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Abstract – Fog computing is a viable approach to improving the 

performance of cloud computing, especially in terms of response 

time, which is critical to real-time applications. Specifically, the 

fog brings the cloud resources closer to terminal devices (TDs), 

thereby decreasing latency and increasing throughput. The 

problem of task offloading from TDs to the fog has enjoyed 

much research work, but the issue of TD mobility has not found 

enough attention, and hence is the present work. Herein, TD 

mobility in fog computing involves the transfer of services while 

the TD is moving from one fog to another, requiring delicate 

coordination between the fogs. To this end, a framework is 

proposed to ensure that the fogs together with the cloud 

collaborate, first to always keep track of the current location of 

the TD offloading the task, and second to accurately serve the 

task in a distributed fashion while the TD is moving. The 

framework dedicates two queues in each fog, one to receive fresh 

tasks from TDs and one to receive hand-over tasks from other 

fogs, and leverages a vigilant inter-fog messaging system capable 

of keeping all concerned components abreast of the latest status. 

A program has been written in Python to simulate the 

framework and example operational environments. The 

program has been used to perform extensive experiments in 

order to assess the performance of the framework under high 

and low mobility conditions. The findings indicate that the 

framework is highly reliable and can deliver, under various 

mobility modes, the right response to the right TD at the right 

time. 

Index Terms – Internet of Things, Task Offloading, Response 

Time, Mobility, Cloud Computing, Fog Computing. 

1. INTRODUCTION 

Recently, the Internet of Things (IoT) has become one of the 

most important paradigms that affect the technology industry. 

The CISCO Annual Internet Report (AIR) released in 2020 

[1] indicates that there will be about 29.3 billion network 

devices in the World by the end of 2023. Juniper Research [2] 

has listed that in 2022 there will be about 50 billion IoT 

devices. The international data corporation (IDC) predicting 

that the number connected devices worldwide will reach 55.7 

billion devices, with about 75% of them IoT devices. Besides, 

the IDC predicted that the connected IoT devices will produce 

73.1 ZB of data by 2025, up from 18.3 ZB in 2019. 

 A great variety of delay-sensitive tasks are generated by IoT 

devices. Due to their resource constraints, IoT devices have to 

offload their tasks to cloud servers for faster processing  [3].   

The Cloud Computing paradigm has been established to 

provide a set of centralized cloud servers with more 

computational and storage capabilities  [4]. Due to its flexible 

and scalable design, the cloud has been used to process tasks 

offloaded by IoT devices  [5]. However, due to the 

centralization and remote location of cloud servers, there are 

numerous problems related to such issues as bandwidth, 

device mobility and task response time, which need careful 

consideration  [6]. 

To mitigate these problems, the concept of Fog computing 

was presented by CISCO to bring the power of cloud 

computing (both resources and services) closer to IoT devices 

at the edge of the network, forming a fog layer  [7],  [8]. As 

depicted in Figure 1, the fog layer consists of a set of fog 

nodes (FNs), where each FN is usually associated with a 

network access node, e.g. base station (BS)  [9]. 

Due to the fog layer being close, more networking, storage 

and computing functions are available in a more convenient 

way for IoT devices  [10], [11]. As a result, Fog computing 

could be more efficient than cloud computing to serve IoT 
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application requirements through task offloading, which is a 

function that enables IoT devices to transmit a part of their 

tasks to a selected FN that may overcome the problems of 

latency and energy consumption  [12]. As IoT devices are co-

located under the coverage of a BS, a massive number of 

tasks are received at the FN. This results in scalability 

challenges because of the constrained processing capacity of 

the FN. To reduce the load of static FNs, an opportunistic FN 

(OFN) solution was introduced in  [13]. In this solution, when 

an IoT device is close to an OFN, the former can offload a 

task to the latter and receive the response directly and quickly. 

This draws attention to the notion of IoT device mobility. 

 

Figure 1 Fog Computing Network Conceptual Design 

IoT device mobility, addressed by the present article, is an 

important practical consideration that has not enjoyed much 

research attention. The mobile device may be carried by 

humans, robots or unmanned aerial vehicles. Mobility of IoT 

devices affects performance of Fog computing, as they change 

access points quite frequently [14].  

In particular, after the FN starts a task computation activity 

for a certain IoT device, the device may leave the FN to 

another FN. Without taking design precautions, the IoT 

device will retransmit the same task to the new FN, 

unnecessarily congesting the FNs, eating up precious 

bandwidth and wasting much energy. In [15], a deadline-

aware and cost-effective offloading approach was introduced 

to improve offloading efficiency for mobile IoT devices with 

the assumption that the IoT devices move with high speed. A 

scheme was then introduced to allow IoT device make more 

efficient offloading decisions. 

In this paper, a Collaborative Offloading Task Framework for 

IoT Fog Computing is proposed to handle the mobility of IoT 

devices more efficiently, reducing the task response time. The 

main idea of the framework is to migrate the task response of 

the mobile IoT device as the latter moves from one FN to 

another. That is, the response of the offloaded task may be 

delivered to the mobile IoT device by an FN other than the 

FN that originally received the task from the device. This 

migration distributes the processing of the task among many 

FSs, sparing the device the trouble of resubmitting the task to 

each FN it moves to, improving the QoS greatly.    

1.1. Problem Definition 

A serious challenge arises in fog computing when the IoT 

devices served by the fog system are mobile. Specifically, 

after a FN starts a task computation activity for a certain IoT 

device, the device (being mobile) may depart to another FN. 

Unless design measures are in place to intervene, the IoT 
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device will have to retransmit the same task to the new FN. 

This retransmission, which effectively throws away whatever 

computation done in the old FN, will have bad consequences, 

such as congesting the FNs, eating up bandwidth, dissipating 

energy and wasting precious time which can possibly lead to 

missing a critical deadline.  In this article a comprehensive 

framework is proposed to mitigate this challenge. 

The remainder of this paper is organized as follows. In 

Section 2, a summary of related work is provided. In Section 

3, the system model is presented and explained and the fog 

network architecture used in the proposed framework is 

outlined. The framework is illustrated in section 4, and is 

evaluated in section 5. Finally, concluding remarks are 

presented in section 6. 

2. RELATED WORK 

Diligent attempts have been made in recent years to 

investigate the issue of mobility fog computing. Raouf et al.  

[16] proposed a mobility-aware task offloading enhancement 

scheme for fog computing. This scheme was evaluated in 

terms of CPU cycles and time delay cost for both task 

offloading and local computing. Kyung et al.  [5]  proposed 

an opportunistic fog node (OFN) offloading architecture that 

could be dynamically flexible depending on the mobility of 

the OFN. An analytical model is developed considering 

hybrid, indirect and direct OFN offloading cases. The results 

indicated that the hybrid and direct offloading result in better 

performance than indirect offloading.  

Using the concept of matching theory, Chiti et al.  [17]  

proposed a distributed algorithm for offloading tasks to fog 

nodes in IoT systems, while Zhao et al.  [18] introduced an 

offloading scheme in fog radio- access-networks (F-RANs). 

They both optimized offloading decisions, computational 

resource allocation, and the allocation of radio resource to 

minimize the weighted sum of the total power consumption 

and the total offloading latency. The problem was formulated 

as non-convex and solved with a non-linear and iterative 

algorithm that runs in polynomial time.  Du et al. in  [19]  

proposed a study aiming to reduce the maximum weighted 

cost of delay and power consumption in a system with mixed 

cloud/fog computational offloading. The authors formulated 

the problem as a mixed non-linear-programming (MINLP) 

type and solved it for the optimum offloading decision. 

In  [20], the authors introduced a solution to find optimum 

task offloading decisions and path. The problem was 

formulated as an integer linear programming (ILP) type and 

solved with a greedy heuristic-based approach. In  [21], Liu et 

al. have proposed a multi-objective function based on power 

consumption, delay and payment costs to optimize the 

offloading decision and the transmit power. The authors used 

different queuing models to explore the processing behavior 

of the elements of the network. Yao et al. in  [22]  explored 

task offloading with the aim of reducing the cost of the 

system by considering the tasks QoS requirements and 

optimizing the number of rented virtual machines and the 

power consumption. In  [23], the authors studied the 

offloading problem to minimize service latency through load 

balancing and fog collaboration. In  [24], the authors 

introduced a distributed collaborative computational 

offloading algorithm in a game theory form model.  

Ghosh et al.  [25] proposed a real-time cloud fog edge IoT 

collaborative framework, namely Mobi-IoST, to efficiently 

deliver processed information to user devices based on 

intelligent decision making and predictions of user mobility. 

The framework uses agent mobility knowledge to predict user 

location.  Based on the user location, the processed 

information with low latency and low power is delivered. 

Lakhan et al. in  [15] proposed an enhanced vehicular fog 

cloud network scheme based on blockchain and multi-side 

offloading with mobility, fault-tolerance, and mobility 

limitations. The basic goal was to reduce real-time 

communication costs, subject to specific constraints like task 

deadlines and network bandwidth. The authors of  [26], 

developed a programming technique that maximizes the 

number of successfully processed IoT tasks with adequate 

security criteria while minimizing the end-to-end transmission 

delay. To reduce task execution and power consumption in a 

fog, the authors of  [27] suggested a task offloading technique 

that takes into account both communication and computing 

delays. 

Despite the huge amount of research work published in the 

past years, more work on mobile fog computing is still 

appearing till this day. In [28], the authors devise a scheme 

for placing and selecting fog nodes (FN) for maximum 

utilization of resources in the context of the Industrial Internet 

of Things (IIoTs). Specifically, they propose a multi-level 

hierarchical deployment model using the IoT devices 

themselves as FNs. They consider for the selection of a device 

to be a FN many parameters, such as energy, path, location, 

storage, and available computing resources. In [29], the 

authors assume that the FNs are already in place and focus on 

how a mobile device selects the best FN in order to maximize 

resource utilization and throughput at the same time. They 

present an algorithm based on classification and regression 

trees, taking into account critical considerations such as 

authentication, confidentiality, integrity, availability, capacity, 

speed, and cost.  

In the context of vehicular networks, the authors of [30] 

devise a scheme to maximize both resource utilization and 

throughput by adjusting the ratio of tasks to be offloaded to 

the FNs. In particular, they present a partial computation 

offloading and adaptive task scheduling algorithm with two 

phases. First, a two-sided matching algorithm is invoked to 

derive the optimal transmission scheduling discipline, then the 
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offloading ratio of vehicular users is obtained through convex 

optimization. Also for vehicles, the authors of [31] devise a 

scheme to quickly process tasks offloaded by moving vehicles 

by FNs installed along the road side via a utility function and 

a knapsack-based task scheduling algorithm.  Using a 

knapsack also are the authors of [32] who formulated with it 

an optimization offloading algorithm to minimize the energy 

consumption of the offloading mobile devices. For resource 

allocation and dynamic scheduling, they present a dynamic 

scheduling algorithm based on a priority queue. For a 

thorough and recent review of the modern trends to select the 

best vehicular FN, one can consult the survey in [33]. 

Although the survey is dedicated to vehicular fog computing 

it has a wealth of information that can be leveraged in fog 

computing in general.  

By surveying the work on mobile fog computing, it can be 

easily realized that an important issue regarding the 

processing of a task that has been offloaded by a mobile 

device, frequently changing FNs, has not been properly 

addressed. The issue concerns the handling of a task that was 

offloaded in a certain FN by a certain mobile device which, 

due to mobility, later departs to a new FN before receiving the 

response from the old FN. How to handle this task 

collaboratively by the fog system in an optimal way that saves 

on energy, time and bandwidth is the focus of the present 

article. 

3. SYSTEM MODEL 

As shown in Figure 2, the considered system consists of three 

layers, namely Mobile computing (MC), Fog computing (FC), 

and Cloud computing (CC). The MC layer (aka perception 

layer) is the lowest level and typically has a massive number 

of mobile terminal devices (TDs) geographically distributed 

along a highway service area. The TDs can be IoT devices 

such as sensors, smartphones, tablets, smart watches, smart-

glasses and actuators, with all generating tasks all the time. In 

addition, each TD has its own resources such as CPU power, 

battery, memory, and wireless transceiver interface card. Due 

to memory limitation, each TD is equipped with a small finite 

buffer for hosting tasks to be executed later when computing 

resources are available. 

The FC layer (aka network edge) consists of a set of Fog 

nodes distributed along the highway road. Each Fog node 

receives offloading tasks from the TDs residing in its 

coverage area. Because of its proximity to the TDs, Fog nodes 

decrease the workload that would otherwise go to the cloud, 

ensuring also low latency for the TDs in its coverage area. 

As shown in Figure 3, the geographic area along the highway 

is divided into a number N of cells, denoted by c1, c2, … , cN. 

It is assumed that, cell ck with a unique identifier idc is served 

by only one fog node fk with a unique identifier idf. A 

complete view of the state of fog nodes is obtained via a 

Computing server (CS) in the backbone network. The number 

of TDs that can be served within a given cell varies from one 

cell to another. Each TD i has a unique identifier idt within all 

cells. Furthermore, each TD i within cell ck has a profile Pi
k 

made up of the triplet ⟨idf, idc, idt⟩. The CS has a data 

structure (DSC) used to store the profiles of all the TDs 

currently in the cells. The CS is in charge of assigning the 

identifier idt to each TD arriving at the network, i.e., at any 

cell, under consideration. 

Fog Fog Fog

Internet

Cloud 

Computing

Fog 

Computing

Mobile 

Computing

 

Figure 2 IoT Layer Stack 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/220739                 Volume 10, Issue 2, March – April (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       248 

     

RESEARCH ARTICLE 

 

Figure 3 System Model 

It is assumed that the CS has a set of Free Identifier List (FIL) 

from which the TDs can obtain their identifiers using 

getFreeId() function. The newly arriving TD i at a given ck 

can know the idf of the fog fk from other TDs residing in that 

cell.  

The TDs generate tasks which are to be processed either 

locally at the TD or remotely at the fog nodes. When TD i in 

cell ck offloads its task to fog fk, the task response is sent out, 

after computation, from that fog fk to TD i using either direct 

transmission, single hop, if the TD is still in the cell ck or 

indirect transmission, multi-hop, through intervening fogs if 

the TD has moved (through handoffs) to another cell cl, l ≠ k. 

4. FOG MODELING 

It is assumed that TD arrivals at a given cell of a certain fog 

are of two types: type-1 or type-2. The first type comprises all 

TDs which join a given cell and are not associated with any 

fog (i.e., new arrival). Accordingly, TD i in Figure 1 is of 

type-1. The type-2 includes those TDs which are already 

associated with a certain fog but later moved (via handoff) to 

the coverage area of another fog. Accordingly, TD j in Figure 

1 is of type-2. When type-1 arrives at a given cell, it registers 

with the CS which, in turn, creates a profile for it. To create a 

TD profile, the initialize massage iniMSG and replay message 

repMSG are used for coordination purposes between the TDs 

and the CS. When a type-2 TD moves from one cell to 

another via handoff, it updates its profile. For this updating, 

the update message updMSG is used. The task arrivals at fog 

fk are distinguished into two classes: class-1 or class-2. Class-

1 denotes arrivals from type-1 TDs. These task arrivals are 

queued at fog fk in an infinite size buffer referred to as New 

Task Buffer (NTB). 

To illustrate, consider the following scenario. TD i in cell ck 

has a task request entry in the NTB buffer and is moving from 

the fk coverage area toward cell cl which is covered by the fog 

fl, k ≠ l. Using alert message alrMSG, the CS is in responsible 

for telling fog fk that TD i has moved to cell cl which is 

covered by fog fl. In such case, the task of TD i which is 

queued in NTB buffer is re-classified as class-2 and moved 

into an infinite size buffer at fog fk which is referred as 

Handoff Task Buffer (HTB). When the task of TD i is 

completed at fog fk, the latter will send it to fog fl which, in 

turn, will send it to TD i. In this paper, It is assumed that 

class-2 are given higher priority over, i.e. served before, class-

1. 

4.1. New TD Operations 

When a TD i enters the transmission range of fog fk, it senses 

the medium seeking beacon messages from other TDs 

residing in its cell ck for a certain period of time τ. The 

beacon message bMSG contains the pair (idf, idc). Based on 

the sensing process result, TD i follows either one of the 

following two cases: 

Case 1: The message bMSG is received by TD i within the 

time period τ. In such case, it records the pair (idf, idc) and 

initiates the message iniMSG = ⟨idf⟩ and sends it to the CS. 

Upon receiving iniMSG message, the CS, in turn, builds the 
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profile Pi
k = ⟨idf, ifc, idt⟩, stors it in its DBS and replies to the 

new TD i with the message repMSG = ⟨idt⟩. The TD i 
combines the pair (idf, idc) with the received message 

repMSG = ⟨idt⟩ and consructs its profile Pi
k = ⟨idf, ifc, idt⟩. 

Case 2: The time τ expires without receiving any beacon 

messages by TD i, meaning it is the first TD in cell ck. As a 

result, it initiates the message iniMSG = ⟨x, y⟩ and sends it to 

the CS, where x and y are its coordinates in the cell ck . When 

the CS receives the iniMSG message, it builds the profile 

Pi
k = ⟨idf, ifc, idt⟩, stores it in its data base and replies to TD i 

with the message repMSG = ⟨Pi
k⟩.  

This procedure is illustrated in Algorithm 1. 

Input: Time period τ 

Output: Profile Pi
k = ⟨idf, ifc, idt⟩ 

TD i eneter cell k 

TD i senses the medium for beacon messages 

if A beacon message received within τ then 

              TD i sends the message iniMSG = ⟨idf⟩ to CS 

The CS sets idt = getFreeID() 

Construct profile Pi
k = ⟨idf, ifc, idt⟩ 

                TD i receives its Pi
k via repMSG = ⟨Pi

k⟩ 

else 

                TD i sends iniMSG = ⟨x, y⟩ to CS 

The CS sets idt = getFreeID() 

                TD i receives profile repMSG = ⟨idf, ifc, idt⟩ 

end 

Algorithm 1 Profile Generation Process 

Now it is time to handle offloaded tasks. Let 𝒯i
k =

(idt, TP, TD) be the offloaded task request at fog fk, where TP 

and TD denote the task processing time and deadline time, 

respectively. Let ℛi
k denote the response time of task 𝒯i

k. 

Clearly, the deadline TD is an upper bound for ℛi
k. The 

offloaded task 𝒯i
k at fog fk is queued in the NTB buffer of the 

fog waiting for its processing turn. Let  𝒱i
k be the cell dwell 

time of TD i, which is the time between the instant when TD 

i, residing in a cell ck, offloaded its task to fog fk and the 

instant when TD i is handed off to another cell cl, k ≠ l. 

Based on the values of ℛi
k, 𝒱i

k and TD, TD i receives its task 

response as follows: 

1. If ℛi
k ≤ 𝒱i

k and ℛi
k ≤ TD, TD i will successfully receive 

its task response within its original cell ck using direct 

transmission. In such case, the response time ℛi
k is given 

as the sum of task uploading time Ui
k from TD i to fog fk, 

queuing time QNTB
k  in NTB buffer at fog fk, the task 

processing time TP at fog fk and the task downloading time 

Di
k from fog fk to TD i. That is: 

ℛi
k = Ui

k + QNTB
k + TP + Di

k (1) 

2. If ℛi
k > 𝒱i

k and ℛi
k < TD,  TD i will not receive its task 

response within its original cell ck. This scenario can occur 

as a result of TD i being handed off from cell ck to another 

cell cl. In this situation, one of the following two sub-

scenarios applies: 

 Scenario 1: TD i retransmits its task to its new fog fl with 

new dealine. This retransmission will increase the 

response time, communication overhead and power 

consumption. In such scenario, the response time ℛi
l is 

given as follows. 

ℛi
l = Ui

l + QNTB
l + TP + Di

l + Ui
k + QNTB

k  (2) 

 Scenario 2: To avoid the problem of increasing the 

response time, a transfer mechanism is used to migrate the 

task response from the old fog fk to the new fog fl in the 

case of handdoff process. In this mechanism, instead of 

retransmitting the task 𝒯i
k to the new fog fl, this task is 

completed at the old fog fk and its response is transmitted 

to TD i via its new fog fl using indirect transmission. In 

such scenario, the response time ℛi
l is given as follows. 

ℛi
l = Ui

k + TP + QHTB
k + Di

l (3) 

where QHTB
k  is the queuing time in the HTB buffer at fog fk. 

The transfer mechanism will be described in the next 

subsection. 

4.2. Handoff TD Operations 

Assume that TD i while in cell ck and has offloaded its task 

𝒯i
k to fog fk. While TD i waiting for task response from fk, it 

starts moving on the highway toward the service coverage 

area of another fog fl, l ≠ k. When TD i receives strong 

wireless signal from fl, it starts being handed off to fl. After 

the automatic link transfer process is carried out, TD i begins 

to update its profile and starts the task migration mechanism 

as shown Figure 4.  

First, TD i sends the update message updMSG = ⟨Pi
k⟩ to the 

CS. Then, the CS constructs the new profile Pi
l and replies to 

TD i with the message repMSG = ⟨Pi
l⟩. Note that the 

identifier idt of TD i is not changed form cell to cell. After 

TD i gets its profile at fog fl, the CS starts the transfer 

mechanism as follows. 

1) The CS sends an alert message alrMSG = ⟨Pi
k, Pi

l⟩ to the 

fog fk containing the old and new profiles of TD i. 
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2) The fog fk searches its NTB buffer for the task 𝒯i
k in 

profile is Pi
k. 

3) If there is no an entry for Pi
k then fog fk replies to fog fl 

with message repMSG = ⟨Pi
l, flag = 1⟩. 

4) If there is an entry 𝒯i
k for Pi

k then the fog fk checks if that 

task can be processed within its deadline time TD or not. 

This depends on the number of tasks queued in the HTB 

buffer. 

5) If the task 𝒯i
k can be processed within its deadline time 

TD then fog fk classifies it as class-2 and transfers it to the 

end of the HTB buffer. 

6) Once the task 𝒯i
k gets served, fog fk replies to fog fl with 

message repMSG = ⟨Pi
l , TR, flag = 2⟩, where TR denotes 

the response of the task 𝒯i
k. 

7) If the task 𝒯i
k can not be processed within its deadline 

time TD then fog fk removes it from its NTB and replies 

to the fog fl with message repMSG = ⟨Pi
l, flag = 3⟩. 

 

 

Figure 4 Handoff Process and Task Migration of TD i from cell k to Neighbor Cell l 
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After receiving the repMSG message, fog fl executes one of 

the following actions based on the value of flag: 

 Action 1, if flag = 1: Do nothing. 

 Action 2, if flag = 2: Fog fl forwards the response TR 

directly to TD i within the cell cl. 

 Action 3, if flag = 3: Fog fl sends an alert to TD i to 

retransmit it task request again. 

5. RESULTS AND DISCUSSIONS 

In this section, the simulation and the results for the proposed 

collaborative task offloading framework are provided. The 

simulation program was coded in the Python language and 

later run on Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz, 

with a Windows 10 pro version 21H2 operating system.  

Table 1 illustrates the different operational parameters that 

have been used to establish the simulation process. Simulation 

parameters are TDs task generation rate, ask processing time 

𝑇𝑃 at fogs, number of TDs within cells, number of VMs and 

handoff rate. In the simulation experiments, the handoff rate is 

used to control the speed of TDs descending on a fog. A low 

handoff rate means low mobility and a high handoff rate 

means high mobility. For a given cell 𝑘, the task uploading 

time 𝑈𝑘 from TD to fog 𝑘 and the task response downloading 

time 𝐷𝑘 from the fog to TDs are fixed to 500 msec. Five 

million simulation runs were found sufficient for each 

experiment to achieve convergence. The simulation results are 

presented in terms of the task response time, as given by 

Equation (1), versus TD arrival rate, number of TDs in each 

cell, number of VMs and the task processing rate at fogs.  In 

each simulation experiment, the task response time is 

measured in two cases, based on Equations (2) and (3): when 

the proposed framework is enabled and when it is disabled. In 

the event that a TD moves from one cell to another (i.e. 

handover), disabling the proposed framework prevents tasks 

from being migrated between fogs. 

Table 1 Operational Parameters 

Parameters 1 Value 

Number of TDs 50-500 

Number of VMs 50 

Task upload time  500 msec. 

Task response download time 500 msec. 

Number of cells (fogs), N 3 

 

Figure 5 Task Response Time versus the Task Generation Rate in Low Mobility 

Figure 5 shows how the proposed framework can improve the 

task response time in a high mobility situation as the handoff 

rate is 0.01 TDs/second. In this experiment, there are 500 TDs 

distributed uniformly over 3 cells. The number of VMs is 50 

and the processing time rate at each VM is 0.001 task/second. 

It can be seen that the task response time when using the 

framework (lower curve) is less than half its value without the 

framework (upper curve). The reason is that the framework 

allows a task that has been offloaded in some cell to continue 

being processed after its offloading TD departs the cell, 

whereas without the framework the TD would have to 

resubmit the task again to the new cell, dropping whatever 

processing done in the cell that has been departed. Another 

remarkable point about the framework is that the decrease it 

affords in response time becomes even more pronounced for 

higher task arrival rates. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2023/220739                 Volume 10, Issue 2, March – April (2023) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       252 

     

RESEARCH ARTICLE 

 

Figure 6 The Task Response Time versus the Task Generation Rate in Low Mobility 

 

Figure 7 The Task Response Time versus the Number of TDs in High Mobility 

Figure 6 is similar to Figure 5, but visualizes the case of a low 

mobility situation as the handoff rate is 0.00001 TD/second.  

The figure shows that the response time is less with the 

framework (lower curve) than without it (upper curve). 

However, by comparing Figures 5 and 6, it can be seen that 

the improvement introduced by the framework in the task 

response time is greater if the mobility is high than if it is low. 

The reason the proposed framework is more effective for high 

mobility than for low mobility can be interpreted as follows. 

When the mobility is low, the chances that the TD departs the 

cell where it has already offloaded a task is small, and hence 

the probability that it will receive the response before 

departing is high, obviating the need for the framework. On 

the contrary, when the mobility is high, the chances that the 

TD departs the cell where it has already offloaded a task is 

high, and hence the probability that it will not receive the 
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response before departing is high, requiring the favor the 

framework provides. 

Figure 7 illustrates the task response time against the number 

of TDs in high mobility, as the handoff rate is 0.01 

TD/second, with and without the proposed framework. As can 

be seen, the framework helps decrease the task response time 

greatly regardless of how many TDs are offloading tasks. The 

reason, once again, is that migrating the task response to the 

next fog spares offloading task again at the new fog where the 

TD has moved. 

 

 

Figure 8 The Task Response Time versus the Number of TDs in Low Mobility 

In low mobility, Figure 8, where the handoff rate is set at 

0.00001 TD/second, the same favorable effect of the proposed 

framework can be seen, but this time to a lesser extent. The 

reason why the framework is less effective in low mobility is 

that, as mentioned before, the probability that a TD receives 

the response of a task that it has offloaded while the TD is 

still in the same offloading cell is high. This means that the 

service of the proposed framework is not as greatly needed as 

in the high mobility case. 

6. CONCLUSION 

In this article a collaborative cloud-fog framework is provided 

for task offloading of mobile TDs. The framework ensures 

seamless handover as the TD crosses boundaries from fog to 

fog, and also ensures low task response time satisfying stated 

QoS limits. The framework assumes a number of fog nodes 

deployed along a highway with a CS in the backbone network 

for monitoring the overall scene. The task response of the TD 

may migrate from fog to fog in case the TD is moving across 

various fogs. Two queues are provided in each fog, one to 

host tasks that are being locally offloaded and one to host 

tasks that have been handed over from other fogs. For the 

purpose of network integrity, an inter-fog messaging system 

to handle the work between fogs and the CS is introduced. 

Further, a mechanism for managing the handoff process of 

TDs in both high and low mobility is developed. A simulation 

program is written in Python to assess the performance of the 

proposed framework in terms of task response time, mobility, 

and cell dwell time. According to the simulation experiments 

carried out, the proposed framework lowers response time, 

and thus can help real-time applications meet stringent 

deadlines. 
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