma. "A deadline-constrained time-cost-
effective salp swarm algorithm for resource optimization in cloud

computing." International Journal of Applied Metaheuristic Computing

(IJAMC) 13.1 (2022): 1-21.
[21] Jain, Richa, and Neelam Sharma. "A quantum inspired hybrid SSA–

GWO algorithm for SLA based task scheduling to improve QoS

parameter in cloud computing." Cluster Computing (2022): 1-24.
[22] Abualigah, Laith, et al. "Salp swarm algorithm: a comprehensive

survey." Neural Computing and Applications 32 (2020): 11195-11215.

[23] Yang, Xin-She. "Firefly algorithms for multimodal
optimization." Stochastic Algorithms: Foundations and Applications:

5th International Symposium, SAGA 2009, Sapporo, Japan, October

26-28, 2009. Proceedings 5. Springer Berlin Heidelberg, 2009.
[24] Park, KyoungSoo, and Vivek S. Pai. "CoMon: a mostly-scalable

monitoring system for PlanetLab." ACM SIGOPS Operating Systems

Review 40.1 (2006): 65-74.
[25] Feitelson, Dror G., and Bill Nitzberg. "Job characteristics of a

production parallel scientific workload on the NASA Ames

iPSC/860." Job Scheduling Strategies for Parallel Processing: IPPS'95

Workshop Santa Barbara, CA, USA, April 25, 1995 Proceedings 1.

Springer Berlin Heidelberg, 1995.
[26] https://aws.amazon.com/ec2/instance-types/processing. Springer,

Berlin, Heidelberg, 1995. (Accessed on 24 September, 2022)

[27] Ullman, J. D., NP-complete scheduling problems. Journal of Computer
and System sciences, 10(3), 384-393. (1975).

[28] Singh, P., Dutta, M., & Aggarwal, N., A review of task scheduling

based on meta-heuristics approach in cloud computing. Knowledge and
Information Systems, 52, 1-51. (2017).

[29] Tsai, C. W., & Rodrigues, J. J., Metaheuristic scheduling for cloud: A

survey. IEEE Systems Journal, 8(1), 279-291. (2013).
[30] Kalra, M., & Singh, S. A review of metaheuristic scheduling techniques

in cloud computing. Egyptian informatics journal, 16(3), 275-295.

(2015).
[31] Jain, P., & Sharma, S. K. A systematic review of nature inspired load

balancing algorithm in heterogeneous cloud computing environment.

In 2017 conference on information and communication technology

(CICT) (pp. 1-7). IEEE. (2017).

[32] Ghomi, E. J., Rahmani, A. M., & Qader, N. N., Load-balancing

algorithms in cloud computing: A survey. Journal of Network and
Computer Applications, 88, 50-71. (2017).

[33] Thanka, M. R., Uma Maheswari, P., & Edwin, E. B, An improved
efficient: Artificial Bee Colony algorithm for security and QoS aware

scheduling in cloud computing environment. Cluster Computing, 22,

10905-10913.(2019).
[34] Ramesh, D., Dey, S., & Bhukya, R, Heuristic and fair-queuing based

VM load balancing strategy for cloud data centers: A hybrid

approach. Multiagent and Grid Systems, 15(1), 19-38. (2019)
[35] Mapetu, J. P. B., Chen, Z., & Kong, L. , Low-time complexity and low-

cost binary particle swarm optimization algorithm for task scheduling

and load balancing in cloud computing. Applied Intelligence, 49, 3308-
3330. (2019)

[36] Adhikari, M., Nandy, S., & Amgoth, T. , Meta heuristic-based task

deployment mechanism for load balancing in IaaS cloud. Journal of
Network and Computer Applications, 128, 64-77. (2019)

[37] Alguliyev, R. M., Imamverdiyev, Y. N., & Abdullayeva, F. J. , PSO-

based load balancing method in cloud computing. Automatic Control
and Computer Sciences, 53, 45-55. (2019)

[38] Hanine, M., & Benlahmar, E. H, A load-balancing approach using an

improved simulated annealing algorithm. Journal of Information
Processing Systems, 16(1), 132-144. (2020)

[39] Kruekaew, B., & Kimpan, W, Enhancing of artificial bee colony

algorithm for virtual machine scheduling and load balancing problem in
cloud computing. International Journal of Computational Intelligence

Systems, 13(1), 496-510.. (2020)

[40] Zhou, Z., Li, F., Zhu, H., Xie, H., Abawajy, J. H., & Chowdhury, M. U.
, An improved genetic algorithm using greedy strategy toward task

scheduling optimization in cloud environments. Neural Computing and

Applications, 32, 1531-1541. (2020)
[41] Neelima, P., & Reddy, A. R. M, An efficient load balancing system

using adaptive dragonfly algorithm in cloud computing. Cluster

Computing, 23, 2891-2899. (2020)
[42] George, Shelly Shiju, and R. Suji Pramila. "Fractional IWSOA-LB:

Fractional Improved Whale Social Optimization Based VM Migration

Strategy for Load Balancing in Cloud Computing." International
Journal of Wireless Information Networks 30.1 (2023): 58-74.

[43] Ramya, K., and Senthilselvi Ayothi. "Hybrid dingo and whale

optimization algorithm‐based optimal load balancing for cloud
computing environment." Transactions on Emerging
Telecommunications Technologies 34.5 (2023): e4760.

[44] Abdelmaboud, Abdelzahir, et al. "Quality of service approaches in

cloud computing: A systematic mapping study." Journal of Systems and
Software 101 (2015): 159-179.

[45] Manupati, Vijaya Kumar, et al. "Near optimal process plan selection for

multiple jobs in networked based manufacturing using multi-objective
evolutionary algorithms." Computers & Industrial Engineering 66.1

(2013): 63-76.

https://aws.amazon.com/ec2/instance-types/processing

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/223686 Volume 10, Issue 6, November – December (2023)

ISSN: 2395-0455 ©EverScience Publications 933

RESEARCH ARTICLE

[46] Jain, Richa, Neelam Sharma, and Pankaj Jain. "A systematic analysis of

nature inspired workflow scheduling algorithm in heterogeneous cloud
environment." 2017 International Conference on Intelligent

Communication and Computational Techniques (ICCT). IEEE, 2017.

[47] Poli, Riccardo, James Kennedy, and Tim Blackwell. "Particle swarm
optimization-An overview. Swarm Intelligence. Volume 1, Issue 1."

(2007): 33-57.

[48] Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N. Calheiros. "Modeling
and simulation of scalable Cloud computing environments and the

CloudSim toolkit: Challenges and opportunities." 2009 international

conference on high performance computing & simulation. IEEE, 2009.
Authors

Pankaj Jain received his B.E. in Computer

science and Engineering from Rajasthan
University, India in 2007 and M.Tech. in

Computer Science and Engineering from

Rajasthan Technical University, India in 2014.
He is currently pursuing his Ph.D. in Computer

Science and Engineering in Banasthali

Vidyapith, India. His research interests include
cloud computing, Soft computing, Algorithms,

etc.

How to cite this article:

Sanjay Kumar Sharma, PhD is a Professor at

Banasthali Vidyapith (NACC A++ Grade
University), Rajasthan, India. He obtained PG

degree from HBTI Kanpur, and Ph. D. in

Computer Science from Banasthali University.
He has published many research articles in

reputed international journals and conferences. 5

students completed Ph. D. degree under his
supervision. He has teaching experience of 15

years. His research interests include Parallel

Computing, Cloud Computing, Algorithms
Design and Machine Learning. He is a senior member of educational BOS,

Academic Council etc.

Pankaj Jain, Sanjay Kumar Sharma, “A Load Balancing Aware Task Scheduling using Hybrid Firefly Salp Swarm

Algorithm in Cloud Computing”, International Journal of Computer Networks and Applications (IJCNA), 10(6), PP: 914-

933, 2023, DOI: 10.22247/ijcna/2023/223686.

