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Abstract – Cloud computing is an evolutionary computational 

model which provides on-demand scalable and flexible resources 

by the pay-per-use concept. Due to the flexibility of cloud, 

several organizations are setting up more data centers and 

switching their businesses to the cloud technology.  These 

industries need a proper load balancing to ensure the efficient 

resources utilization, which reduces resource wastage and helps 

to optimize costs. Optimal resource allocation can be achieved 

through efficient task scheduling and load-balancing. An 

efficient scheduling with load-balancing allocates resources in a 

balanced way and optimizes the quality of service (QoS) 

parameters.  Task migration is the best way to balance the load. 

This paper hybridizes the Salp Swarm Algorithm (SSA) with the 

Firefly Algorithm (FFA), named as Hybrid Firefly Salp Swarm 

Algorithm (HFFSSA). This approach utilizes FFA's operators to 

enhance the exploitation capability of SSA by functioning as a 

local search. Further, a load balancing (LB) heuristic is proposed 

and incorporated with HFFSSA, named as Load Balancing Salp 

Swarm Algorithm (LBFFSSA). For verification, the presented 

work is evaluated by two experimental series. First HFFSSA is 

tested on global benchmark functions, where it shows its 

superiority over other existing metaheuristic approaches such as 

Firefly Algorithm (FFA), Grey Wolf Algorithm (GWO), Particle 

Swarm Optimization (PSO), and Salp Swarm Algorithm (SSA). 

In the second series, the LB-FFSSA is evaluated on real datasets 

(Planet Lab and NASA) using CloudSim Simulator; again, 

results outperform similar metaheuristics. The simulation results 

show that LB-FFSSA significantly reduces makespan and 

improves resource utilization. Furthermore, the proposed 

algorithm minimizes the Load imbalance Factor (LIF) by 

migrating the task from an over utilized virtual machine to an 

underutilized one. It also shows improvement in waiting time 

and throughput. Simulation results prove that proposed model 

improves by an average up to 32.3%, LIF by 50.4%, throughput 

by 42.1%, resource utilization by 40%, and waiting time by 

50%. 

Index Terms – Cloud Computing, Hybrid Task Scheduling, 

Firefly (FFA), Salp Swarm Algorithm (SSA), Task Migration, 

Load Balancing. 

1. INTRODUCTION 

Cloud Computing (CC) is becoming a reliable and trusted 

computing technology that enhances the utilization of 

virtualized resources and services for end users [1, 2]. It 

provides software and hardware as computing resources. To 

manage resource sharing in a heterogeneous 

environment, Task Scheduling (TS) with efficient load 

balancing plays a key role [3, 4]. TS is an NP-hard problem 

[5] that needs to be optimized in CC. The primary goal of TS 

is to allocate the resources to the user's task while optimizing 

at least one Quality of Service (QoS) parameter [6], such as 

cost, makespan, etc. This distribution of tasks on 

heterogeneous resources must be done in a balanced way to 

improve resource utilization. The assignment of tasks on a 

resource is denoted load. The load balancing mechanism 

transfers the excess load from an overloaded to an unloaded 

resource. Zhou et al. [7] showed importance of load balancing 

in task scheduling and presented a survey of various literature 

that used metaheuristic for load balancing.  

Several heuristic such as HEFT [8], MAX-MIN [9], Round 

Robin [10] and metaheuristic approaches such as PSO[11], 

SSA[12], GWO[13], of TS and load balancing exist in 

literature [14-16]. Metaheuristics algorithms improve the 

efficiency of heuristic algorithms [17]. 

In 2017, Mirjalili et al. [12] introduced a nature-inspired 

meta-heuristic optimization approach named Salp Swarm 

Algorithm (SSA). Author [18] also proved the efficacy of 

SSA by optimizing the Extreme Learning Machine. Further, 

Jain et al. [19, 20, 21] proved the efficiency of SSA in their 

literature. Later, Abualigah et al. [22] reviewed SSA 

thoroughly and showed its strengths and weaknesses. SSA has 

only one controlling parameter and excellent potential to 

explore the search space, leading to determining the feasible 

region with the optimal solution. These are the reasons which 

mailto:mail2pankajjain@gmail.com
mailto:ssanjay@banasthali.in


International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223686                 Volume 10, Issue 6, November – December (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       915 

     

RESEARCH ARTICLE 

make SSA suitable for task scheduling. Additionally, FFA 

[23] has the extraordinary ability to exploit the feasible region 

to determine the optimal solution. Therefore, hybridizing SSA 

and FFA is more beneficial in finding the optimal solution. 

Therefore, this work hybridizes FFA and SSA, called as 

Hybrid Firefly Salp Swarm Algorithm, abbreviated as 

HFFSSA. HFFSSA allocates tasks to Virtual Machines (VMs) 

to optimize QoS parameters. Further, a heuristic technique 

(LB) is proposed that reschedules the best-obtained solution 

from HFFSSA to achieve load balancing called LB- FFSSA. 

1.1. Problem Definition 

In task scheduling, assigning tasks to the appropriate VMs 

while maintaining promised QoS and SLA is always a big 

challenge. On the other hand, an imbalanced distribution of 

tasks on VMs may lead the SLA violation and performance 

degradation. After task assignment, if some VMs are 

overloaded and some are underloaded, a load-balancing 

technique is needed to balance the load to achieve optimal 

resource utilization. Due to the heterogeneous nature of tasks 

and resources, efficient task scheduling with a balanced 

distribution of tasks is still a crucial issue in cloud computing. 

So, the objective of the paper is to propose a task scheduling 

algorithm that optimizes makespan, resource utilization, 

throughput, and waiting time and a load balancing heuristic 

that minimizes load imbalance factor.  

The significant contribution of the proposed work: 

 This work proposes a hybrid metaheuristic HFFSSA for 

task scheduling that optimizes makespan, resource 

utilization, throughput, and waiting time. 

 This proposed HFFSSA is combined with the proposed 

load balancing (LB) heuristic, i.e., LB-FFSSA that 

improves the load imbalance factor. 

 The novelty of HFFSSA is tested on 13 benchmark 

functions. Results are compared with existing 

metaheuristics FFA, SSA, PSO, and GWO. 

 LB-FFSSA is simulated on CloudSim, where workloads 

are provided through real-world datasets from Planet Lab 

[24] and NASA [25]. 

 LB-FFSSA is compared with other existing algorithms, 

this work schedules tasks on a similar VM configuration, 

which is used by Amazon EC2 [26]. 

The remaining of the paper is categorized as follows: Section 

2 gives a literature review of existing approaches. Section 3 

briefly describes the Salp Swarm Algorithm and Firefly 

Algorithm. Section 4 represents QoS Metrics, and Section 5 

proposes a Hybrid Firefly Salp Swarm Algorithm (HFFSSA) 

and LB-FFSSA. In section 6, Performance Evaluation is done, 

where the proposed work is evaluated with 13 benchmark 

functions, and then the comparative analysis is done using 

CloudSim and two real datasets. Finally, section 7 concludes 

the work. 

2. REVIEW OF PREVIOUS STUDIES 

In cloud computing, task scheduling algorithms assign client 

tasks to concerned resources under various scheduling 

constraints such as deadline, cost, or profit. It causes 

scheduling a complicated problem; thus, it falls in an NP-

Hard category [27]; therefore, heuristic or metaheuristic 

algorithms are more suitable than traditional algorithms. 

However, the solution produced by heuristic algorithms often 

engages with the local optima, far from the global optimal 

[28]. However, metaheuristic algorithms are the best approach 

to overcome local optima [29, 30]. Furthermore, when the 

scheduler assigns the task on Virtual Machines (VM), it must 

consider the Quality of Service (QoS) parameters. QoS 

parameters include makespan, response time, throughput, 

cost, load imbalance, and deadline [31].Load balancing is also 

an essential aspect of task scheduling, ensuring the even 

distribution of tasks. The main objective of load balancing is 

to decrease the imbalance in the system, which is achieved by 

migrating tasks from the overutilized VM to the underutilized 

VM. Scheduling on an overloaded VM may decrease the 

overall performance of the CC [32].  

Thanka, M. R. et al.[33] presented an improved Artificial Bee 

Colony-based algorithm for QoS-aware scheduling and 

security. They focused on security and QoS-aware parameters 

such as makespan, load imbalance, task migration, and cost. 

The tasks may be dependent or independent of each other and 

are scheduled over VM. For evaluation purposes, they used 

CloudSim but compared their work only with ABC. D. 

Ramesh et al.[34] introduced a nature-inspired heuristic VM 

load balancing (HFQ-LB) technique in which load balancing 

has been achieved by fair queuing and VM migration. 

Initially, tasks are assigned to VM, and the load is 

continuously examined; VM is migrated to another 

underloaded Host if needed. They use the CloudSim 

Simulator tool for evaluation and further validate their work 

regarding makespan and resource utilization. They compared 

their work with various algorithms. In [35], the Author 

presented a binary PSO algorithm for load-balanced tasks for 

scheduling that minimizes cost and time complexity. The 

objective function of this proposed work is to maximize the 

difference in completion time among various VMs to identify 

the underloaded and overloaded VMs. They optimize waiting 

time, makespan, load imbalance, and resource utilization. 

Further, the algorithm is evaluated using the CloudSim 

simulator, and results show the superiority of proposed 

algorithm. 

Adhikari, M. et al.[36] proposed an algorithm of load 

balancing for long-term processes called Load Balancing 

Resource Clustering (LB-RC). In this approach, they 
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identified the optimal clusters of resources and cluster centers 

for fast convergence using a metaheuristic BAT algorithm. 

They also proposed a dynamic task assignment policy to 

attain minimum execution time and makespan within 

limitations. Finally, they evaluate and compare their work 

with the help of the CloudSim simulator. Alguliyev, R. M. et 

al.[37] proposed an algorithm named αPSO-TBLB, which is a 

task-based algorithm. This algorithm selects tasks from an 

over utilized VM to an underutilized VM. This proposed work 

minimizes the task transfer time and execution time. They 

tested their work using jswarm and CloudSim. The result 

shows that they equally distributed tasks among VM and 

achieved optimal task scheduling. 

Hanine, M., et al.[38] presented an improved simulated 

annealing (SA) based algorithm for load balancing. This 

approach is divided into two steps; in step 1, the approach 

identifies the load threshold value for each to identify an 

overloaded VM, and in step 2, the task is allocated to VM 

using improved SA. The acceptance probability of SA is 

modified In this work. The results produced by the CloudSim 

simulation tool show that they could distribute tasks among 

VM in fewer time intervals. Still, they compare their results 

only with static approaches. Kruekaew B. et al. [39] proposed 

a multi-objective scheduling algorithm (MOABCQ) that is 

based on Artificial Bee Colony and Q-learning. This work 

focused on optimizing load balancing and task scheduling. 

They use multi-objective fitness functions consisting of cost, 

makespan, and resource utilization. They also use First Come 

First Serve (FCFS) and Longest Job First (LJF). Performance 

evaluation of proposed work is done using CloudSim and 

compared with existing balancing and scheduling techniques 

such as FCFS, Max-Min, Q-Learning, MOCS, and MOPSO. 

For this analysis, they use three datasets named Google Cloud 

Jobs (GoCJ), Random, and Synthetic workload. The result 

shows they improve makespan, cost, resource utilization, and 

throughput.  

Zhou, Z. et al. [40] proposed an MGGS algorithm in which 

the Modified Genetic Algorithm is blended with Greedy 

Strategy (GS). MGGS optimizes the task scheduling 

procedure. This approach is capable of finding optimized 

solutions in less iteration. For evaluation, MGGS was 

compared with existing algorithms based on average response 

time, total completion time, and total cost, and they found it 

better. For this purpose, they used CloudSim Toolkit but did 

not use any real dataset. Neelima P. et al. [41] presented a 

load-balancing aware task scheduling algorithm using the 

Adaptive Dragonfly Algorithm (ADA), a blend of dragonfly 

and firefly algorithms. In this approach, they use a multi-

objective function to decide on scheduling. Finally, the 

performance of the presented algorithm is assessed based on 

distinct metrics, i.e., execution time and cost, using the 

CloudSim simulator tool and compared with existing 

algorithms. Still, they needed to evaluate their approach to 

any benchmark function.  

George et al.[42] proposed a model fractional IWSOA for 

load balancing. Initially, they allocated tasks using round 

robin algorithm. Then proposed work migrates tasks from 

overloaded VMs to underloaded VMs. The work can be 

improved by adopting other powerful optimization technique, 

i.e., machine learning algorithms. Ramya et al. [43] proposed 

HDWOA-LBM that is a load balancing mechanism that 

hybridized dingo and whale optimization algorithm. It 

effectively balanced the load and in additional improved 

throughput, resource utilization, and reliability. 

After analyzing the above literature, the work focuses on 

improving the performance of LB-FFSSA with efficient 

resource utilization and load balancing in task scheduling. 

Therefore, the key objectives are: decreasing makespan, load 

imbalance factor, and waiting time while at the same time 

increasing resource utilization and throughput. 

3. BACKGROUND 

3.1. Salp Swarm Algorithm 

As mentioned above, in 2017, Mirjalili proposed a nature-

inspired swarm-based algorithm called Salp Swarm 

Algorithm (SSA). This algorithm is inspired by the natural 

swarming behavior of Salp(s). The main aim of Salp(s) is to 

obtain better and more effective locomotion; therefore, these 

salps create a salp chain and relocate by applying 

synchronized updates and foraging. Figure 1 represents the 

Salp chain which contains two types of Salp, one Leader Salp, 

which leads all the remaining Salp, and the second Follower 

Salp, which follows the leader Salp. Leader Salp updates its 

position to approach a food source. Meanwhile, the food 

source also updates its position by obtaining a solution, so the 

salp chain automatically moves toward the optimum solution. 

Here a food source is the best-obtained solution. The leader 

salp updates its position using equation 1 

pos
1
𝑗 = {

FS𝑗+r1 ((up
𝑗

− low𝑗) 𝑟2+low𝑗) 𝑟3 ≥ 0.5

FS𝑗 − 𝑟1 ((up
𝑗

− low𝑗) 𝑟2+low𝑗) 𝑟3 < 0.5
}     (1)                                       

Here,  

FSj = Food source, upj and lowj are Upper bound and Lower 

bound, respectively, in the jth dimension 

pos1
j
  = Position of Leader Salp in jth dimension 

r2  and r3 are Random Numbers  from 0 to 1 and r1  = 

Controlling parameter used to balance exploitation and 

exploration. 

It is computed using equation 2: 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/223686                 Volume 10, Issue 6, November – December (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       917 

     

RESEARCH ARTICLE 

r1 = 2e−(
4m

maxiteration
 )

2

    (2) 

Here, m is current iteration and maxiteration is total number 

of iterations. 

The position of follower salp can be updated as given in 

equation 3: 

pos
i

j
=

1

2
(pos

i

j
+pos

i−1

j
)                (3) 

Where pos
i

j
 is the follower’s position in the jth dimension for i 

>1 

Algorithm 1 shows the standard SSA Algorithm. 

1. Initialize the number of iterations = maxiteration, upper, 

Population size  

np, lower,  it=1. 

2. Initialize salp population SPx ∀ x =1: np  

3. while (it < maxiteration) 

4. Calculate the fitness function for each salp. 

5. Assign best-fitted salp as a leader and remaining as 

follower salp. 

6. Assign the best-obtained solution to FS 

7. Update r1 using equation 2. 

8. for every salp SPx 

9. if(x=1) 

10. leader salp position updated using equation 1 

11. else 

12. follower salp position updated using equation 3 

13. end of loop 

14. Update the salp population using upper and lower 

15. End while 

16. Return FS 

Algorithm 1 Salp Swarm Algorithm 

 

Figure 1 The Salp Chain [21] 

3.2. Firefly Algorithm (FFA) 

FFA is a nature-inspired meta-heuristic algorithm proposed 

by Xin-She Yang in 2009 that simulates the flashing manners 

of fireflies. The FFA is motivated by flashing patterns and 

behavior at night.  

From introductory physics, it is apparent that intensity of light 

is reciprocal proportion to square of distance, therefore 

variation in attractiveness with the distance from a source a 

can be defined by using equation 4:  

β(r) = β0e−(γr2)           (4)    

Where β0 represents attractiveness at r = 0, γ represents light 

absorption coefficient for a given medium. 

If a firefly Xj is brighter than any other firefly Xi in the search 

space, then the firefly Xi will move towards Xj using given 

equation 5: 

Xi
t+1 = Xi

t + β0e−(γrij
2 )(Xj

t − Xi
t) + αtΕi

t (5) 

Where rij denotes the distance between ith and jth fireflies 

αt  is a randomized parameter with 0 ≤ αt   ≤ 1, which controls 

the randomness and, Εi
t  represents the vector of random 

numerals drawn by the Gaussian function or  uniform 

function, or any other distribution function, and the 't' 

Iteration number. αt   is computed using equation 6: 

αt = α0 δ−t          (6) 

Where α0  denotes the initial randomness scaling factor or 

range, and δ is the essential cooling factor; 0 ≤ δ ≤ 1 

Algorithm 2 shows the FFA Algorithm. 

1. Initialize lower, upper, number of iterations = 

maxiteration, population size np,it=1. 

2. Initialize fireflies population SPx (x=1 to np). 

3. Calculate the fitness value for every solution  SPx called 

using fit(SPx)  

4. Determine the light absorption coefficient 

5. while it<maxiteration 

6. Calculate the fitness function of each firefly 

7. for each SPi ∀ i =1: np  

8. for each  SPi ∀ j =1: np  

9. if fit(SPi)>fit(SPj )    

10. Move the ith firefly towards the jth firefly using equation 5 

11. end if 

12. Update attractiveness using equation 4 
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13. End for 

14. End for 

15. Determine the best solution. 

16. End while 

17. return the best solution 

Algorithm 2 Firefly Algorithm (FFA) 

4. QUALITY OF SERVICE (QOS) METRICS 

Let Ti denote a set of tasks, where i ∈ {1: n}, and a set of the 

virtual machines as VMj, where j ∈ {1: m}. Here' n' and 'm' 

are no. of tasks and no. of VMs, respectively. These tasks and 

VMs are independent and heterogeneous. 

4.1. Makespan (MS) 

If the same task is scheduled on a different VM, execution 

time (ET) may vary. The sum of the start time (ST) and ET 

taken for any VM to run all the tasks is known as Finishing 

Time (FT), and so as Maximum FT is referred to as 

makespan. It is better to have a minimal makespan for better 

load balancing. Further, if the execution time of ith task (Ti )on 

a jth virtual machine (VMj) is  ETij, then execution time can be 

characterized by equation 7 as: 

ETij =
leni

capVMj
+

leniinfile

BWVMj
                (7) 

leni represents the length of taski, leniinfile denotes the input 

file's length of the ith task, and capVMj and BWVMj denote the 

capacity and Bandwidth of VMj, respectively. 

The finishing time of ith task (Ti) on jth virtual machine VMj 

can be calculated using equation 8 as: 

FTij = STi +  ETij            (8) 

The makespan can be defined as given in equation 9 

MS = max (FTij )               (9) 

4.2. Resource Utilization (RU) 

In scheduling, maximum resource utilization and minimum 

makespan are two conflicting QoS parameters. They shared 

an inverse relationship [44, 45]. Makespan is a consumer-

driven QoS parameter; however, resource utilization service 

provider-driven parameter [46]. RU can be calculated by the 

ratio of the total Execution Time and capacity of the VM. In 

continuation of the above, RU of jth VM can be formulated 

using equation 10 as below. 

RUJ =
∑ ETij

n
i=1

MS
             (10) 

Average RU can be calculated using equation 11 

RUAVG =
∑ RUj

m
j=1

m
                         (11)  

4.3. Waiting Time  

It can represent by the difference between finishing time and 

execution time as given in equation 12. 

WTi = FTi − ETi     

          (12) 

Where i ∈ {1, 2, 3….n} 

4.4. Throughput 

This parameter indicates the number of tasks finished per unit 

of time. It is calculated using equation 13 

Throughput =
No of the task finished Successfully

makespan
         (13) 

4.5. Fitness function 

In this work, Fitness Function is defined as given in equation 

14: 

fit = Minimize (MS)          (14)  

Here MS has been calculated by equation 9. 

5. PROPOSED LB-FFSSA MODEL 

Figure 2 represents the proposed model for task scheduling 

and load balancing. First, a cloud user submits the task to 

Cloud Service Provider (CSP).CSP allocates the cloud 

resources, i.e., VMs to these tasks. This model schedules the 

tasks on VMs using proposed HFFSSA and balances the load 

in VMs using proposed Load balancing (LB) heuristics. 

Description of each component of the proposed model is 

given below: 

5.1. User’s Task 

In simulation-based assessment, it is vital to commit an 

investigation using actual workload traces. Here, two real 

datasets are used, Planet Lab and NASA Ames iPSC/860. 

Planet Lab traces is furnished as a part of the CoMon project, 

which is accessible from Beloglazov's GitHub repository 

(https://github.com/beloglazov/planetlab-workload-traces).  In 

this, CPU utilization data is fetched from 1000+ VMs from 

various heterogeneous servers located at 500 different places 

around the globe.  

It takes five minutes intervals for utilization measurements. 

Based on CPU utilization, this data is divided into ten 

categories. Each category represents a single-day workload, 

and each trace file has 288 readings. Workload traces were 

measured from March 2011 to April 2011. For the 

experiments, one-day workload (20110303) traces are used.  

For NASA Ames iPSC/860 hypercube, workload traces were 

fetched from 128 iPSC/860 nodes between October 1995 and 

December 1995. This workload consists of a mixture of 

interactive and batch jobs. This setup is located at NASA 

Ames Research Center. 
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Figure 2 Proposed LB-FFSSA Model 

5.2. Cloud Resources 

In Cloud Computing, computing resources provide from a 

virtual infinity pool of resources. These computing resources 

are known as Virtual Machines (VM), which consist of CPU 

cores, RAM, network bandwidth, cost, and other essential 

components. This work considers a single cloud data center 

model similar to the one offered by Amazon EC2. This 

datacenter consists of six heterogeneous VM types, listed in 

table 1, and two heterogeneous hosts, with enough capacity to 

serve all the VMs. These VM types belong to the general 

purpose instance group of the US East region. Proposed work 

assumes a set of virtual machines as VMj, where j ∈ {1: m}. 

Table 1 VM Instance type based on Amazon EC2 [26] 

VM 

TYPE 

Bandwidth 

 (Mbps) 

VCPU RAM(Gib) Price ($) 

a1.xlarge 3,500 4 4 0.102 

a1.metal 3,500 16 16 0.408 

t4g.small 2,085 2 2 0.0168 

t4g.large 2,780 2 8 0.16 

t3.mediu

m 

2085 2 4 0.03 

t3.xlarge 2780 4 32 0.05 

5.3. Hybrid Firefly Salp Swarm Algorithm (HFFSSA) 

This province shows the hybridization of two metaheuristic 

optimization approaches, SSA and FFA, and forms a new 

optimization algorithm, HFFSSA. This new approach utilizes 

the benefits of both SSA and FFA to map tasks with VMs in 

efficient way. Algorithm 3 shows the steps of HFFSSA. 

Firstly parameters are initialized in line 2, followed by 

defining the fitness function using equation 14. Line 3 defines 

fitness function using equation 14. This fitness function is 

selects the solution having minimum makespan. In line 4, the 

salp population is randomly initialized. After that, line 5 

calculates fitness of each population. In line 6, the best 

solution and best fitness are assigned to gbestsolution and 

gbestfitness, respectively. From lines 7 -13, the solution is 

updated using FFA (equation 5), but if condition in line 11 is 

not satisfied, it is updated using SSA using equation 3(line 

17). After updating the solution, amend it by lower and upper 

(line 19). Then line 20 calculates the fitness value for the 

solutions, and lines 21-23 update gbestfitness and 

gbestsolution. This complete process is repeated till the 

maxiteration. After the maxiteration, line 27 calls 

load_balance function for the final solution. This 

load_balance function equally distributes the load among 

VMs. Equal distribution of load improves resource utilization 

and minimize load imbalance factor. 

Global best solution is the best position among all the salp. It 

is assigned using line 22 in the propose HFFSSA. Local best 

solution is the salp’s best position among all the iteration. It is 

assigned using lines 11 &12. 

Input: Tasks Ti, where i ∈ {1: n} 

Output: Allocation of Ti  on VMj, where j ∈ {1: m}. 

1. Start 

2. Initialize lower, upper, number of iterations maxiteration, 

Population size np     

3. Define fitness function (fit) using Equation 14 

4. Initialize the salp population  SPx ∀ x =1: np randomly 
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5. Calculate the fitness of each solution            //fit(SPx) 

6.  Initialize  gbestsolution ⃪ solution of minimum fitness,                   

gbestfitness ⃪ minimum fitness value 

7.  while (it<maxiteration) 

8.  for each solution SPx(x=1 to np) 

9.  flag=0 

10.  for solutions SPi (i=1 to x) 

11.  if (fit(SPx)> fit(SPi)) 

12.  Update SPx using equation 5 

13.  flag=1 

14.  end if 

15.  end for 

16.  if  flag is zero 

17.  Update SPx using equation 3 

18.  end if 

19.  Amends the solution based on lower and upper 

20.  Calculate fit(SPx ) using equation 14 

21.  if fit(SPx ) < gbestfitness 

22.  Assign gbestsolution  ⃪  SPx  

23.  Assign gbestfitness  ⃪ fit(SPx) 

24.  end if 

25.  end for 

26.  end while 

27.  Call load_balance(gbestsolution)    //Algorithm 4 

28.  return gbestsolution 

29.  End 

Algorithm 3 HFFSSA 

5.4. Load Balancing HFFSSA (LB-FFSSA) 

In task scheduling, load balancing is a vital aspect affecting 

the entire system's performance. It is a technique in which a 

client's task is distributed among multiple servers to increase 

resource utilization and decrease makespan and execution 

time. A proper load balancing technique can (a) stop 

overloaded and underloaded situations, (b) improve the VM's 

efficiency (c) reduce makespan.  

To identify load imbalances in Cloud Environment, compare 

VM's Load (LoadVM) with the average load on all VMs 

(AvgLoadVM). It is determined by calculating the difference 

from the average load. The present load of ith VM is 

calculated using equation 15, where LENtaskj
 is the length of 

the jth task allotted to ith VM,  PCVMi
 is the total processing 

capacity of ith VM, and allot refers to the total allocated task 

to ith VM. 

LoadVM𝑖
=

∑ LENtask𝑗
Allot
j=1

PCVM𝑖

         (15) 

Here, processing capacity of ith VM can be determined by 

equation 16, where PEnum is the number of the processing 

element allotted to the VM, PElen is the length of the 

processing element in a million instructions per second 

(MIPS), VMBandwidth is allocated Bandwidth of ith VM, and 

VMRAM is allotted RAM of ith VM. 

PCVM = PEnum * PElen * VMBandwidth * VMRAM            (16) 

The average load of VM can be calculated using equation 17. 

‘m’ is the total no. of VM.    

AvgLoad
VM

=
∑ LoadVMI

m
i=1

m
          (17) 

Further Load imbalance factor (LIF) can be calculated by 

using equation 18  

 LIFVM =
∑ |AvgLoadVM−LoadVMI

|m
i=1

m
     (18) 

Based on load, VMs are categorized into three parts : (a) 

Overloaded – where VM has more load compared to Average 

Load, (b) Balanced - where VM has equal load compared to 

Average Load; and (c) Underloaded - where VM has less load 

compare to Average Load. When unbalanced, the tasks are 

migrated from the overloaded VM to the underloaded VM. 

Algorithm 4 shows the load balancing heuristic. 

load_balance (gbestsolution) 

1. Start 

2. for each VMj      ∀ j =1: m  

3. Determine the present load of VM ( LoadVM𝑖
)  using 

equation 15 

4. end for 

5. Determine the average load (AvgLoad
VM

) using equation 

17 

6. for each VMj      ∀ j =1: m 

7. if ( LoadVM𝑗.
<𝐴𝑣𝑔𝐿𝑜𝑎𝑑𝑉𝑀) 

8. VMj is grouped into Underloaded 

9. else if  (Load
VM𝑗.

>𝐴𝑣𝑔𝐿𝑜𝑎𝑑𝑉𝑀) 

10. VMj is grouped into Overloaded 

11. else VM is grouped as Balanced 
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12. end if 

13. end if 

14. end for 

15. Arrange the Overloaded group in decreasing order and 

the Underloaded in non-decreasing order 

16. for each task in each overloaded VM, search for the best 

suitable Underloaded  VM according to capacity. 

17. Update the underloaded and overloaded group 

18. End 

Algorithm 4 Load_balance Heuristic 

6. PERFORMANCE EVALUATION 

This work used two experimental series to evaluate the 

presented work's quality in this part. In the first series, well-

established benchmark functions, and in the next series, 

proposed work is tested using two real dataset workload 

traces, Planet Lab and NASA Ames iPSC/860. Both the series 

are compared with four metaheuristic techniques, namely 

SSA [12], FFA [23], GWO [13], and PSO [47]. 

6.1. Experimental Setup 

The proposed work is simulated on a laptop operating on 

Intel® Core™ i5-7200U CPU @ 2.50GHz × 4 with 8 GB of 

memory using the CloudSim [48] simulator tool. CloudSim is 

a simulator that provides a virtualized environment for the 

user to model, simulate and experiment with cloud 

applications. It also supports on-demand provisioning. 

6.2. Parameters Setting 

The simulation environment consists of a data center with six 

types of VM instances, as shown in table 1. For both 

experimental series, population size and maximum iteration 

consider as 50 and 1000, respectively. In both experiment 

series, the total no of VMs are taken 25, 50, 75,100, 125, and 

150. However, the number of tasks scheduled on VMs is 1052 

and 5000 for Planet Lab and NASA, respectively. Each 

reading is calculated by running the experiment 10 

independent times, and their mean value is noted as final 

result. Table 2 represents the parameters used in algorithms. 

 

Table 2 Parameters Used in Algorithms 

Algorithms Parameters 

HFFSSA 
r1 =2𝑒−(

4∗𝑚

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

2

 , r2 and r3 - Random Numbers from 0 to 1 

β0 = 1; and γ is a light absorption coefficient for a given medium; 

αt is a randomized parameter with 0 ≤  αt ≤ 1 

α0 is the initial randomness, 

𝛿 is the essential cooling factor(from 0.95 to 0.97). 

SSA r2 and r3 are Random Numbers from 0 to 1 

FFA β0 = 1; and γ is a light absorption coefficient for a given medium; 

αt is a randomized parameter with 0 ≤  αt ≤ 1 

α0 is the initial randomness . 

𝛿 is the essential cooling factor(from 0.95 to 0.97). 

GWO a=Random Numbers from 0 to 1 

PSO Acceleration coefficients C1, C2 = 1.5 
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6.3. Experiment Test Series 1: Benchmark function and 

Evaluation 

HFFSSA is analyzed and examined on 13 well-known 

benchmark functions in table 3. Furthermore, HFFSSA is 

compared with other famous metaheuristics, SSA, FFA, PSO, 

and GWO. The results after comparison are listed in table 4, 

which contains the worst, mean, and best deviation of fitness 

value. The results show that HFFSSA obtains a better fitness 

value than SSA, FA, GWO, and PSO for all functions except 

f7. For f2,f3,f4,f5,f6, and f12 HFFSSA gives optimum results. 

Table 3 Benchmark Functions 

F
u

n
ct

io
n

 

N
am

e 

F
u

n
ct

io
n

 N
o

 

Function Description Range 

D
im

en
si

o
n

 

Global 

Minimum 

A
ck

le
y

 

f1 
−𝑎𝑒𝑥𝑝 (−𝑏√

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − 𝑒𝑥𝑝 (

1

𝑑
∑ 𝑐𝑜𝑠𝑑

𝑖=1 (𝑐𝑥𝑖)) + 𝑎 +

𝑒𝑥𝑝(1)  

𝑥𝑖 ∈ [
−32.768,

32.768
], 

∀𝑖 = 1, . , 𝑑  

 

n 

𝑓(𝑥∗)
= 0, 𝑎𝑡 𝑥∗

= (0, . . ,0) 

G
o

ld
 S

ti
en

 

f2 

𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)] ∗ [30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1

2 +
48𝑥2 − 36𝑥1 ∗ 𝑥2 + 27𝑥2

2)]  
𝑥𝑖 ∈ [−2,2] 2 

𝑓(𝑥∗)
= 3𝑎𝑡 𝑥∗

= (0, −1) 

B
U

K
IN

 

N
.6

 

 f3 𝑓(𝑥) = 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|  

𝑥1 ∈ [−15, −5]        

, 𝑥2 ∈ [−3,3] 
2 

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (−10,1) 

S
p

h
er

e 

f4 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

 
𝑥𝑖 ∈ [−5.12,5.12] 

∀𝑖 = 1, . . , 𝑑 
d 

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (0, . . . ,0) 

B
o

h
ac

h
ev

sk
y
 

f5 

𝑓1(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1) − 0.4𝑐𝑜𝑠(4𝜋𝑥2) +
0.7𝑓2(𝑥) = 𝑥1

2 + 2𝑥2
2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1)𝑐𝑜𝑠(4𝜋𝑥2) +

0.3𝑓3(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3𝑐𝑜𝑠  

𝑥𝑖 ∈ [−100,100] 

∀𝑖 = 1,2  
2 

𝑓𝑗(𝑥∗)

= 0, 𝑎𝑡 𝑥∗

= (0,0), ∀𝑗
= 1,2,3 

D
ro

p
-

W
av

e 

F
u

n
ct

io
n

 

f6 𝑓(𝑥) =
−1 + 𝑐𝑜𝑠 (12√𝑥1

2 + 𝑥2
2)

. 05(𝑥1
2 + 𝑥2

2) + 2
 

𝑥𝑖 ∈ [−5.12,5.12] 

∀𝑖 = 1,2  
2 

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (0,0) 

B
o

o
th

 

f7 𝑓(𝑥) = (𝑥1 + 2𝑥2 + 7)2 + (2𝑥1 + 𝑥2 − 5)2 
𝑥𝑖 ∈ [−10,10]∀𝑖
= 1,2 

2 

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (1,3) 

B
ea

le
 

f8 
𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2

2)2 +
(2.625 − 𝑥1 + 𝑥1𝑥2

3)2  

𝑥𝑖 ∈ [−4.5,4.5]∀𝑖
= 1,2 

2 
𝑓(𝑥∗) = 0, 𝑥∗

= (3,0.5) 
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F

u
n

ct
io

n
 

N
am

e 

F
u

n
ct

io
n

 N
o

 
Function Description Range 

D
im

en
si

o
n

 

Global 

Minimum 

In
v

er
te

d
 

C
o

si
n

e 
W

av
e
 

f9 
𝑓(𝑥) = ∑ 𝑒

−(𝑥𝑖
2+𝑥𝑖+1

2 +0.5𝑥𝑖𝑥𝑖+1)

8𝑛−1
𝑖=1   

∗ 𝑐𝑜𝑠(4√𝑥𝑖
2 + 𝑥𝑖+1

2 + 0.5𝑥𝑖𝑥𝑖+1)  

𝑥𝑖 ∈ [−5,5]∀𝑖
= 1, . . , 𝑛 

n 
𝑓(𝑥∗)
= −𝑛 + 1 

B
an

an
a 

sh
ap

e 

f10 𝑓(𝑥) =
−100

10[(𝑥1 + 1)2 − (𝑥2 + 1)2] + 𝑥1
2 + 4

 
𝑥𝑖 ∈ [−1.5,1.5], 

 𝑥𝑖 ∈ [−2.5, .5] 
2 

𝑓(𝑥∗)
= −25, 𝑥∗

= (0) 

R
o

se
n

b
ro

ck
 

F
u

n
ct

io
n
 

f11 𝑓(𝑥) = ∑[100(𝑥𝑖 + 1 + 1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 

𝑥𝑖 ∈ [−5,10]∀𝑖
= 1, . . , 𝑑𝑥𝑖

∈ [
−2.048,

2.048
] ∀𝑖

= 1, . . , 𝑑 

n 
𝑓(𝑥∗) = 0, 𝑥∗

= (1, . . ,1) 

T
h

re
e 

h
u

m
p

 

ca
m

el
 

f12 𝑓(𝑥) = 2𝑥1
2 − 1.05𝑥1

4 +
𝑥1

6

6 + 𝑥1

𝑥2 + 𝑥2
2 

𝑥𝑖 ∈ [−5,5]∀𝑖
= 1,2 

2 

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (0,0) 

E
as

o
m

 

f13 𝑓(𝑥) = −𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠(𝑥2)𝑒𝑥𝑝(−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2) 
𝑥𝑖 ∈ [−100,100] 

∀𝑖 = 1,2 
2 

𝑓(𝑥∗)
= 0 𝑎𝑡 𝑥∗

= (𝜋, 𝜋) 

Table 4 Comparison Results of Benchmark Functions 

Function 

No 

Metrics HFFSSA FFA SSA GWO PSO 

f1 

Best 4.40E-16 19.52678095 6.2148682 20.9087011 1.21E+01 

Mean 4.09E-01 1.96E+01 1.12E+01 21.185129 1.26E+01 

Worst 1.22737352 19.57565031 13.476681 21.3306324 1.32E+01 

f2 

Best 3 3 3 3 3.08 

Mean 3.00E+00 3.00E+00 3.03E+00 3.00000013 3.3 

Worst 2.99999 3 3.0390328 3.00000039 3.67 

f3 

Best 0 0.005321134 0.0061328 0.26533978 7.78E-02 

Mean 0 1.77E-02 6.90E-03 0.30530532 1.20E-01 

Worst 0 0.042311452 0.007642 0.32353482 1.87E-01 
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f4 

Best 0 2.02E-24 2.5084002 2832.89282 2.62E+01 

Mean 0 7.85E-01 4.18E+00 3661.56312 2.90E+01 

Worst 0 2.355692017 5.8455072 4266.45283 3.13E+01 

f5 

Best 0 0.00E+00 7.33E-15 0 2.74E-01 

Mean 0 0.00E+00 3.84E-14 0 3.17E-01 

Worst 0 0.00E+00 3.12E-14 0 4.02E-01 

f6 

Best -1 -0.93624533 -0.99796 -1 -9.36E-01 

Mean -1 -9.36E-01 -9.57E-01 -1 -9.67E-01 

Worst -1 -0.93624533 -0.936179 -1 -9.97E-01 

f7 

Best 0 1.52E-28 3.09E-13 1.43E-09 9.91E-04 

Mean 1.67E-01 2.46E-25 1.02E-10 4.02E-09 6.10E-03 

Worst 0.5011 6.68E-25 3.01E-10 7.18E-09 1.01E-02 

f8 

Best 2.95E+00 3.63E-27 0.0033244 0.49189747 5.61E-03 

Mean 2.95E+00 1.09E-26 1.00E-02 4.96E-01 3.23E-01 

Worst 2.95E+00 2.09E-26 0.0158038 0.49803542 9.46E-01 

f9 

Best -19.5389692 -11.9898383 -12.64006 -22.657141 -9.60E+00 

Mean -1.26E+01 -6.95E+00 -1.18E+01 -22.328024 -7.61E+00 

Worst -11.309857 -2.93E-07 -10.77779 -21.78783 -6.51E+00 

f10 

Best -2.50E+01 23.42221271 -3.25E+08 -92642.501 -2.95E+05 

Mean -26.857968 1.99E+01 -4.61E+09 -10895286 -1.34E+05 

Worst -30.573905 16.0716999 -1.31E+10 -2.55E+07 -8.95E+04 

f11 

Best 3.90E+01 37.41 76.36 38.4486491 6.89E+02 

Mean 3.90E+01 3.78E+01 9.29E+01 37.8766618 8.57E+02 

Worst 3.90E+01 38.33 108.98 37.1852367 9.66E+02 

f12 

Best 0 2.75E-26 2.84E-14 0 5.61E-04 

Mean 0 3.01E-26 6.14E-13 0 1.33E-03 

Worst 0 3.54E-26 1.40E-12 0 1.97E-03 
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f13 

Best -1 -1 -1 -1 -1.24E-01 

Mean -.980521 -6.67E-01 -9.50E-01 -1 -4.96E-02 

Worst -9.42E-01 0.00E+00 -0.892552 -1 -6.59E-05 

6.4. Experiment Test Series 2 and Evaluation 

The performance of the proposed work is also analyzed using 

Planet Lab and NASA datasets by comparing it with the 

existing metaheuristic algorithm concerning for QoS metrics 

given in section 4. For comparison, all the algorithms are 

implemented in the same environment.  

6.4.1. Results and Discussion 

As discussed above, the experiment runs on two real-world 

datasets, one from Planet Lab and another from NASA. 

Tables 5 and 6 show the obtained result. After analysis of 

table 5, it is observed that LB-FFSSA performs better than 

others. Initially, when the number of VMs was less, it showed 

superiority over others. However, as the number of VM 

increased, the scheduling of tasks became effortless; thus, the 

difference between proposed work performance and others 

became lesser. Comparative graphs for discussed QoS are 

shown in figure 3 to figure 7 using the Planet Lab dataset, and 

figure 8 to figure 12 contain results using NASA. 

 Makespan 

It can be observed by figures 3 and 8 that LB-FFSSA 

minimizes makespan as compared to competitive algorithms. 

It is calculated using equation (9). For Planet Lab workload, 

LB-FFSSA minimizes makespan by an average of 20.7%, 

22.3%, 15.1%, and 24.7% compared to PSO, GWO, SSA, and 

FFA, respectively. For NASA workload, LB-FFSSA 

minimizes makespan by an average of 11.8%, 32.3%, 16%, 

and 15.2% compared to PSO, GWO, SSA, and FFA, 

respectively. 

 Load Imbalance Factor (LIF) 

Figures 4 and 9 show that proposed work minimizes LIF as 

compared to other algorithms. It is calculated using equation 

18. For Planet Lab workload, LB-FFSSA minimizes LIF by 

an average of 41%, 35%, 31.6%, and 65.8% compared to 

PSO, GWO, SSA, and FFA, respectively. For NASA 

workload, LB-FFSSA minimizes LIF by an average of 29.9%, 

22%, 34%, and 50.4% compared to PSO, GWO, SSA, and 

FFA, respectively. 

 Throughput 

Figures 5 and 10 show that LB-FFSSA improves throughput 

as compared to other algorithms. It is calculated using 

equation 13. LB-FFSSA improves throughput by an average 

of 18.6%, 13%, 19.1%, and 42.1% for Planet Lab workload 

and 8.5%, 10.6%, 10.6%, and 23.4% for NASA workload 

compared to PSO, GWO, SSA, and FFA, respectively.  

 Resource Utilization (RU) 

It can be seen by figures 6 and 11 that proposed model 

efficiently improves RU using LB heuristic. RU is calculated 

using equation 11. LB-FFSSA improves RU by an average of 

20%, and 40% for Planet Lab workload and 33.3%, and 

33.3% for NASA workload compared to GWO and FFA, 

respectively.  

 Waiting Time 

Figures 7 and 12 show that LB-FFSSA minimizes waiting 

time compared to other competitive algorithms. It is 

calculated using equation 12. LB-FFSSA improves WT by an 

average of 26.5%, 13.8%, 16.7%, and 50% for Planet Lab 

workload and 12.8%, 6%, 19.3%, and 36.3% for NASA 

workload compared to PSO, GWO, SSA, and FFA, 

respectively. 

 
Figure 3 Makespan of Proposed and Existing Algorithm 

Using Planet Lab Dataset 

 
Figure 4 Load Imbalance of Proposed and Existing Algorithm 

Using Planet Lab Dataset 
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Table 5 Comparative Results of the Existing and the Proposed Algorithm for QoS Metrics Using Planet Lab Dataset 

QoS Metrics No. of VM 

Algorithms 

PSO GWO SSA FFA LB-FFSSA 

M
ak

es
p

an
 

(S
ec

) 

25 19.915 20.191 15.79 19.899 15.713 

50 10.775 11.717 10.902 11.316 8.082 

75 7.62 6.804 7.896 8.484 6.141 

100 6.09 7.635 6.466 6.891 5.549 

125 6.091 5.563 5.639 6.256 4.848 

150 4.59 4.397 4.817 5.125 3.764 

Average 9.2 9.4 8.6 9.7 7.3 

L
o

ad
 I

m
b

al
an

ce
 

25 5.487 5.477 3.072 7.643 2.942 

50 2.696 1.999 2.766 5.766 1.459 

75 1.777 1.204 2.022 4.293 1.057 

100 1.394 1.352 1.459 1.557 0.879 

125 1.044 1.006 1.259 2.285 0.933 

150 1.034 0.825 0.888 1.068 0.768 

Average 2.2 2 1.9 3.8 1.3 

R
es

o
u

rc
e 

U
ti

li
za

ti
o

n
 (

in
 %

) 

25 0.5827 0.5731 0.566 0.4081 0.5835 

50 0.5248 0.4285 0.5122 0.3499 0.591 

75 0.4828 0.4926 0.4781 0.2958 0.5157 

100 0.4515 0.3565 0.4311 0.4149 0.5005 

125 0.3744 0.3911 0.3942 0.2741 0.465 

150 0.3912 0.4129 0.3812 0.3349 0.4581 

Average 0.5 0.4 0.5 0.3 0.5 
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T
h

ro
u
g

h
p
u

t 

25 44.68 44.1 56.34 31.27 56.69 

50 81.89 81.31 80.87 51.88 108.27 

75 114.88 132.04 110.83 62.46 141.63 

100 143.65 149.04 134.13 106.93 177.2 

125 157.69 165.83 153.28 99.52 181.92 

150 186.95 208.28 189.61 166.25 230.84 

Average 121.6 130.1 120.8 86.4 149.4 

 

W
ai

ti
n

g
 T

im
e 

(i
n

 S
ec

) 

 

25 7.821 7.733 5.333 9.836 5.374 

50 4.085 2.712 4.114 7.433 3 

75 2.761 2.184 2.894 6.088 2.077 

100 2.184 1.996 2.226 2.414 1.723 

125 1.695 1.625 1.862 2.874 1.502 

150 1.605 1.409 1.445 1.583 1.332 

Average 3.4 2.9 3 5 2.5 

 

 

Figure 5 Throughput of Proposed and Existing Algorithm Using Planet Lab Dataset 
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Figure 6 Resource Utilization of Proposed and Existing Algorithm Using the Planet Lab Dataset 

 

Figure 7 Waiting Time of Proposed and Existing Algorithm Using the Planet Lab Dataset 

Table 6 Comparative Results of the Proposed and Existing Algorithm for QoS Metrics Using NASA Ames iPSC/860 

QoS Metrics No. of VM 
Algorithms 

PSO GWO SSA FFA LB-FFSSA 

M
ak

es
p

an
 (

in
 S

ec
) 

25 1044.5 938.7 984.8 824.1 660.3 

50 622.6 910.3 704 677.8 589.4 

75 563.1 896.3 607.1 631.3 554.7 

100 542 888.5 588.3 650.7 539 

125 545.3 686.8 579.8 618.3 531 

150 509.4 691.7 550.1 566.4 500.9 

 637.8 835.4 669 661.4 562.6 
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L
o

ad
 I

m
b

al
an

ce
 

25 277.31 160.86 269.33 328.71 150.7 

50 143.06 145.59 156.04 229.76 105.49 

75 106.64 132.47 118.81 188.94 70.46 

100 89.92 101.88 108.95 118.09 76.85 

125 81.05 70.68 86.9 107.3 68.67 

150 70.63 80.47 76.7 113.7 66.94 

 128.1 115.3 136.1 181.1 89.9 

R
es

o
u

rc
e 

U
ti

li
za

ti
o

n
 (

in
 %

) 

25 0.453 0.44 0.48 0.246 0.546 

50 0.353 0.264 0.337 0.238 0.386 

75 0.262 0.153 0.243 0.151 0.267 

100 0.213 0.168 0.201 0.136 0.219 

125 0.162 0.149 0.159 0.124 0.164 

150 0.177 0.127 0.139 0.106 0.179 

 0.3 0.2 0.3 0.2 0.3 

T
h

ro
u

g
h
p

u
t 

25 3.62 4.14 3.69 2.68 4.53 

50 4.33 4.11 4.13 2.9 4.68 

75 4.54 3.82 4.36 3.4 4.63 

100 4.44 4.16 4.34 4.43 4.49 

125 4.51 4.55 4.19 4.21 4.77 

150 4.52 4.3 4.26 4.14 4.8 

 4.3 4.2 4.2 3.6 4.7 

W
ai

ti
n

g
 T

im
e 

(i
n

 S
ec

) 

25 23.88 18.24 22.81 31.54 17.93 

50 13.58 12.45 14.06 19.41 11.77 

75 10.91 11.38 12.6 10.94 9.9 

100 9.65 9.89 11.34 18.03 9.11 

125 8.79 8.76 10.07 10.76 8.38 

150 8.24 8.72 9.94 12.19 8.05 

 12.5 11.6 13.5 17.1 10.9 
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Figure 8 Makespan of Proposed and Existing Algorithms Using NASA Dataset 

 

Figure 9 Load Imbalance of Proposed and Existing Algorithms Using NASA Dataset 

 

Figure 10 Throughput of the Proposed and Existing Algorithm Using the NASA Dataset 
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Figure 11 Resource Utilization of Proposed and Existing Algorithms Using the NASA Dataset 

 

Figure 12 Waiting Time of Proposed and Existing Algorithms Using the NASA Dataset 

7. CONCLUSION AND FUTURE WORK 

This research work proposes an efficient LB-FFSSA 

algorithm in a cloud computing environment to achieve 

optimal load balanced task scheduling. This algorithm 

optimizes makespan, resource utilization, waiting time, 

throughput, and load imbalance factor. LB-FFSSA works in 

two phases 1) Task allocation is accomplished using proposed 

HFFSSA, i.e., hybridization of FFA and SSA. 2) Then, the 

best result is rescheduled using the proposed load-balancing 

(LB) heuristic. This load balancing is required in industries to 

meet the efficient resources utilization, which reduces 

resource wastage and helps to optimize costs. The HFFSSA is 

tested on 13 global benchmark functions, and it is proved that 

HFFSSA outperforms other metaheuristics. These benchmark 

functions are used to evaluate the performance of 

metaheuristic. If an algorithm performs well on these 

benchmark test then it can be used as effective approach to 

solve real- world problems. Further, the proposed LB-FFSSA 

is evaluated using CloudSim on two real workloads (Planet 

lab and NASA) and compared with other metaheuristics, i.e., 

SSA, GWO, FFA, and PSO. Simulation results proves that 

proposed model improves by an average up to 32.3%, LIF by 

50.4%, throughput by 42.1%, resource utilization by 40%, 

and waiting time by 50%.  In the future, the work can be 

extended by optimizing energy to reduce carbon footprint. 

Other QoS parameters such as, cost, reliability, and 

availability can be considered in future work. 
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