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Abstract – Wireless sensor networks (WSNs) are useful in many 

industries due to their capacity to perceive their surroundings 

and relay that information to base stations. Improving energy 

efficiency in wireless sensor networks while still meeting Quality 

of Service (QoS) requirements like low latency and data security 

is no easy feat. There have been numerous suggestions for 

making networks more energy efficient without reducing service 

quality, but only a few have been proven to work. This study 

recognizes the paucity of prior thorough work in the area and 

sets out to remedy that. The primary objectives of this research 

into wireless sensor networks are to optimize energy 

consumption, reduce latency, and boost service quality. Since 

these networks are so pervasive in cutting-edge industries like 

healthcare, defence, and navigation, accurately predicting their 

energy efficiency and data transfer rates is essential. This study 

uses a rigorous strategy to isolate and address the underlying 

causes of energy efficiency and increased delay. Security and the 

average transmission latency are still taken into account. For this 

reason, the proposed approach protocol, which enhances the 

energy efficiency gains by combining the EESAA protocol for 

effective clustering with the proposed approach Protocol. The 

proposed algorithm provides high efficiency in terms of energy 

consumption, which results in increased lifetime of the nodes 

comprising the wireless sensor network. 

Index Terms – Wireless Sensor Network (WSN), Lifetime 

Maximization, Internet of Things (IoT), Survivability, Quality of 

Service (QoS), Whale Optimization, LEACH, SEP, H-LEACH, 

MAMC, PEGASIS. 

1. INTRODUCTION 

A self-configuring, low-maintenance network design is 

always an important goal in light of recent developments in 

the networking industry [1]. The many sensor nodes and 

central base stations that make up a wireless sensor network 

are described in [2]. These sensor nodes are placed in a 

dispersed fashion in predetermined locations, where they may 

measure and report on factors including air quality, 

temperature, and humidity [3]. 

Research into wireless sensor networks' impact on energy use, 

latency, security, data aggregation, and quality of service has 

increased in recent years. There are still a lot of obstacles to 

overcome, though. Sensor nodes pose a multitude of dangers 

to network safety due to their limited power reserves and poor 

energy usage. The dispersed nature of WSNs makes data 

gathering particularly difficult. Humans are unable to do 

many tasks that would otherwise be accomplished because of 

the complexity introduced by the lack of clarity surrounding 

the deployment area for a sensor node in a WSN. Despite the 

fact that a lot of work has gone into enhancing QOS, it is still 

impossible to ensure its quality [4]. 

QOS in WSN is difficult to sustain because of the frequent 

interruptions caused by the use of energy by sensor nodes. 

While there is much potential in data aggregation, little has 

been done to ensure that quality of service and security are not 

compromised. The fuzzy logic method pioneered by Singh et 

al. [5] enables the automatic reporting of sensor data that 

integrates knowledge from multiple fields. However, we still 

need a more efficient approach to protecting sensitive 

information and decreasing energy use without lowering 

service standards. Using LEACH and other protocols, this 

work aims to present an innovative and superior way for 

prolonging the lifetime of wireless sensor nodes and reducing 

their power consumption. 

The underlying issue with WSNs is the tension between low 

latency and high energy efficiency. A promising strategy for 

the efficient and timely collecting of future data is provided as 

a potential solution to this problem. 

The problem of energy gaps is extremely important in WSNs. 

It is necessary to create a hybrid approach to reduce the 

detrimental effects of QOS on sink nodes. 

Maintaining continuous communication depends on extending 

the battery life of wireless nodes. This problem is currently 

being studied. This area of study needs to be expanded upon 

so that efficient energy mechanisms can be created, leading to 

high-quality QOS processes. 
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Recent years have seen significant advancements in wireless 

sensor network technology, particularly in areas like as energy 

efficiency, network endurance, and service quality. The 

military and the medical field, among others, both rely 

heavily on sensor nodes for collecting data. Due to the rise in 

demand across all sectors, three of the most pressing issues 

that must be addressed are security, energy efficiency, and 

node localization. 

 The study's goal is to cut down on wait times and 

lengthen the life of networks. 

 A proposed approach will provide for the greatest 

possible node security during data aggregation. Based on 

these findings, a better system has been proposed. 

The first section presents a brief overview of the research 

problem, while the second discusses relevant literature and 

any gaps in the existing knowledge base, and the third 

describes the technique and experimental design. Results are 

reported in Section 4, and interpretations are drawn in Section 

5. 

2. RELATED WORK 

The ability to collect and relay sensor data to a central hub is 

largely responsible for the rise in popularity of wireless sensor 

networks (WSNs). Thanks to the Internet of Things, WSNs 

have found a wider range of uses in recent years, which has 

presented both new obstacles and opportunities. Improved 

energy economy is essential for IoT-enabled WSNs due to the 

need of meeting Quality of Service (QoS) standards such as 

latency and data security. Recent research in this area is 

evaluated critically in this survey of the relevant literature. 

Mokabberi et al. detail how to create QoS-aware and energy-

efficient IoT networks[1]. The research is focused on 

evaluating and improving IoT service composition 

mechanisms with a specific emphasis on scalability and QoS, 

strategies to reduce energy use without compromising 

functionality. This research has helped to shed light on several 

serious problems plaguing IoT systems. 

The research in [2] aims to create a novel networking concept 

for IoT devices called Light-based IoT (LIoT) that relies on 

visible light communication (VLC) for data exchange and 

energy harvesting. The primary goals are to develop a self-

sustaining IoT network and improve energy efficiency. The 

methodology combines theoretical concepts with practical 

experiments using prototype LIoT nodes equipped with 

photovoltaic cells and optical transmitters. Notable 

advantages include reduced reliance on batteries and 

enhanced network efficiency through energy relay and node 

prioritization. However, LIoT's effectiveness depends on 

available indoor illumination, and interference effects can 

impact performance in well-lit environments. Main results 

include 18% faster recharge times and validation of the 

proposed energy relay and node prioritization strategies, 

highlighting LIoT's potential for sustainable IoT networks, 

especially in controlled indoor environments. 

IoT applications often involve battery-powered devices, 

making energy efficiency a paramount concern to prolong 

network lifetimes and reduce environmental impacts. To 

tackle this challenge, [3] presents an innovative energy-

efficient alternating optimization framework. This framework 

optimizes a range of parameters, including beamforming 

vectors, power allocation coefficients, and passive-

beamforming at backscatter tags, with the primary objective 

of maximizing energy efficiency in cooperative IoT networks. 

The proposed methodology employs a two-stage approach, 

utilizing Zero Forcing (ZF)-based active-beamforming and 

efficient clustering in the first stage, and transforming the 

non-convex passive-beamforming optimization problem into 

a Semi-Definite Programming (SDP) problem in the second 

stage. The research's advantages lie in its effective 

optimization of energy efficiency, exploring the potential of 

Backscatter and NOMA techniques, and offering insights into 

the complex interplay of various parameters in IoT networks. 

However, it is essential to acknowledge the complexity of the 

mathematical techniques involved and the limited 

applicability outside the context of Backscatter and NOMA-

based IoT networks. Nonetheless, this research provides a 

promising solution to enhance energy efficiency in 

cooperative IoT networks, contributing to the sustainable and 

efficient operation of IoT systems.  

Fog Computing (FC) enhances the Quality of Service (QoS) 

for latency-critical IoT applications like autonomous driving, 

haptics, and Augmented Reality (AR) by bringing cloud 

processing and storage closer to end devices. Current resource 

provisioning methods prioritize latency and cost-efficiency, 

assuming that fog nodes are fully reliable and energy-

efficient. However, in practice, fog nodes are neither 100% 

reliable nor energy-efficient. [4] Introduces a novel resource 

provisioning framework for fog nodes, considering reliability 

and energy efficiency alongside latency-sensitivity and cost-

effectiveness. It employs an analytical framework to model 

fog node failures and recoveries, optimizing resource 

provisioning to minimize cost and energy consumption. 

Through analysis, it examines the interplay of latency, 

reliability, cost, and energy in resource provisioning, 

demonstrating a 35% improvement in cost and a 37% 

reduction in energy consumption while maintaining latency-

sensitivity and reliability compared to non-optimized 

approaches.  

In [6], the author utilizes Node MCU, a microcontroller with 

Wi-Fi capabilities, to connect various sensors and home 

appliances, forming an IoT-based home automation system. 

An Android application facilitates user-friendly control, with 

sensors collecting data sent to the cloud for analysis and 
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remote operation. This approach harnesses IoT and cloud 

technology to enhance automation, offering advantages such 

as energy conservation, remote appliance control, improved 

security, cost-effectiveness, and customization. Overall, the 

study successfully implements a promising home automation 

system with potential for future AI and security 

enhancements.  

The work in [7] addresses the challenge of data consistency in 

energy-efficient medium access control protocols for IoT 

applications. It introduces an energy-efficient data consistency 

protocol with data aggregation to accommodate various data 

rates. The study categorizes nodes into event and continuous 

monitoring nodes using machine learning-based logistic 

classification. Continuous monitoring nodes have their 

sampling rates optimized through the Optimized sampling 

rate data aggregation algorithm. The research employs an 

energy-efficient time division multiple access (EETDMA) 

protocol for continuous monitoring and proposes an energy-

efficient bit map assisted (EEBMA) protocol for event-driven 

nodes. Simulation results demonstrate the superiority of this 

approach over existing methods, offering improved energy 

efficiency and data consistency. 

The objective in [8] is to create an efficient fault detection 

scheme for Solar Insecticidal Lamps in IoT systems (SIL-

IoTs) that have limited computational resources. The 

proposed Binary Sliding Window (BSW) method addresses 

this challenge by storing consecutive states as binary values, 

reducing memory consumption, and adjusting fault detection 

sensitivity using multiple zeros. It outperforms two prior 

knowledge-based methods and several machine learning 

algorithms by maintaining a balance between high accuracy, 

low false alarms, and low missing alarms. Additionally, the 

BSW method minimizes energy consumption and data 

transmission, making it suitable for resource-constrained IoT 

devices. The BSW method offers an effective solution for 

fault detection in SIL-IoTs, enhancing their energy efficiency 

and performance. 

Ramkumar and Balasubramanian in [9] focus on addressing 

energy efficiency challenges in IoT networks, aiming to 

extend network lifespan while reducing energy consumption. 

Their work employs a novel approach called bacterial colony 

optimization for Cluster-Head (CH) selection in the LEACH-

C clustering algorithm. This approach enhances global search 

capabilities and optimizes CH placement. Performance 

analysis using metrics like residual energy, active node count, 

and throughput reveals significant improvements. Simulation 

results indicate an extended network lifespan, an increase in 

active nodes, and reduced energy consumption as the key 

outcomes of this energy-efficient algorithm. 

Ding et al. [10] addresses the challenges of dynamic topology 

changes in software-defined wireless sensor networks 

(SDWSNs) for IoT applications, which can lead to 

performance degradation. It introduces an energy-efficient 

topology control (TC) mechanism designed to maximize 

network energy efficiency during dynamic topology 

maintenance. The proposed approach involves a hierarchical 

SDWSN architecture comprising cluster-based sensing 

networks and programmable relay networks. Two TC 

algorithms, one for cluster subnetworks and another for relay 

subnetworks, are presented. The cluster subnetwork algorithm 

mitigates link interference through power control and rate 

allocation, while the relay subnetwork algorithm utilizes a 

centralized approach based on a Markov decision process 

(MDP) model to optimize the relay-network state. Simulation 

results demonstrate improved energy efficiency in both 

subnetworks of time-varying SDWSNs. 

Nwadiugwu et al. in [11] address the challenge of dealing 

with redundant data in IoT systems, where devices collect and 

store information in binary form (0's and 1's), resulting in 

significant redundancy. Existing solutions involve tier-based 

network layers that compress and cluster data to reduce 

energy consumption, but they still lead to packet losses and 

redundancies. The article proposes a two-tier layered network 

approach, with packet exchange primarily occurring in the top 

layer to lower energy consumption and enhance system 

reliability.  

It employs the Voronoi cell-based correlation cluster 

formation (VC3F) technique to segregate packets into 

clusters, identifies cluster heads responsible for redundant 

packet removal, and uses optimized multi-objective flower 

pollination (MO-FPO) routing to transfer redundant packets 

to the edge-tier layer. There, novel fast-fully connected neural 

network (F2CNN) accelerator and Lempel–Ziv–Welch 

(LZW) data compression techniques are applied to process the 

redundant data effectively. 

To improve routing efficiency and security, in [12] 

Sivasankari and Kamalakannan propose a Fuzzy Logic based 

Man-in-the-Middle attack detection and Cuckoo Search 

Algorithm (FLCSA). Fuzzy logic is used to detect intrusion 

nodes based on factors like node degree, energy, and delay, 

while the Cuckoo Search Algorithm optimizes routing by 

selecting efficient relays considering node energy, link 

lifetime, and bandwidth. Simulations demonstrate that this 

approach enhances throughput, increases detection accuracy, 

and reduces network delay. 

IoT-based wireless sensor networks often encounter noise that 

distorts sensor readings and increases power consumption, 

reducing the sensor nodes' longevity. To mitigate this issue, 

[13] introduces the use of Finite-Impulse Response (FIR) 

filters as a signal pre-processing technique. FIR filter 

complexity depends on the number of adders and logic 

depths, with multiplication speed being a critical factor. The 

Booth method is employed to speed up multiplication by 

reducing partial product rows.  
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The research by Chaurasiya et al [14] focuses on developing 

an Energy-Efficient Hybrid Clustering Technique (EEHCT) 

for Multilevel Heterogeneous Wireless Sensor Networks 

(WSNs), particularly within the context of the Internet of 

Things (IoT). The primary objective is to enhance energy 

efficiency and network longevity while addressing challenges 

like energy consumption, node heterogeneity, multilevel 

clustering, and IoT integration. The proposed methodology 

combines various clustering mechanisms to optimize energy 

efficiency and network scalability. Advantages of EEHCT 

include improved energy efficiency, support for 

heterogeneous nodes, scalability, and IoT compatibility, while 

potential drawbacks include increased network complexity 

and implementation challenges. Overall, this research offers 

valuable insights and techniques for achieving energy-

efficient clustering in heterogeneous WSNs, making it 

relevant for IoT applications. 

Many IoT devices employ rechargeable batteries, which 

degrade over time due to various factors. To address this 

issue,  [15] introduces LECA_SOH, an innovative clustering 

approach that relies on predicting battery State of Health 

(SoH). LECA_SOH's primary goal is to forecast how cluster 

head selection impacts battery SoH, enabling the network to 

opt for nodes that will experience less battery degradation in 

future rounds, ultimately extending the system's lifespan. 

Results indicate that this approach enhances the network's 

long-term durability and augments the number of recharging 

cycles when compared to conventional energy-efficient 

methods. 

The objective of the research in [16] is to design and construct 

a dual-axis solar tracking system aimed at enhancing solar 

energy collection efficiency by following the sun's movement, 

overcoming the limitations of fixed solar panels. The system, 

with its simple and economical design, is applicable for small 

to medium-sized solar installations, offering significant 

increase in energy collection compared to fixed panels. This 

article presents several real-world examples of how IoT 

energy management solutions have been put into practice. 

The principal objective of [17] is to introduce an innovative 

Opportunistic Backscatter Communication (OBM) protocol 

tailored explicitly for IoT networks that rely on energy 

harvesting as their power source. This protocol confronts a 

multitude of intricate challenges intrinsic to such networks. It 

addresses the intricate task of harmonizing the coexistence of 

diverse devices, encompassing both wireless energy 

harvesting devices and backscatter tags, within the intricate 

fabric of a heterogeneous IoT milieu. It adeptly manages the 

mitigation of transmission collisions, thereby substantively 

elevating the overall network's efficiency. Notably, the 

protocol excels in the domain of energy efficiency by 

judiciously maximizing the utilization of harvested energy for 

data transmission while concurrently minimizing energy 

wastage. Furthermore, it adeptly establishes a harmonious 

symbiosis between wireless data communication and energy 

harvesting through the implementation of pioneering 

mechanisms. Notably, the OBM protocol yields significant 

enhancements in throughput for both wireless devices and 

backscatter tags, all while preserving network performance, 

even under heightened network density scenarios. Ultimately, 

the protocol's advantages manifest in its remarkable capacity 

to augment network throughput and energy efficiency, foster 

harmonious coexistence, and efficiently manage escalating 

network density. The primary outcomes of this research 

underscore the substantial enhancements in network 

performance when contrasted with conventional systems, with 

a particular emphasis on superior throughput and energy 

efficiency. It proficiently harnesses available energy 

reservoirs for data transmission, thereby facilitating the 

seamless integration of backscatter communication within 

wireless-powered networks. In essence, the OBM protocol 

proffers a comprehensive and sophisticated solution for the 

optimization of resource utilization in heterogeneous IoT 

networks. 

Energy-harvesting Internet of Things (IoT) networks can 

benefit from the opportunistic backscatter communication 

solutions discussed by Iqbal and Lee [17]. Their purpose 

relies heavily on the utilization of low-power forms of 

communication. 

An enhanced energy-balanced routing method for Mobile Ad-

Hoc Networks (MANETs) is provided by Satyanarayana et al. 

[18].  In the context of MANETs, efficient energy utilization 

is a pressing concern. To address this challenge, the authors 

propose an enhancement strategy aimed at reducing energy 

consumption and prolonging the network's lifespan. Thier 

approach focuses on achieving better energy equilibrium 

among sensor nodes within clusters, thereby minimizing 

energy dissipation during network communications. A pivotal 

component of this enhanced strategy is the method for 

selecting cluster heads. The authors also introduced an 

updated Time Division Multiple Access (TDMA) schedule. 

This work in [19] is driven by the imperative challenge of 

enabling energy harvesting nodes to efficiently integrate into 

centrally controlled multi-hop wireless networks. Energy 

harvesting nodes, reliant on ambient energy sources like solar 

panels, confront a profound predicament due to their 

constrained and erratic energy availability. Traditional 

network joining mechanisms often necessitate excessive 

energy consumption, rendering them infeasible for energy-

constrained nodes. To address this pivotal issue, the article 

introduces the innovative concept of Dual-Range 

Bootstrapping (DRB). DRB orchestrates the seamless 

assimilation of energy harvesting nodes into the network 

through an energy-efficient process. This involves the 

exchange of long-range packets with a central unit to acquire 
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essential network coordination and timing data. Subsequently, 

nodes enter an energy-efficient dormant state until their 

involvement in multi-hop network operations is required. 

DRB exhibits notable advantages, including remarkable 

energy efficiency by minimizing bootstrapping energy 

requirements and ensuring low variability, thereby enabling 

energy harvesting nodes to judiciously manage their limited 

resources. Furthermore, extensive simulations and testbed 

experiments underscore DRB's superiority over traditional 

joining mechanisms in terms of data transmission efficiency, 

temporal network coverage, and overall network participation. 

This research makes a substantial contribution to the field by 

presenting a pragmatic and innovative solution that empowers 

energy harvesting nodes to seamlessly and effectively 

integrate into multi-hop wireless networks, thereby enhancing 

their data transmission capabilities and prolonging their 

network participation.  

The work by Xu et al. [20] endeavors to address the pivotal 

challenge of energy-efficient relay transmission within the 

domain of IoT communications. The central quandary it 

confronts is the imperative to curtail energy consumption 

while ensuring the effectiveness of data transmission, a 

critical concern in IoT scenarios where power conservation is 

paramount. To tackle this issue, the study harnesses an 

analytical and optimization-driven methodology grounded in 

mathematical modeling. It meticulously scrutinizes two 

distinct energy transfer modes, namely time switching and 

power splitting, employing mathematical expressions and 

optimization frameworks to derive optimal power allocation 

and time allocation strategies for each mode. Additionally, the 

research investigates the intricate interplay between energy 

consumption and latency constraints. This approach boasts 

several advantages, including the mathematical rigor that 

guarantees precision, a thorough examination of the energy-

latency tradeoff, and practical applicability to IoT contexts. 

The principal outcomes of this study encompass the revelation 

of a pronounced tradeoff between energy consumption and 

transmission latency, the identification of power splitting as 

the preferred mode for energy efficiency, and the illumination 

of conditions under which relay transmission, coupled with 

wireless power transfer, outperforms direct transmission in 

energy conservation. Furthermore, the research equips 

practitioners with insights into the real-time determination of 

optimal transmission configurations for individual IoT 

sessions, thereby facilitating the design of IoT systems that 

prioritize sustainability and energy frugality. 

In the context of IoT applications, particularly those involving 

end nodes (ENs) placed in challenging-to-reach locations 

where battery replacement is impractical, the demand for 

high-energy efficiency is paramount. The Long-Range Wide 

Area Network (LoRaWAN) protocol, designed for IoT, 

strives for low-energy consumption. However, LoRaWAN's 

energy efficiency relies heavily on the configuration of 

transmission power, traditionally determined through path 

loss and shadow fading modeling and link budget analysis. 

These conventional methods do not account for variations 

induced by environmental factors. The study by González-

Palacio et al. [21] addresses this gap by analyzing real-life 

data and demonstrating that path loss and shadow fading are 

influenced by environmental variables. To optimize energy 

usage for ENs, the research introduces machine learning 

models for empirically calculating path loss and shadow 

fading, incorporating variables such as distance, frequency, 

temperature, relative humidity, barometric pressure, 

particulate matter, and signal-to-noise ratio. 

The aim of [22] is to introduce an innovative energy-efficient 

approach for detecting attackers in IoT networks utilizing the 

RPL protocol. It tackles the challenges associated with 

securing IoT networks, particularly RPL-related attacks like 

version number and rank attacks. The proposed methodology 

relies on Discrete Event Systems (DES) modeling, offering a 

formal framework to model and analyze network behavior for 

the identification of anomalous activities and potential 

attackers. This methodology's advantages include its energy 

efficiency, formal modeling, scalability, and effectiveness in 

pinpointing vulnerabilities in the RPL protocol. The study's 

results demonstrate the methodology's success in identifying 

attackers, particularly in scenarios involving version number 

and rank attacks, contributing to enhanced security in RPL-

based IoT networks with minimal energy consumption, 

crucial for IoT devices with limited power resources. 

In [23], the authors tackle critical challenges within the realm 

of multi-UAV networks supporting the Internet of Things 

(IoT). The primary challenge pertains to energy efficiency, a 

paramount concern in UAV-based systems due to their 

limited energy resources. The study also addresses the 

intricacies of resource allocation, encompassing 

communication scheduling, power distribution, and UAV 

trajectories. To approach these challenges, the researchers 

devise a comprehensive methodology, formulating the 

problem as a non-convex optimization task. They propose an 

iterative optimization algorithm that jointly optimizes 

communication scheduling, power allocation, and UAV 

trajectories.  

The noteworthy advantage of this methodology lies in 

achieving equitable energy efficiency among UAVs, ensuring 

that no individual UAV depletes its energy resources 

disproportionately. This fairness is pivotal for extending the 

overall network's operational lifespan. Additionally, the 

holistic joint optimization approach enhances overall network 

efficiency and sustainability, catering to a range of 

applications, such as surveillance, data collection, and 

communication services. The research substantiates its 

findings through extensive simulations, providing valuable 

insights into the performance of the proposed method across 
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diverse optimization goals and operational scenarios, thus 

contributing significantly to the advancement of multi-UAV 

IoT networks. 

Boehm and Koenig [24] present a case study on cross-layer 

optimization in wireless networks, primarily addressing the 

challenge of energy-efficient Internet of Things (IoT) 

applications. The study employs Radio-in-the-Loop (RIL) 

simulation, combining protocol simulation and radio channel 

emulation, to model and evaluate wireless networks 

accurately. It focuses on optimizing receiver gain settings 

based on Link Quality Indicator (LQI) and Energy Detection 

(ED) measurements to minimize energy consumption while 

maintaining communication quality. The results demonstrate 

that adjusting receiver gain settings adaptively reduces energy 

consumption without compromising reliability. This approach 

offers a solution to the challenge of achieving energy-efficient 

wireless communication in dynamic environments. 

Furthermore, the article discusses its potential applications in 

combating radio spectrum pollution, improving transmission 

reliability, and supporting Smart City initiatives, emphasizing 

the role of RIL in advancing wireless communication 

research. 

In the context of hybrid visible light communication (VLC) 

and radio frequency (RF) Internet of Things (IoT) systems, 

where simultaneous lightwave information and power transfer 

(SLIPT) is essential, relay cooperation is seen as a promising 

strategy to overcome coverage limitations and energy 

constraints. The article by Huang et al. [25] addresses two 

significant challenges in promoting relay cooperation, 

namely, selfishness and information asymmetry among relay 

nodes (RNs) operating autonomously. To tackle these issues, 

a novel incentive scheme based on an agency selling format is 

proposed. In this scheme, the VLC service provider (VLCSP) 

charges cooperating RNs for energy harvesting and, upon 

successful information transmission to the end node (EN), 

offers a portion of future revenue as an agency payment to the 

RNs. The pricing and agency payment terms are designed 

through a mutually agreeable contract, with the goal of 

maximizing the VLCSP's expected utility. The article 

formulates and optimizes this contract design problem using a 

joint adverse selection and moral hazard model, ultimately 

deriving the optimal contract solution through Lagrangian 

dual analysis. Numerical results demonstrate the superior 

performance of the proposed incentive scheme compared to 

benchmarks in terms of VLCSP and RNs' expected utility, as 

well as expected social welfare, highlighting its incentive 

efficiency. Table 1 shows the comparative analysis. 

Table 1 Comparative Analysis 

Reference Technique Stability Time Total Rounds 

[2] LEACH 25 seconds 8000 

[5] MAMC 25 seconds 8000 

[14] PSO 56 seconds 7500 

[17] KMEANS 35 seconds 4000 

3. PROPOSED MODEL 

This section summarizes our approach, in which we first 

provided a theoretical overview of several Data Aggregation 

models for enhancing QoS and demonstrated the data 

aggregation mode. We used the Whale optimization technique 

to further assess the leading model. 

Every sensor node in a WSN serves a specific purpose and 

makes an important contribution to the network as a whole. 

Wireless sensor networks (WSNs) have many potential uses 

in a variety of fields, including the environment, the military, 

healthcare, industrial process management, and even the 

home. Even relatively modest nodes might be able to process 

information, forward messages, and gather data. Networked 

sensor nodes coordinate efforts by exchanging messages via 

broadcast radio waves. However, there are limits to the data 

throughput, processing speed, storage space, and energy 

availability of sensor nodes. A sensor node's main job is to 

monitor its surrounding environment and report back to the 

host controller or sink in the form of an answer to a query 

concerning things like heat, light, and temperature. In WSNs, 

data transmission consumes more power than data processing 

[3]. When data is collected and aggregated through methods 

like sum (), average (), etc., it is not essential to send each 

individual reading to the sink node. 

3.1. Data Aggregation 

Gathering and organizing data for subsequent processing is 

referred to as "data aggregation" when discussing WSNs. To 

measure inter-node communication quality, the data 

aggregation method is required. Data aggregation is 

frequently considered a basic processing operation with the 

goals of preserving limiting resources and lowering energy 

use. Figure 1 shows the data aggregation procedure. 

The greatest issues with sensor networks are the lag time in 

data collecting and the battery life. Due to the aforementioned 

difficulties, it was not possible to optimize both restrictions at 

the same time. Our goal is to maintain the network working 
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smoothly while cutting down on data compilation time. This 

strategy could be helpful when time is of the essence. By 

planning a network topology that minimized delay, our 

method was able to achieve the lowest achievable latency. 

Power consumption can be reduced by the network by 

keeping the distances between sensor nodes as short as 

possible. 

Some of the most important results of this research work is as 

follows: 

 Providing a method for building a network architecture 

that has the least amount of time between each data 

aggregation. 

 Analyzing the similarities and differences between H-

LEACH, LEACH and other previous algorithms.

 

Figure 1 Data Aggregation Process 

The Whale Optimization Algorithm allows for a decentralized 

answer that scales with the network. As the number of nodes 

in a WSN grows, there are several technical considerations 

that must be made to keep things running smoothly and 

manage the data effectively. The primary obstacles to 

expanding a WSN are discussed below. 

Managing a Large Number of Nodes: Managing a growing 

number of sensor nodes presents challenges for a growing 

network. The energy needs of individual nodes and the total 

number of nodes in a network go up quickly. Algorithms that 

efficiently assign roles, allot addresses, and arrange nodes are 

crucial. This involves the assignment of responsibility for 

balancing the communication load between nodes in 

clustering-based protocols like LEACH. 

Ensuring Efficient Communication: More nodes might lead to 

a rise in communication overhead. It is important for routing 

protocols to dynamically adjust to changes in network size 

and structure. Effectiveness in routing, balancing loads, and 

dealing with congestion are all of paramount importance. 

Hierarchical routing, multipath routing, and energy-aware 

routing are just a few examples of the more complex routing 

strategies that may be required.  

Energy Management:  Energy becomes more of a premium in 

more extensive networks. Low-power modes, duty cycling, 

and dynamic power control are all examples of effective 

energy management measures that can help extend the life of 

the network. In addition, in-network processing and data 

aggregation that use little energy become crucial. 

Scalable Data Aggregation: One of the difficulties of having 

more nodes is that they produce more data. In order to 

eliminate communication overhead and unnecessary data 

transfer, scalable data aggregation techniques must be used. 

Both energy and data transfer capacity are reduced as a result. 

Safety and Confidentiality: The larger a network gets, the 

more vulnerable it is to security flaws. It is becoming more 

difficult to protect data privacy and security. Security 

measures such as strong authentication, encryption, and 

intrusion detection are essential. 

Topology Management: It can be difficult for large-scale 

WSNs to keep their network topology optimized. In order to 

deal with node failures and environmental changes, it is 

necessary to employ self-organization, adaptive topology 

control, and dynamic reconfiguration techniques.  

Data Quality and Integrity: The likelihood of running into 

malfunctioning nodes or noisy data rises as the network size 

grows higher. The quality and integrity of data can only be 

maintained by the use of rigorous data filtering, error 

detection, and fault tolerance methods. 

3.2. System Model 

 

Figure 2 System Model 

The system model is shown in Figure 2. 
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After determining the most precise reduction and delay 

calculations possible using five different aggregation models, 

we employed the Whale Optimization Algorithm (WOA) to 

further optimize the network. The network consists of 

multiple wireless sensors, up to N in total. The locations of 

the sensor nodes and BS are not changed after deployment. 

3.2.1. Theoretical Presentation of Data Aggregation 

Direct connections between sensors and the BS and other 

nodes are possible if their transmission ranges can be 

increased. 

The sensor nodes' data is aggregated and transmitted to the 

sink via the aggregation channels. Full data fusion will be 

possible once a standard data packet size is agreed upon by all 

parties involved. A slot is the medium through which a child 

node can send messages to its parent. It is impossible for 

numerous nodes to receive information at once since each 

sensor only has one transmitter. Sensors based on code 

division multiple access (CDMA) can reduce the disruption 

brought on by concurrent transmissions. 

Cheng et al. [7] offer a network architecture designed to speed 

up data collection. Tree-like in appearance, with each node 

standing in for a degree that is a power of two (2p). The CH is 

the progenitor of all the other cluster nodes. This data 

connection allows for bidirectional communication and data 

sharing between the CH and BS. The number of data links a 

node has establishes its relative location within the network. 

Figure 3 depicts the network design and scheduling for a 

seven-node network.  

 

Figure 3 The Network Structure and Scheduling with 7 Nodes 

Our aggregation method is based on carefully planned 

networks and schedules. As the network takes shape, one or 

more data aggregation trees are created. Each tree is 

constructed using the least-delayed strategy, as was 

previously explained. 

Data transmissions between sensor nodes are scheduled when 

the network's infrastructure has been set up. In a network, 

each node has a set length of time to report back to the central 

server. This is the single window of opportunity for contact. 

By fusing together two identical clusters, the quickest delay 

structure is created. When direct connections between clusters 

of the same size, or to the BS, are exhausted, the process 

starts over. The final network architecture can include clusters 

of varying sizes using this method. 

The scheduling algorithm is straightforward. A node's lifespan 

is proportional to its relative importance in the network. A 

node's offspring are ordered by their average transmission 

rates. This indicates that a parent node can never have more 

than one child node. CH structures might look different 

depending on the cluster size. Because of this, the CHs can 

only reliably update the BS at irregular periods. 

3.3. LEACH 

The Energy Adaptive Clustering Hierarchy (LEACH) [26] is 

a pioneering protocol in the realm of wireless sensor networks 

(WSNs) renowned for its emphasis on energy efficiency. In 

WSNs, where sensor nodes are often battery-powered and 

deployed in challenging or remote environments, energy 

conservation is paramount. LEACH addresses this challenge 

by adopting a novel approach to selecting cluster heads, 

which are nodes responsible for aggregating and forwarding 

data from other sensor nodes within their respective clusters. 

Through the random selection of cluster heads, LEACH 

ensures a fair distribution of the energy load among all the 

sensor nodes in the network. This probabilistic selection 

mechanism allows nodes with varying energy levels to have 

the opportunity to participate as cluster leaders, effectively 

preventing rapid energy depletion in specific nodes. 

One of LEACH's notable features is its dynamic and 

autonomous cluster formation process. In contrast to fixed or 

predefined cluster structures, LEACH generates clusters in a 

dynamic and adaptive manner. This approach introduces 

flexibility, allowing the network to adapt to changing network 

topologies, node failures, and other real-world variations. It's 

particularly valuable in scenarios where sensor nodes may be 

subject to mobility, such as environmental monitoring or 

precision agriculture, as it enables the network to reconfigure 

itself as needed. 

LEACH excels in its ability to coordinate and monitor data 

transmission at the neighborhood level, which is a pivotal 

advantage. Cluster heads serve as local coordinators and data 

aggregators, reducing the need for extensive long-range 

communication, which typically consumes a significant 

amount of energy. Localized coordination implies that data is 

processed and aggregated within the cluster before being 

transmitted to a base station or sink. This localized approach 

minimizes the distance over which data is transmitted, 

reducing energy consumption and ensuring a more efficient 

utilization of the limited resources available to sensor nodes. 
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The randomized selection of cluster heads and dynamic 

cluster formation contribute to proactive energy management 

within the network. By avoiding the concentration of energy-

intensive tasks in a single or a few nodes, LEACH extends the 

network's lifetime. Additionally, the protocol's adaptability 

and randomness allow for the distribution of the energy load 

more evenly among nodes, thus preventing the premature 

depletion of the power supply in specific nodes. As a result, 

the network can continue its operations for an extended 

duration, even in resource-constrained environments. 

The versatility of LEACH and its applicability across a wide 

range of domains is a noteworthy aspect. Whether deployed in 

environmental monitoring, surveillance, smart agriculture, or 

disaster response, LEACH can be adapted to effectively 

manage energy resources and ensure the reliable collection 

and transmission of data. Its capacity to address dynamic and 

unpredictable scenarios while optimizing energy use positions 

it as a valuable protocol for the increasingly interconnected 

world of the Internet of Things (IoT) and wireless sensor 

networks (WSNs). 

3.4. Hetero-LEACH  

Figure 4 exemplifies the Hetero-Leach. Hetero-LEACH is an 

extension and enhancement of the well-known LEACH (Low-

Energy Adaptive Clustering Hierarchy) protocol [27]. It 

introduces a heterogeneous approach to clustering in wireless 

sensor networks (WSNs), aiming to further improve energy 

efficiency and network performance. Hetero-LEACH 

recognizes that in many WSN deployments, sensor nodes may 

have varying capabilities and energy resources. By taking 

these differences into account, it optimizes cluster formation, 

data aggregation, and energy management, making it a 

valuable protocol for WSNs with heterogeneous nodes. 

 

 

Figure 4 Hetero-Leach 

One of the key features of Hetero-LEACH is its dynamic 

cluster formation process, which is adaptive and responsive to 

the heterogeneity within the network. Unlike traditional 

clustering protocols, Hetero-LEACH considers nodes with 

differing energy levels and computational capacities. It 

classifies nodes into different roles, such as cluster heads, 

relay nodes, and regular nodes, based on their characteristics. 

Cluster heads are selected not only for their energy but also 

for their computational capabilities, ensuring that they can 

handle the additional data processing requirements. Hetero-
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LEACH is designed to balance the energy load across the 

network more effectively. By assigning specific roles to nodes 

based on their abilities, it ensures that energy-intensive tasks, 

such as data aggregation and processing, are distributed 

optimally. This approach reduces the risk of premature energy 

depletion in critical nodes, enhancing the network's longevity. 

Moreover, Hetero-LEACH incorporates adaptive data 

aggregation techniques that allow nodes to tailor their data 

processing based on their roles, further improving energy 

efficiency and data quality. 

Hetero-LEACH's suitability for WSNs with heterogeneous 

nodes is particularly valuable in real-world applications. For 

instance, in an agricultural setting, where sensor nodes may 

have different energy sources and computational abilities, 

Hetero-LEACH can ensure efficient data collection, 

processing, and transmission. Similarly, in urban 

environments with various sensor types, it can help optimize 

energy consumption and data quality. The protocol's 

adaptability and flexibility make it a promising solution for 

emerging IoT applications where diverse sensor node 

characteristics are the norm. By addressing heterogeneity and 

optimizing energy use, Hetero-LEACH contributes to more 

robust and reliable WSNs in various domains. 

3.5. MAMC 

In MACM [28], nodes initially exchange HELLO messages to 

learn each other's coordinates, and the communication band is 

divided into frames for safety message transmission. Clusters 

are formed based on node mobility patterns, with faster 

clusters receiving more frames to ensure successful 

transmission. These frames are further divided into slots, with 

each node assigned to a slot for message transmission. Safety 

messages are initiated at a node and relayed to clusters up to 4 

hops away, with the hop count increasing by 1 at each hop. 

The relay continues as long as the hop count is less than or 

equal to 4, after which the message is discarded. MAMC 

process flow is depicted in Figure 5. The major steps of 

MAMC can be highlighted as follows: 

As an initial step, nodes in the network exchange HELLO 

messages to learn each other's coordinates. Then, divide the 

DSRC (Dedicated Short-Range Communication) band into 

frames to make the complete bandwidth available for safety 

message transmission. Followed by clusters creation of nodes 

based on their mobility patterns, particularly in response to 

the HELLO messages. Then, frame assignment to the clusters 

based on their mobility patterns, giving more frames to 

clusters with higher speeds to ensure successful transmission 

and efficient channel utilization. Each frame is then split into 

multiple slots, with each node being assigned to a specific slot 

for message transmission. A crucial step is the safety message 

initiation: where a start a safety message at a node (let's call it 

node i) and transfer it to clusters at a hop distance of (i+ℎ𝑐), 

where ℎ𝑐 represents the message hop count. Initially, set ℎ𝑐 to 

1. When clusters one hop away receive the message, check if 

the ℎ𝑐 value is less than M (e.g., M = 4). If it is, transmit the 

message and increase ℎ𝑐 by 1. 

Finally, nodes continue relaying and broadcasting the 

message up to M nodes away from the source cluster, 

assuming ℎ𝑐 remains less than or equal to 4. When ℎ𝑐 

becomes greater than M, stop relaying the message. 

 

Figure 5 MAMC 

3.6. PEGASUS 

The PEGASIS (Power-Efficient GAthering in Sensor 

Information Systems) algorithm [29], is a data gathering 

protocol used in wireless sensor networks (WSNs) to improve 

energy efficiency and extend the network's lifetime. It 

organizes sensor nodes into a linear chain and facilitates 

energy-efficient data aggregation and transmission. This 

algorithm is designed to reduce energy consumption in 

WSNs, making it suitable for various applications where 

energy efficiency is crucial. Figure 6 provides an overview of 

the algorithm, which can be summarized as follow: 

Chain Formation: PEGASIS organizes sensor nodes into a 

linear chain. This chain structure is established during the 

network initialization phase. Each node is connected to its 
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neighboring nodes in this chain, creating a unidirectional flow 

for data transmission. 

 

Figure 6 PEGASIS 

Data Aggregation: PEGASIS minimizes energy consumption 

by aggregating data sequentially along the chain. Each node 

collects data from its immediate neighbors, processes it, and 

then forwards the aggregated data to the next node in the 

chain. This process continues along the entire chain, reducing 

the need for long-distance radio transmissions. 

End-to-Destination Transmission: The last node in the chain, 

often referred to as the sink or base station, is responsible for 

transmitting the aggregated data to the central destination or 

external infrastructure. This design minimizes energy 

consumption during data transmission, as the majority of the 

data aggregation occurs within the chain. 

Energy Efficiency: PEGASIS is designed with energy 

efficiency in mind. By reducing long-distance radio 

transmissions and allowing for easy adaptation to changes in 

network conditions, such as node failures or energy depletion, 

it helps to extend the network's lifetime and conserve energy 

resources. 

Adaptive Clustering: The algorithm can adapt to network 

changes, ensuring data continues to flow even in the presence 

of node failures. If a node in the chain becomes depleted of 

energy or fails, the chain can be reconfigured to bypass the 

problematic node. This adaptive clustering approach helps 

maintain data flow and network connectivity. 

Applications: PEGASIS is commonly used in wireless sensor 

networks for applications where energy efficiency is a critical 

concern, such as environmental monitoring, wildlife tracking, 

precision agriculture, and other scenarios where sensor nodes 

are distributed over a large area and battery life is a crucial 

factor. 

In particular, PEGASIS optimizes data gathering and 

transmission in wireless sensor networks by minimizing 

energy consumption and adapting to changing network 

conditions, ultimately extending the network's operational 

lifetime. 

3.7. Stable Election Protocol 

The Stable Election Protocol (SEP) is a clustering algorithm 

designed for wireless sensor networks (WSNs). Its primary 

goal is to extend the network's lifetime and reduce energy 

consumption by electing stable cluster heads, which are 

responsible for aggregating and forwarding data in a WSN. 

SEP operates in rounds, and during each round, nodes assess 

their energy levels and the quality of their connections. Those 

nodes that are deemed stable and energy-efficient are eligible 

to become cluster heads for the next round. Cluster heads play 

a crucial role in data aggregation and help reduce energy 

consumption by directing data traffic. 

The Stable Election Protocol (SEP) is designed for wireless 

sensor networks to ensure the stability and efficiency of 

cluster-based data gathering. Here are the main steps of the 

SEP protocol: 

 Initialization: All sensor nodes are initially in the "normal" 

state. 

 Cluster Head Election: Nodes periodically assess their 

remaining energy and elect themselves as cluster heads 

based on a probability model that balances energy levels. 

Nodes with more energy are more likely to become cluster 

heads. 

 Cluster Formation: Nodes join the cluster of the nearest 

cluster head, creating a hierarchical structure. Cluster 

heads are responsible for aggregating data from member 

nodes. 

 Data Aggregation: Cluster heads collect data from their 

member nodes and aggregate it to minimize the amount of 

data transmitted to the base station, conserving energy. 

 Data Transmission: Aggregated data is transmitted from 

cluster heads to the base station. 

 Re-clustering: After a set number of rounds, new cluster 

heads are elected to distribute the energy load more evenly 

and prolong the network's lifetime. 

 Stability Monitoring: Nodes continuously monitor their 

energy levels and neighboring nodes to assess their 

stability. Unstable nodes may enter a sleep state to save 

energy. 
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The SEP protocol aims to create stable clusters by electing 

cluster heads based on energy, which leads to efficient data 

gathering and longer network lifetime. SEP's approach to 

cluster head selection helps prolong the network's lifetime by 

evenly distributing the energy load among the nodes and 

mitigating the risk of rapidly draining the batteries of a few 

nodes. By electing stable and energy-efficient cluster heads in 

a distributed manner, SEP contributes to improved network 

performance, reliability, and energy efficiency, making it 

suitable for various applications in WSNs, such as 

environmental monitoring, surveillance, and industrial 

automation. Figure 7 depicts the Stable Election Protocol. 

 

Figure 7 Stable Election Protocol 

3.8. Data Aggregation Using Multi Objective Optimization 

Techniques 

Optimization methods play a crucial role in finding the most 

practical and efficient solutions or estimations across various 

problem domains. These methods are particularly useful when 

dealing with optimization problems, where the objective may 

involve maximizing or minimizing one or more criteria. In 

scenarios where multiple objectives are involved, these 

challenges are commonly referred to as "multiple objectives 

problems" or MOO. 

The significance of multi-objective problems is far-reaching 

and extends to a wide array of fields and everyday life. In 

engineering, for instance, one might need to optimize a design 

for both cost and performance. In economics, the aim could 

be to maximize profit while minimizing environmental 

impact. In social sciences, trade-offs between various societal 

objectives need to be considered, and similar instances can be 

found in agriculture, transportation (including the design of 

vehicles and aircraft), and numerous other areas. 

One of the inherent challenges in addressing multi-objective 

problems is the potential conflict between these objectives. 

The pursuit of an optimal solution for one objective may 

inadvertently lead to negative consequences for another. To 

navigate this complexity, it's essential to explore a range of 

possible solutions and strike a balance among competing 

priorities. 

In response to the multifaceted nature of these challenges, 

researchers and practitioners have developed specialized 

algorithms. Among these, Genetic Algorithms (GA) and the 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

have proven to be highly effective in handling multi-objective 

scenarios. These algorithms have been customized to 

accommodate the unique demands of multi-objective 

optimization problems. 

In essence, these strategies permit the exploration of a diverse 

set of solutions and the application of tailored fitness 

functions, effectively extending the capabilities of classical 

GA and NSGA-II into the realm of multi-objective problems. 

This adaptation empowers decision-makers to make more 

informed choices while considering multiple, often 

conflicting, objectives. 

The most useful and optimal solution or estimation can be 

discovered with the help of an optimization method. Problems 

with optimization include pursuing the lowest or highest 

value, as well as one or more objectives. These issues have 

repercussions in many areas of study and daily life, including 

engineering, mathematics, economics, sociology, agriculture, 

transportation (cars and planes), and more. There are several 

commonplace situations in which the aims are at odds with 

one another. In addition, there may be unintended 

consequences of optimizing a specific strategy for one aim. 

When trying to find a solution to a problem with multiple 

objectives, it's important to think about all the ways it could 

be solved without being overwhelmed by others. Based on 

these findings, we develop two different GA and NSGA-II 

algorithms tailored to handle situations with multiple targets. 

The following section will list the types of problems for 

which GA and NSGA-II are the best meta-heuristics. 

Strategies that permit a variety of solutions and the use of 

individualized fitness functions are used to extend classical 

GA and NSGA-II to the realm of multi-objective problems.  

3.8.1. Complexity of Data Aggregation 

Dealing with Noisy Data in the realm of wireless sensor 

networks presents unique challenges, primarily due to the 

inherent unpredictability and dynamic nature of the 

environments in which these networks operate. Sensor nodes, 

responsible for data collection, are susceptible to various 

sources of noise, including interference, external factors, and 
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inherent sensor limitations. In this context, ensuring the 

extraction of accurate and reliable information becomes 

crucial. Several methodologies have been developed to 

mitigate the effects of noisy data. 

Firstly, Data Filtering Techniques are employed, harnessing 

algorithms such as moving average filters and Kalman filters 

to smoothen sensor data and eliminate transient noise. Outlier 

Detection is another strategy, involving the development of 

methods to identify and subsequently discard data outliers that 

deviate significantly from the expected sensor readings. 

Statistically rigorous approaches, such as the Tukey method 

or z-score analysis, are commonly used for this purpose. 

Redundancy is introduced by setting up multiple sensor nodes 

to record the same information, enabling the detection and 

dismissal of anomalies and incorrect readings. 

To ensure data integrity throughout the process, a set of 

protective measures is put in place. Encryption methods like 

the Advanced Encryption Standard (AES) or Elliptic Curve 

Cryptography (ECC) are employed to secure data in transit, 

safeguarding it against interception and tampering. 

Authentication procedures are established to confirm the 

legitimacy of sensor nodes and data sources, ensuring that 

data collection is limited to authenticated nodes. Data Signing 

is used for the verification of data authenticity and origin, 

with digital signatures added to data packets for subsequent 

verification. Secure Routing Protocols are crucial for 

safeguarding data during its transit through the network, 

employing features like secure key exchange and secure data 

forwarding. 

Access Control policies are enforced to restrict access to 

sensitive data to authorized users or nodes, enhancing data 

integrity. Data Validation measures, including checksums and 

hash functions, are used to ensure data accuracy and 

consistency. In case of discrepancies, data can be resent or 

corrected. Physical security is also of paramount importance, 

protecting sensor nodes from theft or tampering and ensuring 

that unauthorized individuals cannot access the physical 

setup. 

By addressing the challenges posed by noisy data and 

ensuring data integrity, wireless sensor networks become 

more reliable and dependable. This reliability allows the 

confident deployment of these networks in various fields, 

including environmental monitoring, healthcare, and 

industrial automation, with an assurance in the reliability and 

safety of the data they collect and communicate. 

Furthermore, the field of wireless sensor networks faces the 

critical challenge of Temporal and Spatial Averaging. This 

process involves the aggregation of data over time and space, 

strategically designed to reduce the impact of transient noise 

spikes. Temporal averaging combines data from different time 

intervals, effectively smoothening variations and enhancing 

data reliability. Spatial averaging, on the other hand, merges 

data from nearby sensor nodes. By spatially averaging data 

from proximate sources, the network can mitigate isolated 

noise sources and enhance the overall quality and 

trustworthiness of the aggregated data. 

In the pursuit of data integrity and reliable data aggregation, it 

is essential to recognize the diverse range of applications that 

depend on wireless sensor networks. These applications span 

environmental monitoring, healthcare, industrial automation, 

and more. Ensuring the quality and reliability of data 

collected in these contexts is not only a matter of technical 

significance but also one of real-world consequence. In 

environmental monitoring, accurate and reliable data is 

crucial for assessing ecological trends and environmental 

changes, guiding conservation efforts, and understanding the 

impact of climate change. In healthcare, the precision of data 

gathered from sensor networks is a matter of life and death, 

where reliable monitoring of vital signs and medical 

conditions is essential for patient well-being. In industrial 

automation, data quality determines the efficiency and safety 

of operations, influencing productivity and minimizing risks. 

By addressing the issues of noisy data and safeguarding data 

integrity, wireless sensor networks become a cornerstone of 

data-driven decision-making across these and many other 

domains, ensuring reliable, accurate, and trustworthy 

information that can be acted upon with confidence. Data 

aggregation implementation algorithm using Whale 

Optimization is shown in Algorithm 1. 

3.8.2. Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA), a novel approach 

that has proven effective in addressing various optimization 

challenges. While natural algorithms like the Artificial Bee 

Colony (ABC) and Particle Swarm Optimization (PSO) have 

been extensively researched, the WOA community has not yet 

conducted a comprehensive studies. 

Input:  

- Data Aggregation Model (e.g., H-LEACH) 

Output:  

- Optimized Cost Function 

- Optimized Fitness Value 

1. Initialize the Whale Population. 

2. Set the location of Whale W to Wnew. 

3. If the whale moves from a location to a new location at a 

new distance: 

   - W = Wnew + D 

4. Create an Echo Coefficient C from Whale W at distance D 

to Search for a Prey or Agent. 
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5. If C > 0.5: 

   - Search for Prey. 

6. If Echo reflects back in a certain direction: 

   - W = Wnew + (2 * cosine(nrl)) + W 

   - Move the whale to this direction. This path determines the 

prey. 

7. Make the fitness value (x, y) Optimize (x, y). 

8. End. 

Algorithm 1 Data Aggregation Implementation Algorithm 

with Whale Optimization 

The adaptability and potential hybridization of the WOA hold 

particular significance. Our research explores the synergy 

between WOA and BAT approaches. While the BAT 

algorithm is primarily conceptual for scanning tasks, it's the 

WOA method that is practically applied. When tested against 

16 benchmarking functions, the statistical results from the 

WOA-BAT merger surpass those from the WOA alone. 

Our work also delves into the optimization of administration, 

engineering, and web-based navigation—a multifaceted 

challenge. These domains continually strive for improvements 

in speed, accuracy, and profitability. Efficient resource 

allocation, accounting for all relevant constraints, is central to 

solving the resource scarcity problem. Our approach employs 

mathematical formulas and computer simulations to employ 

effective search strategies, aiming for optimal solutions in 

various contexts. 

The distinction between local search and metaheuristic 

algorithms is vital. While local search builds on recently 

discovered optimal solutions, metaheuristic algorithms 

encompass a range of search strategies, striving for the best 

solutions and maximum flexibility. Furthermore, these 

techniques navigate the balance between precision and 

approximation, with the potential to unveil unconventional 

discoveries during exploration [14]. 

Swarm-based metaheuristic algorithms, inspired by collective 

animal behavior, are integral in addressing optimization 

problems. Lewis and Mirjalili have introduced strategies for 

optimizing whale behavior, employing both efficient and 

random search engines and a bubble net hunting approach. 

This innovative approach is particularly significant in the 

context of Wireless Sensor Networks (WSNs), consisting of 

sink nodes, sensors, gateway nodes, and base stations. 

Our research introduces a novel technique that leverages 

Quality-of-Service (QoS) requirements for optimizing whales 

(WOA) in data storage applications. This approach combines 

the global search capabilities of WOA with subsequent local 

search for routing paths meeting QoS requirements, resulting 

in superior local search efficiency compared to other heuristic 

algorithms. Additionally, we explore the clone operator, 

which intervenes when creating an ideal environment. This 

enhanced WOA iteration offers a faster convergence rate and 

a more efficient performance, making it a valuable tool for 

creating robust, cost-effective, and environmentally friendly 

WSN networks. 

WOA is a promising approach with versatile applications, 

including its merger with the BAT algorithm, which 

demonstrates superior performance in benchmarking 

functions. This research extends the WOA's utility to optimize 

data storage in UWSNs, providing an efficient and adaptive 

approach to address complex optimization challenges. Figure 

8 shows the flow of the Whale Optimization Algorithm. 

Encoding represents the initial stage in applying the Whale 

Optimization Algorithm (WOA) to address energy 

consumption routing challenges within Wireless Sensor 

Networks (WSNs). Achieving optimal routing under Quality 

of Service (QoS) constraints is more intricate when 

employing conventional decimal encoding. Binary encoding, 

in contrast, offers a simpler approach for both encoding and 

decoding. In binary notation, the presence of '1' denotes a 

successfully functioning node, while '0' signifies a failed 

node. Notably, the binary string commences and concludes 

with '1' to account for the necessity of traversing nodes 

initiating and concluding the routing journey. Moreover, the 

third and fourth bits within the binary representation of the 

first, third, fourth, and fifth nodes are all set to '1" as shown in 

Equation 1 and 2. This process involves encoding the 

characteristics and status of nodes in a WSN into binary form, 

where each bit holds significance in determining the routing 

path's efficiency and the fulfillment of QoS requirements. 

Binary encoding simplifies the identification of operational 

nodes and aids in the decision-making process for route 

selection, aiming to minimize energy consumption while 

ensuring data transmission under QoS limitations. 

Additionally, the consistent use of '1' bits in specific positions 

of the binary representation enhances the accuracy and 

reliability of the routing path, particularly for nodes that play 

critical roles in the network's data transmission process. This 

strategy contributes to more efficient routing decisions and 

better overall network performance, which is crucial in 

energy-constrained WSNs. 

𝑊 = 𝑋. 𝐶 − 𝑋𝑖 … (1) 

𝑋 𝑛𝑒𝑤 =  𝐴. 𝑋 − 𝑊 … (2) 

The Whale Optimization Algorithm (WOA) involves the 

utilization of key components, such as the coordinates of the 

whales denoted as X, and coefficient random vectors 

represented as C and A. A significant aspect of the WOA 

process is the evaluation of fitness and the prediction of the 

top-performing whale. In WOA, fitness evaluation serves as a 

crucial step in determining the energy consumption of a 
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specific route. The fitness value signifies the amount of 

energy expended on the most energy-efficient path. To 

identify the current leading whale within the algorithm, it is 

imperative to compute the fitness of all participants before 

proceeding with any further WOA operations. 

This fitness evaluation process aids in distinguishing the best-

performing whale, which is vital for directing the 

optimization efforts effectively. By quantifying the energy 

consumption associated with each route, the algorithm can 

make informed decisions about the route with the least energy 

expenses, subsequently guiding the entire optimization 

process in a more productive and energy-efficient direction. 

3.8.3. Invasion of the Netted Bubbles 

The approach inspired by whales' bubble-net attack offers 

valuable insights into the efficient management of extensive 

data without incurring exorbitant costs. This strategy can be 

replicated through two distinct mechanisms: the "retrenched 

enclosure" and the "spiral update." 

In the case of the "spiral improvement posture," whales 

execute a spiral motion on the water's surface, generating 

bubbles of various sizes. These bubbles, strategically 

dispersed, facilitate the movement of smaller aquatic creatures 

like shrimp and fish, allowing them to navigate more 

effectively within their environment. 

This approach demonstrates how nature's mechanisms can 

inspire innovative solutions for data management challenges. 

Much like the bubbles assist smaller marine life, this concept 

encourages the development of strategies that enhance the 

accessibility and utilization of data resources, making them 

more readily available and navigable. By studying these 

natural behaviours, we can derive principles for optimizing 

data handling in a cost-effective and resource-efficient 

manner. 

 

Figure 8 Whale Optimization Algorithm 
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3.8.4. Totally Unsystematic Methods of Locating Prey 

In the pursuit of solving the optimization routing problem 

within predefined cost constraints, it becomes necessary to 

adapt the whale's location update strategy. Instead of 

constantly synchronizing the whale's position with that of the 

dominant leader, a less frequent update mechanism 

coordinated with fellow whales proves more effective. 

This adjustment, known as the "Spiral Updating" stage, takes 

inspiration from the anatomical and behavioral characteristics 

of whales. In particular, it draws from their unique way of 

swimming in spirals on the water's surface. By implementing 

this update strategy alongside the exploitation stage, the 

optimization process can benefit from the whales' natural 

behavior. 

The rationale behind this adaptation lies in optimizing the 

routing problem while minimizing computational overhead. 

Synchronizing the whale's location less frequently reduces the 

computational burden and aligns with the efficient use of 

computational resources. The incorporation of the spiral 

update stage introduces a more dynamic and nature-inspired 

approach, enhancing the overall efficiency of the optimization 

process within cost constraints. This methodology 

underscores the importance of drawing insights from the 

natural world to devise innovative solutions for complex 

optimization challenges. 

Change X to Xi to obtain as shown in Eq. (3)  

𝑋 𝑛𝑒𝑤 = |𝑋𝑛𝑒𝑤 − 𝑋𝑖| . 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋   (3) 

In the context of the preceding discussion, it's essential to 

understand that most whale migrations appear to follow a 

seemingly random direction (referred to as "l"), which 

primarily signifies the areas where whales are likely to locate 

their food sources. During this stage, the Whale Optimization 

Algorithm (WOA) incorporates a random search procedure, 

taking into consideration various coefficients, to precisely 

identify the subsequent whale location. 

The outlined steps in this process can be systematically 

documented for clarity. To initiate the generation of random 

whale locations, the initial steps involve determining a target 

population size and randomly distributing sensor nodes across 

the monitored area. Subsequently, as the iteration proceeds, 

parameters are continually adjusted to enhance the 

optimization process. 

The subsequent phase involves employing a mathematical 

equation to ascertain the healthiest whale within the 

population and evaluating the corresponding results. This 

assessment plays a pivotal role in selecting the most suitable 

candidates for further optimization efforts. 

Furthermore, as the whales dynamically refresh their 

positions, the primary algorithm loop commences. During this 

phase, the whales explore various regions and adapt their 

positions to potentially find the most efficient routes. 

Step 5, as part of the first method, introduces a distinctive 

element involving high-probability mutations in the cloned 

population. These mutations are performed after fitness 

assessment of the initial whaling population. This approach 

aims to diversify the population, potentially leading to the 

discovery of more effective routing solutions in the 

optimization process. 

In essence, this approach mimics the seemingly random yet 

purposeful nature of whale migrations, offering a structured 

and systematic framework for optimizing routing problems 

while ensuring diversity, adaptability, and effective 

exploration of potential solutions. 

3.8.5. Performance Metrics for Evaluating WOA 

The evaluation of the Whale Optimization Algorithm (WOA) 

necessitates the use of a comprehensive set of performance 

metrics to assess its effectiveness in solving optimization 

problems. These metrics cover various aspects of WOA's 

performance. They include convergence rate, which measures 

how quickly WOA reaches a solution in terms of iterations 

and the progression of the fitness function value. Solution 

quality is evaluated by comparing the quality of WOA-

generated solutions to industry standards, primarily focusing 

on minimizing the objective function value. WOA's ability to 

balance exploration and exploitation is assessed by examining 

the diversity of approaches and the speed of solution 

utilization. Robustness is analyzed to understand how WOA 

responds to changes in problem parameters, including 

constraints, dimension rescaling, and noise in the fitness 

function. 

The scalability of WOA is examined to determine how it 

performs as problem complexity increases, a vital 

consideration for real-world applications. The algorithm's 

consistency in reaching the global optimum for problems with 

known solutions is assessed, taking into account the 

percentage of successfully solved problems and solution 

proximity to the optimal solution. WOA's effectiveness is 

compared with other optimization algorithms, considering 

solution quality, convergence speed, and computational 

efficiency. The computational resources required by WOA, 

especially for large-scale optimization challenges, are 

evaluated. Sensitivity studies help understand the impact of 

variations in WOA's hyperparameters on its performance, 

using solution quality as a metric. 

The use of visual aids, such as fitness landscape plots, 

convergence trajectories, and heatmaps, enhances the 

understanding of WOA's behavior during the optimization 

process. Additionally, researchers explore how different 

initializations of WOA influence its behavior and measure 

variations in solution quality and convergence rates. In cases 
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where WOA is applied to real-world problems, domain-

specific metrics pertinent to the objectives and constraints of 

those problems are considered. By employing this 

comprehensive set of performance criteria, researchers can 

conduct a thorough and systematic assessment of WOA's 

suitability for addressing a wide range of optimization 

challenges. 

3.8.6. Optimizing Link Weighting for Efficient Cluster Head 

Clustering  

In the context of link weighting and its role in cluster head 

clustering, it's crucial to ensure that the weight assigned to 

connections accurately represents the physical distance 

between end nodes. As previously mentioned, the total weight 

of the components of two Cluster Communication Heads 

(CCHs) plays a pivotal role in determining the strength of 

their connection. The objective here is to optimize sensor 

transmission times by aligning the connection weight with the 

real distance between the involved end nodes. 

Following the merger of two clusters into a unified composite 

cluster, the consolidation process primarily involves the nodes 

designated as CCHs within the newly formed cluster. The 

remaining nodes merely require the specification of their 

respective parents to finalize their algorithms. Consequently, 

the CCHs tend to distribute themselves more evenly, 

increasing the space between individual nodes. To address 

this issue and facilitate more efficient data transfer, it is 

imperative that the link weight is directly proportional to the 

physical distance separating the two end nodes and the Base 

Station (BS). 

In the context of Convergent Hub Clusters (CCHs), these 

clusters naturally gravitate towards the BS and tend to form in 

proximity to neighboring nodes. Reducing the intervals 

between CCHs in subsequent iterations significantly expedites 

data transmission. This convergence of terminal Cluster 

Heads within the clusters effectively cuts the travel time to the 

BS in half, contributing to enhance network efficiency. 

4. RESULTS AND DISCUSSIONS 

In the process of evaluating the efficacy of the proposed 

model, it is imperative to formulate and employ established 

performance benchmarks that align with the objectives of the 

research endeavor. These metrics serve as quantifiable 

indicators of the model's accomplishments. Detailed metrics 

for success are provided below: 

 Accuracy 

Accuracy is the percentage of cases that were correctly 

labeled. It is a standard measure for classifying data, and its 

formula is (4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 … (4) 

TP (True Positives) is the number of correctly predicted 

positive instances. 

TN (True Negatives) is the number of correctly predicted 

negative instances. 

FP (False Positives) is the number of actual negatives 

incorrectly classified as positives. 

FN (False Negatives) is the number of actual positives 

incorrectly classified as negatives. 

 Precision and Recall 

Precision measures the model's ability to correctly identify 

positive instances among the predicted positives as shown in 

Equation (5): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… (5) 

4.1. The Proposed Protocol 

The proposed protocol is digitally tested alongside four other 

protocols to gauge its performance. It is compared to others 

based on their parameters, including HLEACH, PEGASIS, 

MAMC, LEACH, and SEP. During the stability phase. The 

fraction of a network's nodes that will die within the first 1, 

10, and 50 minutes. 

Network instability time is the elapsed time between the 

launch of the first node and the shutdown of the last node. 

Load balancing's primary goal is to maximize output by 

making more efficient use of available resources. Power 

consumption at sensor nodes can be minimized according to 

current optimization options. Using the clustering method can 

significantly reduce network energy expenses.  

By minimizing unused resources and maintaining constant 

data packet transmission rates, clustering helps networks last 

longer. Results from the proposed protocol in MATLAB are 

displayed in Figure 10. 

When all nodes have the same starting energy level (Eo), the 

active nodes will select themselves as CH in the first round 

using a distributed procedure that takes into account the 

probabilities of each candidate.  

The selection process for the EESAA Protocol is outlined in 

Table 2. Each node performs load balancing by randomly 

selecting an integer between 0 and 1, and then determining if 

that number is greater than or equal to a specified threshold 

value, as shown in Eq. (6). 

{
𝑃𝑑

1 − 𝑃𝑑
 𝑓𝑖𝑟𝑠𝑡 𝑟𝑜𝑢𝑛𝑑 [1] 𝑖𝑓 𝑛 ∈ 𝐴

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

… (6) 
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Table 2 Parameters for EESAA 

Parameter  Value 

Dimensions Xm = 100, Ym = 100 

Sink (x,y) Sink (0.5,0.5) 

Nodes 100 

Energy Model  E = 0.5, Efs= 0.0001, Eamp= 0.005 

Heterogeneity 

Percentage 

M = 0.1, A = 1 

Maximum 

Rounds 

7000 

 

 

Figure 9 Results of the New Protocol 

4.2. Hetero-LEACH 

Each cluster's internal communications employ a direct spread 

spectrum sequence (DSSS), which significantly reduces the 

likelihood of interference from outside the cluster. Each 

device in a network employs a unique spreading code 

sequence to talk to the others. When sensors are organized 

into a cluster, they may more effectively share the power they 

consume. Let's pretend M vertices exist in this region. There 

will be a total of k clusters, each containing one CH node and 

(N/k)-1 non-CH nodes. Compared to LEACH, H-LEACH has 

fewer rounds and fewer dead nodes for each cluster head, as 

seen in Figure 10. Initially, the work was relied on the Hetero-

Leach Algorithm. Descriptions of H-features LEACH and 

values for some of its most important parameters can be found 

in Table 3. 

This table presents the key parameters and values employed in 

the Heterogeneous LEACH (H-LEACH) protocol, a 

clustering approach for wireless sensor networks. These 

parameters are critical in defining the network's configuration 

and performance. 

 

Figure 10 The Difference of Rounds and Dead Nodes in 

Between H-LEACH and LEACH with Respect to Each 

Cluster Head 

Sink (x, y): Specifies the coordinates of the sink node within 

the network, with x and y values denoting its position, often at 

the center of the network. 

Nodes: Indicates the total number of sensor nodes deployed in 

the network, which in this case is 7000. 

Optimal Energy (E): Set at 0.5, this value represents the ideal 

energy level that nodes aim to maintain for efficient network 

operation. 

Heterogeneity (M): Reflecting the level of heterogeneity in 

the network, this parameter is defined as 0.1, indicating a 

moderate degree of variation in node characteristics. 

Maximum Probability of Model (P): With a value of 0.2, this 

parameter represents the maximum probability associated 

with the network model. 

Percentage Rounds Node to Become (Initial Cluster Head 

Energy): Denoted as Xm and Ym, these parameters are set at 

100, indicating that nodes require this percentage of energy to 

become initial cluster heads. 

Efs: Represents the energy threshold for free space 

transmission, set at 0.0001, and is a crucial factor in energy-

efficient data transmission. 

A: With a value of 1, A is a constant parameter in the 

network's energy model, influencing power consumption 

calculations. 
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Eamp: This parameter is set at 0.005 and stands for the energy 

required for amplifier operation, contributing to the overall 

energy consumption model within the network. 

These parameters play a vital role in configuring H-LEACH 

for optimal performance, energy efficiency, and network 

reliability. 

Table 3 Selection of Parameters for H-LEACH 

Dimension Value 

Sink (x, y) (100, 

100) 

Nodes 7000 

Optimal Energy E = 0.5 

Heterogeneity M = 0.1 

Maximum Probability of Model P = 0.2 

Percentage Rounds Node to Become 

(Initial Cluster Head Energy) 

Xm = 

100 

Ym 100 

Efs 0.0001 

A 1 

Eamp 0.005 

 

Figure 11 shows the two types of energetic nodes. Figure 12 

displays the cluster formation with cluster heads indicated by 

'*', while 'o' represent normal nodes, '+' represent advanced 

nodes, and 'x' represent the base station. 

 

Figure 11 Heterogeneous LEACH Protocol Test Network 

 

Figure 12 Performance of H-LEACH Algorithm 

The ratio of active to inactive nodes is displayed in Figure 12. 

The peak time for the prevalence of dead nodes is around 

2300. However, after roughly the 1200th round, the wireless 

network's reliability began to deteriorate.  

Dead node counts peak around the 2500th round, 

demonstrating that H-LEACH is effective (Figure 13). 

Despite the fact that by the 1200th round, the wireless 

systems can be considered reliable. 

 

Figure 13 Performance of H-LEACH Algorithm for Number 

of Dead Nodes 

4.3. LEACH 

Using a random selection of cluster heads, the Low Energy 

Adaptive Clustering Hierarchy (LEACH) is a self-organizing 

clustering mechanism for distributing the energy burden 

throughout a network of sensor nodes. In Table 4 we 

summarize the most important attributes of LEACH. Clusters 
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generated via randomization, self-organization, and 

adaptation, local data transmission coordination and 

monitoring. 

Table 4 Selection of Parameters for LEACH 

Dimension Value 

Sink (x, y) (50, 50) 

Number of Nodes 7000 

Optimal Energy E = 0.23 

Heterogeneity M = 0.3 

Maximum Probability of Model P = 0.25 

Initial Cluster Head Energy Xm = 50 

Ym 50 

Energy Free Space Path Loss (Efs) 0.0005 

Path Loss Exponent (A) 2 

Amplifier Energy (Eamp) 0.0023 

The plus sign in Figure 14 represents the sensor cluster head, 

the o symbol represents the sensor nodes, and the x symbol 

represents the base station to which the data has been 

transmitted. 

 

Figure 14 Data Aggregation using LEACH 

Figure 15 shows LEACH's effectiveness in terms of the 

number of connected nodes. By around round 4,000, all of the 

nodes had died, and no data had been transmitted to the base 

station as a result of QoS issues brought on by the WSN's 

instability. 

Activated nodes and the selected cluster head are displayed 

for the LEACH algorithm in Figure 16. After about 1200 

rounds, a cluster head's power is depleted to the point where it 

can no longer send as many data packets to the base station. 

 

Figure 15 Performance of LEACH Algorithm for Number of 

Alive Nodes 

 

Figure 16 Performance of LEACH Algorithm for Number of 

Cluster Heads 

 

Figure 17 Calculating Link-Weight Functions 
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The LEACH base station link weight functions are depicted in 

Figure 17. All of the chosen cluster nodes devised a function 

of link weights to divide up the future power among 

themselves, ensuring that the base station and the cluster 

nodes could keep transmitting data and being connected at all 

times. Since we aim for lower sensor transmission times, the 

link should strengthen as the distance between the two end 

nodes decreases. The only nodes in a cluster that will be 

affected by a merger are the CCH ones that are part of both 

clusters. All remaining network nodes' algorithms must be 

completed, and their parents must be defined. Therefore, as 

rounds progress and the distance between nodes increases, the 

number of CCHs decreases. This problem can be resolved if 

the link weight is proportional to the distance between the two 

end nodes and the BS. Clusters with CCH prefer nearby 

nodes, while those without it transition to BS. Both the inter-

CCH and inter-transmission distances will shrink in later 

rounds. The distance between the clusters' terminal CHs 

decreases as they grow closer to one another and the BS. 

4.4. MAMC  

To cope with these shifts and promote dynamic 

interoperability, a new approach is needed. Context, as 

described by our approach, is an explicit representation of 

WSN changes in metadata components that informs decisions 

about how to keep dynamic compatibility. The MAMC 

algorithm's parameters are broken down in Table 5. 

Table 5 Selection of Parameters for MAMC 

Dimension Value 

Sink (x, y) (50, 50) 

Number of Nodes 7000 

Optimal Energy E = 0.23 

Heterogeneity M = 0.3 

Maximum Probability of Model P = 0.25 

Initial Percentage of Rounds for Node to 

Become Cluster Head (Cluster Head 

Energy) 

Xm = 50 

Ym 50 

Energy Free Space Path Loss (Efs) 0.0005 

Path Loss Exponent (A) 4 

Figure 18 shows how the MAMC algorithm aggregates data 

by indicating the link weight functions between cluster heads 

and base stations as lines. 

4.5. PEGASIS 

PEGASIS is a communication protocol designed for wireless 

sensor networks. It leverages a chain-based routing strategy to 

facilitate efficient data transfer among sensor nodes. This 

strategy involves organizing the sensor nodes in a chain, 

where data is passed from one node to the next in a sequential 

manner, ultimately reaching a designated sink node. 

 

Figure 18 Data Aggregation and Link Weights Using MAMC 

Algorithm 

In the context of data transfer in a PEGASIS chain, the 

protocol employs a relay node selection mechanism. This 

mechanism is responsible for determining the optimal relay 

node in terms of potential connection distance. By choosing 

the most suitable relay node, PEGASIS optimizes data 

transmission and energy efficiency within the network. 

One notable feature of PEGASIS is the implementation of a 

failsafe mechanism. This failsafe is based on the median 

residual energy of neighboring nodes. It serves to prevent 

localized nodes from depleting their energy resources too 

quickly. By carefully monitoring the energy levels of nearby 

nodes and selecting relay nodes accordingly, PEGASIS helps 

distribute the energy load more evenly across the network. 

This ensures that no single region of the network becomes 

power-starved, enhancing the network's overall resilience and 

prolonging its operational lifespan. 

Furthermore, PEGASIS introduces the concept of using a 

mobile sink, often a mobile node or device that traverses the 

network. The mobile sink's role is to gather information about 

the energy consumption patterns of different regions within 

the network. This information can be valuable for network 

optimization and management, allowing for strategic 

adjustments in routing and resource allocation. 

Table 6 contains specific parameters and settings for 

configuring the PEGASIS algorithm. These parameters 

govern aspects such as relay node selection criteria, energy 

threshold values, and routing strategies. By adjusting these 

parameters, network administrators can fine-tune PEGASIS to 

suit the specific requirements and characteristics of their 
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wireless sensor network, ultimately enhancing its 

performance and efficiency. 

The parameters below highlight its key characteristics: 

 Sink (x, y) at coordinates (4, 4): The sink node's position 

within the network, typically situated at the network 

center. 

 Number of Nodes: A total of 84 sensor nodes deployed in 

the network. 

 Heterogeneity (M = 0.3): Reflecting the degree of 

diversity in node characteristics, indicating a moderate 

level of variation. 

 Initial Percentage of Rounds for Node to Become Cluster 

Head (Xm = 50): Nodes need to accumulate 50% energy to 

qualify as initial cluster heads. 

 Sink Coordinates at (0.5, 0.5): The sink node's mobile 

position, crucial for data gathering and network 

management. 

 Maximum Rounds set to 50: The maximum number of 

rounds or iterations within the PEGASIS protocol. 

 Optimal Energy (E = 0.23): The target energy level for 

nodes to maintain efficient network operation. 

 Energy Free Space Path Loss (Efs) at 0.0005: The energy 

threshold for free space transmission, impacting energy-

efficient data transfer. 

 Amplifier Energy (Eamp) set at 0.0023: Reflects the energy 

consumption associated with amplifier operation, 

contributing to the overall energy model. 

 Path Loss Exponent (A) specified as 7: A constant 

parameter in the energy model, influencing power 

consumption calculations. 

 Additional Nodes (if applicable): This parameter accounts 

for any extra nodes introduced into the network, which 

may be relevant for larger-scale deployments. 

These parameters collectively define the network's 

configuration and operational characteristics, enabling 

PEGASIS to optimize data transmission, manage energy 

efficiently, and ensure the network's reliable and effective 

performance. 

Table 6 Parameters of PEGASIS 

Dimension Value 

Sink (x, y) (4, 4) 

Number of Nodes 84 

Heterogeneity M = 0.3 

Initial Percentage of Rounds 

for Node to Become Cluster 

Head (Xm) 

Xm = 50 

Sink Coordinates (0.5, 0.5) 

Maximum Rounds 50 

Optimal Energy E = 0.23 

Energy Free Space Path Loss 

(Efs) 

0.0005 

Amplifier Energy (Eamp) 0.0023 

Path Loss Exponent (A) 7 

Additional Nodes (if 

applicable) 

7000 

 

 

Figure 19 Data Aggregation and Link Weights Using 

PEGASIS Algorithm 

Figure 20 shows the data aggregation and link weights using 

PEGASIS algorithm. 

4.6. Stable Election Protocol 

The test network for the Stable Election Protocol is seen in 

Figure 20. There are two distinct energies of nodes in use. 

The letter 'o' stands for standard nodes, the plus sign ('+') 

indicates high-level nodes, and the letter 'x' represents the 

home base. Figure 20 represents the cluster formation in the 

cluster heads as a '*'. Table 7 shows the Selection of 

Parameters for SEP protocol. 

Figure 19 depicts the link weight function graphically. If the 

algorithm comes up with a link weight function, it means the 

cluster leader doesn't have enough bandwidth to send out data 
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packets. Due to the long stability time of the H LEACH 

algorithm, Link Weights are superfluous in Hetero LEACH. 

Table 7 Selection of Parameters for SEP 

Dimensions Xm = 50, Ym = 50 

Sink (x, y) Sink (0.5, 0.5) 

Nodes 50 

Energy Model 

(Initial Energy) 

E= 0.23, 

Efs = 0.005, 

Eamp = 0.0023 

Heterogeneity % M = 0.3, A = 7 

Maximum Rounds 7000 

Table 8 displays how well each algorithm performs in terms 

of delay and energy reduction.  It provides a comparison of 

various techniques in terms of their performance metrics in 

the wireless sensor network simulation. The metrics include 

the number of rounds for different events and the energy 

remaining at specific nodes for each technique.  

The "Round for First Dead" metric measures the number of 

rounds it takes for the first sensor node in the network to 

deplete its energy. Our new solution has a higher value 

compared to LEACH and PEGASIS but is similar to SEP. H-

LEACH performs better than the proposed protocol in this 

aspect. 

Round for First 10 Dead signifies the number of rounds 

required for the first ten sensor nodes to exhaust their energy. 

The proposed approach performs similarly to SEP in this 

aspect and outperforms MAMC, PEGASIS, and LEACH. H-

LEACH outperforms the proposed approach in this regard.  
The "Stability Period" indicates how long the network 

remains stable before significant energy depletion occurs. The 

stability period of our solution is similar to that of MAMC but 

shorter than H-LEACH, PEGASIS, and SEP. It significantly 

outperforms LEACH in terms of network stability. 

This metric measures the amount of energy remaining in the 

first ten sensor nodes. Our proposed solution retains the 

highest energy among the first ten nodes, outperforming H-

LEACH, LEACH, MAMC, PEGASIS, and SEP in this 

category. 

 

Figure 21 Performance of SEP Protocol 

In summary, the proposed protocol performs well in terms of 

maintaining energy in the initial nodes and demonstrating a 

reasonable stability period. It lags H-LEACH in terms of the 

"Round for First Dead" and "Round for First 10 Dead" 

metrics. Overall, the choice of routing technique depends on 

the specific network requirements and priorities, as different 

techniques excel in various aspects of performance. 

Table 8 Comparative Performance of Techniques 

Technique Round 

for first 

Dead 

Round for 

first 10 

Dead 

Round for first half 

alive Nodes 

Round for all 

dead nodes 

Stability 

Period 

Energy 

Remaining at 

first 10 nodes 

Proposed [this 

article]  

3000 4500 6500 7200 2300 4800J 

H-LEACH[27] 2300 3230 4500 5400 1152 2300J 

LEACH[26] 456 1200 3243 1500 322 1000J 

MAMC[28] 1329 2500 3554 4000 900 600J 

PEGASIS[29] 1200 1500 2100 2400 849 530J 

SEP[30] 2190 3100 4000 5000 1003 1300J 

[6] 1000 2500 3554 4000 900 600J 

[7] 1100 1500 2100 2400 849 530J 

[10] 1500 3100 4000 5000 1003 1300J 
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5. CONCLUSIONS 

The choice of a routing technique should align with the 

specific requirements and goals of the application.  Based on 

our analysis of different routing techniques in a wireless 

sensor network, several key insights can be drawn to inform 

network administrators and researchers: It's essential to 

compare routing techniques against relevant benchmarks to 

determine their suitability for a particular application. The 

provided metrics offer a comparative benchmark, enabling 

network administrators to make informed decisions. If 

network longevity is a priority, the proposed approach offers a 

solid choice. If rapid data transmission and early-stage energy 

conservation are crucial, H-LEACH might be preferred.  

The proposed approach retains a significant amount of energy 

in the first ten nodes, indicating its ability to prolong network 

operation. However, H-LEACH outperforms our solution in 

terms of the "Round for First Dead" and "Round for First 10 

Dead" metrics, suggesting that it may be more energy-

efficient during the early stages of network operation. 

Moreover, the proposed solution offers a reasonable stability 

period, which is the duration for which the network remains 

stable before energy depletion becomes a significant concern. 

It outperforms LEACH in terms of network stability.  

Different routing techniques have their strengths and 

weaknesses. While the proposed approach excels in energy 

preservation, it may trade this for slightly longer times before 

the first node failure. On the other hand, H-LEACH is 

efficient in early-stage energy consumption but may have a 

shorter stability period. 

In conclusion, no single routing technique is universally 

superior. The choice should be tailored to the specific needs 

of the wireless sensor network. The proposed solution 

emerges as a strong contender, excelling in energy 

preservation. Ultimately, understanding the trade-offs and 

priorities of a given application is crucial for selecting the 

most appropriate routing technique. 
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