
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 244

RESEARCH ARTICLE

A Collaborative Offloading Task Framework for IoT

Fog Computing

Amira S. Ibrahim

Department of Computer Science, Suez Canal University, Ismailia, Egypt.

amira_ibrahim@ci.suez.edu.eg

Hassan Al-Mahdi

Department of Computer Science, Suez Canal University, Ismailia, Egypt.

drhassanwesf@ci.suez.edu.eg

Hamed Nassar

Department of Computer Science, Suez Canal University, Ismailia, Egypt.

 nassar@ci.suez.edu.eg

Received: 23 January 2023 / Revised: 04 March 2023 / Accepted: 10 March 2023 / Published: 29 April 2023

Abstract – Fog computing is a viable approach to improving the

performance of cloud computing, especially in terms of response

time, which is critical to real-time applications. Specifically, the

fog brings the cloud resources closer to terminal devices (TDs),

thereby decreasing latency and increasing throughput. The

problem of task offloading from TDs to the fog has enjoyed

much research work, but the issue of TD mobility has not found

enough attention, and hence is the present work. Herein, TD

mobility in fog computing involves the transfer of services while

the TD is moving from one fog to another, requiring delicate

coordination between the fogs. To this end, a framework is

proposed to ensure that the fogs together with the cloud

collaborate, first to always keep track of the current location of

the TD offloading the task, and second to accurately serve the

task in a distributed fashion while the TD is moving. The

framework dedicates two queues in each fog, one to receive fresh

tasks from TDs and one to receive hand-over tasks from other

fogs, and leverages a vigilant inter-fog messaging system capable

of keeping all concerned components abreast of the latest status.

A program has been written in Python to simulate the

framework and example operational environments. The

program has been used to perform extensive experiments in

order to assess the performance of the framework under high

and low mobility conditions. The findings indicate that the

framework is highly reliable and can deliver, under various

mobility modes, the right response to the right TD at the right

time.

Index Terms – Internet of Things, Task Offloading, Response

Time, Mobility, Cloud Computing, Fog Computing.

1. INTRODUCTION

Recently, the Internet of Things (IoT) has become one of the

most important paradigms that affect the technology industry.

The CISCO Annual Internet Report (AIR) released in 2020

[1] indicates that there will be about 29.3 billion network

devices in the World by the end of 2023. Juniper Research [2]

has listed that in 2022 there will be about 50 billion IoT

devices. The international data corporation (IDC) predicting

that the number connected devices worldwide will reach 55.7

billion devices, with about 75% of them IoT devices. Besides,

the IDC predicted that the connected IoT devices will produce

73.1 ZB of data by 2025, up from 18.3 ZB in 2019.

 A great variety of delay-sensitive tasks are generated by IoT

devices. Due to their resource constraints, IoT devices have to

offload their tasks to cloud servers for faster processing [3].

The Cloud Computing paradigm has been established to

provide a set of centralized cloud servers with more

computational and storage capabilities [4]. Due to its flexible

and scalable design, the cloud has been used to process tasks

offloaded by IoT devices [5]. However, due to the

centralization and remote location of cloud servers, there are

numerous problems related to such issues as bandwidth,

device mobility and task response time, which need careful

consideration [6].

To mitigate these problems, the concept of Fog computing

was presented by CISCO to bring the power of cloud

computing (both resources and services) closer to IoT devices

at the edge of the network, forming a fog layer [7], [8]. As

depicted in Figure 1, the fog layer consists of a set of fog

nodes (FNs), where each FN is usually associated with a

network access node, e.g. base station (BS) [9].

Due to the fog layer being close, more networking, storage

and computing functions are available in a more convenient

way for IoT devices [10], [11]. As a result, Fog computing

could be more efficient than cloud computing to serve IoT

mailto:drhassanwesf@ci.suez.edu.eg
mailto:drhassanwesf@ci.suez.edu.eg

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 245

RESEARCH ARTICLE

application requirements through task offloading, which is a

function that enables IoT devices to transmit a part of their

tasks to a selected FN that may overcome the problems of

latency and energy consumption [12]. As IoT devices are co-

located under the coverage of a BS, a massive number of

tasks are received at the FN. This results in scalability

challenges because of the constrained processing capacity of

the FN. To reduce the load of static FNs, an opportunistic FN

(OFN) solution was introduced in [13]. In this solution, when

an IoT device is close to an OFN, the former can offload a

task to the latter and receive the response directly and quickly.

This draws attention to the notion of IoT device mobility.

Figure 1 Fog Computing Network Conceptual Design

IoT device mobility, addressed by the present article, is an

important practical consideration that has not enjoyed much

research attention. The mobile device may be carried by

humans, robots or unmanned aerial vehicles. Mobility of IoT

devices affects performance of Fog computing, as they change

access points quite frequently [14].

In particular, after the FN starts a task computation activity

for a certain IoT device, the device may leave the FN to

another FN. Without taking design precautions, the IoT

device will retransmit the same task to the new FN,

unnecessarily congesting the FNs, eating up precious

bandwidth and wasting much energy. In [15], a deadline-

aware and cost-effective offloading approach was introduced

to improve offloading efficiency for mobile IoT devices with

the assumption that the IoT devices move with high speed. A

scheme was then introduced to allow IoT device make more

efficient offloading decisions.

In this paper, a Collaborative Offloading Task Framework for

IoT Fog Computing is proposed to handle the mobility of IoT

devices more efficiently, reducing the task response time. The

main idea of the framework is to migrate the task response of

the mobile IoT device as the latter moves from one FN to

another. That is, the response of the offloaded task may be

delivered to the mobile IoT device by an FN other than the

FN that originally received the task from the device. This

migration distributes the processing of the task among many

FSs, sparing the device the trouble of resubmitting the task to

each FN it moves to, improving the QoS greatly.

1.1. Problem Definition

A serious challenge arises in fog computing when the IoT

devices served by the fog system are mobile. Specifically,

after a FN starts a task computation activity for a certain IoT

device, the device (being mobile) may depart to another FN.

Unless design measures are in place to intervene, the IoT

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 246

RESEARCH ARTICLE

device will have to retransmit the same task to the new FN.

This retransmission, which effectively throws away whatever

computation done in the old FN, will have bad consequences,

such as congesting the FNs, eating up bandwidth, dissipating

energy and wasting precious time which can possibly lead to

missing a critical deadline. In this article a comprehensive

framework is proposed to mitigate this challenge.

The remainder of this paper is organized as follows. In

Section 2, a summary of related work is provided. In Section

3, the system model is presented and explained and the fog

network architecture used in the proposed framework is

outlined. The framework is illustrated in section 4, and is

evaluated in section 5. Finally, concluding remarks are

presented in section 6.

2. RELATED WORK

Diligent attempts have been made in recent years to

investigate the issue of mobility fog computing. Raouf et al.

[16] proposed a mobility-aware task offloading enhancement

scheme for fog computing. This scheme was evaluated in

terms of CPU cycles and time delay cost for both task

offloading and local computing. Kyung et al. [5] proposed

an opportunistic fog node (OFN) offloading architecture that

could be dynamically flexible depending on the mobility of

the OFN. An analytical model is developed considering

hybrid, indirect and direct OFN offloading cases. The results

indicated that the hybrid and direct offloading result in better

performance than indirect offloading.

Using the concept of matching theory, Chiti et al. [17]

proposed a distributed algorithm for offloading tasks to fog

nodes in IoT systems, while Zhao et al. [18] introduced an

offloading scheme in fog radio- access-networks (F-RANs).

They both optimized offloading decisions, computational

resource allocation, and the allocation of radio resource to

minimize the weighted sum of the total power consumption

and the total offloading latency. The problem was formulated

as non-convex and solved with a non-linear and iterative

algorithm that runs in polynomial time. Du et al. in [19]

proposed a study aiming to reduce the maximum weighted

cost of delay and power consumption in a system with mixed

cloud/fog computational offloading. The authors formulated

the problem as a mixed non-linear-programming (MINLP)

type and solved it for the optimum offloading decision.

In [20], the authors introduced a solution to find optimum

task offloading decisions and path. The problem was

formulated as an integer linear programming (ILP) type and

solved with a greedy heuristic-based approach. In [21], Liu et

al. have proposed a multi-objective function based on power

consumption, delay and payment costs to optimize the

offloading decision and the transmit power. The authors used

different queuing models to explore the processing behavior

of the elements of the network. Yao et al. in [22] explored

task offloading with the aim of reducing the cost of the

system by considering the tasks QoS requirements and

optimizing the number of rented virtual machines and the

power consumption. In [23], the authors studied the

offloading problem to minimize service latency through load

balancing and fog collaboration. In [24], the authors

introduced a distributed collaborative computational

offloading algorithm in a game theory form model.

Ghosh et al. [25] proposed a real-time cloud fog edge IoT

collaborative framework, namely Mobi-IoST, to efficiently

deliver processed information to user devices based on

intelligent decision making and predictions of user mobility.

The framework uses agent mobility knowledge to predict user

location. Based on the user location, the processed

information with low latency and low power is delivered.

Lakhan et al. in [15] proposed an enhanced vehicular fog

cloud network scheme based on blockchain and multi-side

offloading with mobility, fault-tolerance, and mobility

limitations. The basic goal was to reduce real-time

communication costs, subject to specific constraints like task

deadlines and network bandwidth. The authors of [26],

developed a programming technique that maximizes the

number of successfully processed IoT tasks with adequate

security criteria while minimizing the end-to-end transmission

delay. To reduce task execution and power consumption in a

fog, the authors of [27] suggested a task offloading technique

that takes into account both communication and computing

delays.

Despite the huge amount of research work published in the

past years, more work on mobile fog computing is still

appearing till this day. In [28], the authors devise a scheme

for placing and selecting fog nodes (FN) for maximum

utilization of resources in the context of the Industrial Internet

of Things (IIoTs). Specifically, they propose a multi-level

hierarchical deployment model using the IoT devices

themselves as FNs. They consider for the selection of a device

to be a FN many parameters, such as energy, path, location,

storage, and available computing resources. In [29], the

authors assume that the FNs are already in place and focus on

how a mobile device selects the best FN in order to maximize

resource utilization and throughput at the same time. They

present an algorithm based on classification and regression

trees, taking into account critical considerations such as

authentication, confidentiality, integrity, availability, capacity,

speed, and cost.

In the context of vehicular networks, the authors of [30]

devise a scheme to maximize both resource utilization and

throughput by adjusting the ratio of tasks to be offloaded to

the FNs. In particular, they present a partial computation

offloading and adaptive task scheduling algorithm with two

phases. First, a two-sided matching algorithm is invoked to

derive the optimal transmission scheduling discipline, then the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 247

RESEARCH ARTICLE

offloading ratio of vehicular users is obtained through convex

optimization. Also for vehicles, the authors of [31] devise a

scheme to quickly process tasks offloaded by moving vehicles

by FNs installed along the road side via a utility function and

a knapsack-based task scheduling algorithm. Using a

knapsack also are the authors of [32] who formulated with it

an optimization offloading algorithm to minimize the energy

consumption of the offloading mobile devices. For resource

allocation and dynamic scheduling, they present a dynamic

scheduling algorithm based on a priority queue. For a

thorough and recent review of the modern trends to select the

best vehicular FN, one can consult the survey in [33].

Although the survey is dedicated to vehicular fog computing

it has a wealth of information that can be leveraged in fog

computing in general.

By surveying the work on mobile fog computing, it can be

easily realized that an important issue regarding the

processing of a task that has been offloaded by a mobile

device, frequently changing FNs, has not been properly

addressed. The issue concerns the handling of a task that was

offloaded in a certain FN by a certain mobile device which,

due to mobility, later departs to a new FN before receiving the

response from the old FN. How to handle this task

collaboratively by the fog system in an optimal way that saves

on energy, time and bandwidth is the focus of the present

article.

3. SYSTEM MODEL

As shown in Figure 2, the considered system consists of three

layers, namely Mobile computing (MC), Fog computing (FC),

and Cloud computing (CC). The MC layer (aka perception

layer) is the lowest level and typically has a massive number

of mobile terminal devices (TDs) geographically distributed

along a highway service area. The TDs can be IoT devices

such as sensors, smartphones, tablets, smart watches, smart-

glasses and actuators, with all generating tasks all the time. In

addition, each TD has its own resources such as CPU power,

battery, memory, and wireless transceiver interface card. Due

to memory limitation, each TD is equipped with a small finite

buffer for hosting tasks to be executed later when computing

resources are available.

The FC layer (aka network edge) consists of a set of Fog

nodes distributed along the highway road. Each Fog node

receives offloading tasks from the TDs residing in its

coverage area. Because of its proximity to the TDs, Fog nodes

decrease the workload that would otherwise go to the cloud,

ensuring also low latency for the TDs in its coverage area.

As shown in Figure 3, the geographic area along the highway

is divided into a number N of cells, denoted by c1, c2, … , cN.

It is assumed that, cell ck with a unique identifier idc is served

by only one fog node fk with a unique identifier idf. A

complete view of the state of fog nodes is obtained via a

Computing server (CS) in the backbone network. The number

of TDs that can be served within a given cell varies from one

cell to another. Each TD i has a unique identifier idt within all

cells. Furthermore, each TD i within cell ck has a profile Pi
k

made up of the triplet ⟨idf, idc, idt⟩. The CS has a data

structure (DSC) used to store the profiles of all the TDs

currently in the cells. The CS is in charge of assigning the

identifier idt to each TD arriving at the network, i.e., at any

cell, under consideration.

Fog Fog Fog

Internet

Cloud

Computing

Fog

Computing

Mobile

Computing

Figure 2 IoT Layer Stack

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 248

RESEARCH ARTICLE

Figure 3 System Model

It is assumed that the CS has a set of Free Identifier List (FIL)

from which the TDs can obtain their identifiers using

getFreeId() function. The newly arriving TD i at a given ck

can know the idf of the fog fk from other TDs residing in that

cell.

The TDs generate tasks which are to be processed either

locally at the TD or remotely at the fog nodes. When TD i in

cell ck offloads its task to fog fk, the task response is sent out,

after computation, from that fog fk to TD i using either direct

transmission, single hop, if the TD is still in the cell ck or

indirect transmission, multi-hop, through intervening fogs if

the TD has moved (through handoffs) to another cell cl, l ≠ k.

4. FOG MODELING

It is assumed that TD arrivals at a given cell of a certain fog

are of two types: type-1 or type-2. The first type comprises all

TDs which join a given cell and are not associated with any

fog (i.e., new arrival). Accordingly, TD i in Figure 1 is of

type-1. The type-2 includes those TDs which are already

associated with a certain fog but later moved (via handoff) to

the coverage area of another fog. Accordingly, TD j in Figure

1 is of type-2. When type-1 arrives at a given cell, it registers

with the CS which, in turn, creates a profile for it. To create a

TD profile, the initialize massage iniMSG and replay message

repMSG are used for coordination purposes between the TDs

and the CS. When a type-2 TD moves from one cell to

another via handoff, it updates its profile. For this updating,

the update message updMSG is used. The task arrivals at fog

fk are distinguished into two classes: class-1 or class-2. Class-

1 denotes arrivals from type-1 TDs. These task arrivals are

queued at fog fk in an infinite size buffer referred to as New

Task Buffer (NTB).

To illustrate, consider the following scenario. TD i in cell ck

has a task request entry in the NTB buffer and is moving from

the fk coverage area toward cell cl which is covered by the fog

fl, k ≠ l. Using alert message alrMSG, the CS is in responsible

for telling fog fk that TD i has moved to cell cl which is

covered by fog fl. In such case, the task of TD i which is

queued in NTB buffer is re-classified as class-2 and moved

into an infinite size buffer at fog fk which is referred as

Handoff Task Buffer (HTB). When the task of TD i is

completed at fog fk, the latter will send it to fog fl which, in

turn, will send it to TD i. In this paper, It is assumed that

class-2 are given higher priority over, i.e. served before, class-

1.

4.1. New TD Operations

When a TD i enters the transmission range of fog fk, it senses

the medium seeking beacon messages from other TDs

residing in its cell ck for a certain period of time τ. The

beacon message bMSG contains the pair (idf, idc). Based on

the sensing process result, TD i follows either one of the

following two cases:

Case 1: The message bMSG is received by TD i within the

time period τ. In such case, it records the pair (idf, idc) and

initiates the message iniMSG = ⟨idf⟩ and sends it to the CS.

Upon receiving iniMSG message, the CS, in turn, builds the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 249

RESEARCH ARTICLE

profile Pi
k = ⟨idf, ifc, idt⟩, stors it in its DBS and replies to the

new TD i with the message repMSG = ⟨idt⟩. The TD i
combines the pair (idf, idc) with the received message

repMSG = ⟨idt⟩ and consructs its profile Pi
k = ⟨idf, ifc, idt⟩.

Case 2: The time τ expires without receiving any beacon

messages by TD i, meaning it is the first TD in cell ck. As a

result, it initiates the message iniMSG = ⟨x, y⟩ and sends it to

the CS, where x and y are its coordinates in the cell ck . When

the CS receives the iniMSG message, it builds the profile

Pi
k = ⟨idf, ifc, idt⟩, stores it in its data base and replies to TD i

with the message repMSG = ⟨Pi
k⟩.

This procedure is illustrated in Algorithm 1.

Input: Time period τ

Output: Profile Pi
k = ⟨idf, ifc, idt⟩

TD i eneter cell k

TD i senses the medium for beacon messages

if A beacon message received within τ then

 TD i sends the message iniMSG = ⟨idf⟩ to CS

The CS sets idt = getFreeID()

Construct profile Pi
k = ⟨idf, ifc, idt⟩

 TD i receives its Pi
k via repMSG = ⟨Pi

k⟩

else

 TD i sends iniMSG = ⟨x, y⟩ to CS

The CS sets idt = getFreeID()

 TD i receives profile repMSG = ⟨idf, ifc, idt⟩

end

Algorithm 1 Profile Generation Process

Now it is time to handle offloaded tasks. Let 𝒯i
k =

(idt, TP, TD) be the offloaded task request at fog fk, where TP

and TD denote the task processing time and deadline time,

respectively. Let ℛi
k denote the response time of task 𝒯i

k.

Clearly, the deadline TD is an upper bound for ℛi
k. The

offloaded task 𝒯i
k at fog fk is queued in the NTB buffer of the

fog waiting for its processing turn. Let 𝒱i
k be the cell dwell

time of TD i, which is the time between the instant when TD

i, residing in a cell ck, offloaded its task to fog fk and the

instant when TD i is handed off to another cell cl, k ≠ l.

Based on the values of ℛi
k, 𝒱i

k and TD, TD i receives its task

response as follows:

1. If ℛi
k ≤ 𝒱i

k and ℛi
k ≤ TD, TD i will successfully receive

its task response within its original cell ck using direct

transmission. In such case, the response time ℛi
k is given

as the sum of task uploading time Ui
k from TD i to fog fk,

queuing time QNTB
k in NTB buffer at fog fk, the task

processing time TP at fog fk and the task downloading time

Di
k from fog fk to TD i. That is:

ℛi
k = Ui

k + QNTB
k + TP + Di

k (1)

2. If ℛi
k > 𝒱i

k and ℛi
k < TD, TD i will not receive its task

response within its original cell ck. This scenario can occur

as a result of TD i being handed off from cell ck to another

cell cl. In this situation, one of the following two sub-

scenarios applies:

 Scenario 1: TD i retransmits its task to its new fog fl with

new dealine. This retransmission will increase the

response time, communication overhead and power

consumption. In such scenario, the response time ℛi
l is

given as follows.

ℛi
l = Ui

l + QNTB
l + TP + Di

l + Ui
k + QNTB

k (2)

 Scenario 2: To avoid the problem of increasing the

response time, a transfer mechanism is used to migrate the

task response from the old fog fk to the new fog fl in the

case of handdoff process. In this mechanism, instead of

retransmitting the task 𝒯i
k to the new fog fl, this task is

completed at the old fog fk and its response is transmitted

to TD i via its new fog fl using indirect transmission. In

such scenario, the response time ℛi
l is given as follows.

ℛi
l = Ui

k + TP + QHTB
k + Di

l (3)

where QHTB
k is the queuing time in the HTB buffer at fog fk.

The transfer mechanism will be described in the next

subsection.

4.2. Handoff TD Operations

Assume that TD i while in cell ck and has offloaded its task

𝒯i
k to fog fk. While TD i waiting for task response from fk, it

starts moving on the highway toward the service coverage

area of another fog fl, l ≠ k. When TD i receives strong

wireless signal from fl, it starts being handed off to fl. After

the automatic link transfer process is carried out, TD i begins

to update its profile and starts the task migration mechanism

as shown Figure 4.

First, TD i sends the update message updMSG = ⟨Pi
k⟩ to the

CS. Then, the CS constructs the new profile Pi
l and replies to

TD i with the message repMSG = ⟨Pi
l⟩. Note that the

identifier idt of TD i is not changed form cell to cell. After

TD i gets its profile at fog fl, the CS starts the transfer

mechanism as follows.

1) The CS sends an alert message alrMSG = ⟨Pi
k, Pi

l⟩ to the

fog fk containing the old and new profiles of TD i.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 250

RESEARCH ARTICLE

2) The fog fk searches its NTB buffer for the task 𝒯i
k in

profile is Pi
k.

3) If there is no an entry for Pi
k then fog fk replies to fog fl

with message repMSG = ⟨Pi
l, flag = 1⟩.

4) If there is an entry 𝒯i
k for Pi

k then the fog fk checks if that

task can be processed within its deadline time TD or not.

This depends on the number of tasks queued in the HTB

buffer.

5) If the task 𝒯i
k can be processed within its deadline time

TD then fog fk classifies it as class-2 and transfers it to the

end of the HTB buffer.

6) Once the task 𝒯i
k gets served, fog fk replies to fog fl with

message repMSG = ⟨Pi
l , TR, flag = 2⟩, where TR denotes

the response of the task 𝒯i
k.

7) If the task 𝒯i
k can not be processed within its deadline

time TD then fog fk removes it from its NTB and replies

to the fog fl with message repMSG = ⟨Pi
l, flag = 3⟩.

Figure 4 Handoff Process and Task Migration of TD i from cell k to Neighbor Cell l

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 251

RESEARCH ARTICLE

After receiving the repMSG message, fog fl executes one of

the following actions based on the value of flag:

 Action 1, if flag = 1: Do nothing.

 Action 2, if flag = 2: Fog fl forwards the response TR

directly to TD i within the cell cl.

 Action 3, if flag = 3: Fog fl sends an alert to TD i to

retransmit it task request again.

5. RESULTS AND DISCUSSIONS

In this section, the simulation and the results for the proposed

collaborative task offloading framework are provided. The

simulation program was coded in the Python language and

later run on Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz,

with a Windows 10 pro version 21H2 operating system.

Table 1 illustrates the different operational parameters that

have been used to establish the simulation process. Simulation

parameters are TDs task generation rate, ask processing time

𝑇𝑃 at fogs, number of TDs within cells, number of VMs and

handoff rate. In the simulation experiments, the handoff rate is

used to control the speed of TDs descending on a fog. A low

handoff rate means low mobility and a high handoff rate

means high mobility. For a given cell 𝑘, the task uploading

time 𝑈𝑘 from TD to fog 𝑘 and the task response downloading

time 𝐷𝑘 from the fog to TDs are fixed to 500 msec. Five

million simulation runs were found sufficient for each

experiment to achieve convergence. The simulation results are

presented in terms of the task response time, as given by

Equation (1), versus TD arrival rate, number of TDs in each

cell, number of VMs and the task processing rate at fogs. In

each simulation experiment, the task response time is

measured in two cases, based on Equations (2) and (3): when

the proposed framework is enabled and when it is disabled. In

the event that a TD moves from one cell to another (i.e.

handover), disabling the proposed framework prevents tasks

from being migrated between fogs.

Table 1 Operational Parameters

Parameters 1 Value

Number of TDs 50-500

Number of VMs 50

Task upload time 500 msec.

Task response download time 500 msec.

Number of cells (fogs), N 3

Figure 5 Task Response Time versus the Task Generation Rate in Low Mobility

Figure 5 shows how the proposed framework can improve the

task response time in a high mobility situation as the handoff

rate is 0.01 TDs/second. In this experiment, there are 500 TDs

distributed uniformly over 3 cells. The number of VMs is 50

and the processing time rate at each VM is 0.001 task/second.

It can be seen that the task response time when using the

framework (lower curve) is less than half its value without the

framework (upper curve). The reason is that the framework

allows a task that has been offloaded in some cell to continue

being processed after its offloading TD departs the cell,

whereas without the framework the TD would have to

resubmit the task again to the new cell, dropping whatever

processing done in the cell that has been departed. Another

remarkable point about the framework is that the decrease it

affords in response time becomes even more pronounced for

higher task arrival rates.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 252

RESEARCH ARTICLE

Figure 6 The Task Response Time versus the Task Generation Rate in Low Mobility

Figure 7 The Task Response Time versus the Number of TDs in High Mobility

Figure 6 is similar to Figure 5, but visualizes the case of a low

mobility situation as the handoff rate is 0.00001 TD/second.

The figure shows that the response time is less with the

framework (lower curve) than without it (upper curve).

However, by comparing Figures 5 and 6, it can be seen that

the improvement introduced by the framework in the task

response time is greater if the mobility is high than if it is low.

The reason the proposed framework is more effective for high

mobility than for low mobility can be interpreted as follows.

When the mobility is low, the chances that the TD departs the

cell where it has already offloaded a task is small, and hence

the probability that it will receive the response before

departing is high, obviating the need for the framework. On

the contrary, when the mobility is high, the chances that the

TD departs the cell where it has already offloaded a task is

high, and hence the probability that it will not receive the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 253

RESEARCH ARTICLE

response before departing is high, requiring the favor the

framework provides.

Figure 7 illustrates the task response time against the number

of TDs in high mobility, as the handoff rate is 0.01

TD/second, with and without the proposed framework. As can

be seen, the framework helps decrease the task response time

greatly regardless of how many TDs are offloading tasks. The

reason, once again, is that migrating the task response to the

next fog spares offloading task again at the new fog where the

TD has moved.

Figure 8 The Task Response Time versus the Number of TDs in Low Mobility

In low mobility, Figure 8, where the handoff rate is set at

0.00001 TD/second, the same favorable effect of the proposed

framework can be seen, but this time to a lesser extent. The

reason why the framework is less effective in low mobility is

that, as mentioned before, the probability that a TD receives

the response of a task that it has offloaded while the TD is

still in the same offloading cell is high. This means that the

service of the proposed framework is not as greatly needed as

in the high mobility case.

6. CONCLUSION

In this article a collaborative cloud-fog framework is provided

for task offloading of mobile TDs. The framework ensures

seamless handover as the TD crosses boundaries from fog to

fog, and also ensures low task response time satisfying stated

QoS limits. The framework assumes a number of fog nodes

deployed along a highway with a CS in the backbone network

for monitoring the overall scene. The task response of the TD

may migrate from fog to fog in case the TD is moving across

various fogs. Two queues are provided in each fog, one to

host tasks that are being locally offloaded and one to host

tasks that have been handed over from other fogs. For the

purpose of network integrity, an inter-fog messaging system

to handle the work between fogs and the CS is introduced.

Further, a mechanism for managing the handoff process of

TDs in both high and low mobility is developed. A simulation

program is written in Python to assess the performance of the

proposed framework in terms of task response time, mobility,

and cell dwell time. According to the simulation experiments

carried out, the proposed framework lowers response time,

and thus can help real-time applications meet stringent

deadlines.

REFERENCES

[1] Cisco Annual Internet Report (2018–2023), [Online]. Available at :

[https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.pdf]
[2] S. Smith, "IoT connections to grow 140% to hit 50 billion by 2022, as

edge computing accelerates RoI," Juniper Research, 2018.

[3] D. Mendes et al., "VITASENIOR-MT: A distributed and scalable
cloud-based telehealth solution," 2019 IEEE 5th World Forum on

Internet of Things (WF-IoT), Limerick, Ireland, 2019, pp. 767-772, doi:

10.1109/WF-IoT.2019.8767184.
[4] K. Verma, A. Kumar, M. Salim Ul Islam, T. Kanwar, M. Bhushan,

"Rank based mobility-aware scheduling in Fog computing", Informatics

in Medicine Unlocked, vol. 24, 2021, 100619,
doi.org/10.1016/j.imu.2021.100619.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 254

RESEARCH ARTICLE

[5] Y. Kyung, "Performance Analysis of Task Offloading With

Opportunistic Fog Nodes," in IEEE Access, vol. 10, pp. 4506-4512,
2022, doi: 10.1109/ACCESS.2022.3141199.

[6] J. Kuliga, S. Massicot, R. Adhikari, M. Ruppel, N. Jux, H.-P. Steinrück

and H. Marbach, "Conformation Controls Mobility: 2H-
Tetranaphthylporphyrins on Cu (111)," ChemPhysChem, vol. 21, p.

423–427, 2020, doi.org/10.1002/cphc.201901135

[7] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog computing and its
role in the internet of things," in Proceedings of the first edition of the

MCC workshop on Mobile cloud computing, August 2012 , pp. 13–16,

doi.org/10.1145/2342509.2342513
[8] M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research

Opportunities," in IEEE Internet of Things Journal, vol. 3, no. 6, pp.

854-864, Dec. 2016, doi: 10.1109/JIOT.2016.2584538.
[9] V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh and R. Buyya,

"Chapter 4 - Fog Computing: principles, architectures, and

applications," in Internet of Things, R. Buyya and A. V. Dastjerdi, Eds.,

Morgan Kaufmann, 2016, pp. 61-75.

[10] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini and A.

Zanni, "A survey on fog computing for the Internet of Things,"
Pervasive and Mobile Computing, vol. 52, pp. 71-99, 2019,

doi.org/10.1016/B978-0-12-805395-9.00004-6.
[11] V. Dastjerdi and R. Buyya, "Fog Computing: Helping the Internet of

Things Realize Its Potential," in Computer, vol. 49, no. 8, pp. 112-116,

Aug. 2016, doi: 10.1109/MC.2016.245.
[12] F. Jalali, K. Hinton, R. Ayre, T. Alpcan and R. S. Tucker, "Fog

Computing May Help to Save Energy in Cloud Computing," in IEEE

Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1728-
1739, May 2016, doi: 10.1109/JSAC.2016.2545559.

[13] N. Kumari, A. Yadav and P. K. Jana, "Task offloading in fog

computing: A survey of algorithms and optimization techniques,"
Computer Networks, vol. 214, pp. 109137, 2022,

doi.org/10.1016/j.comnet.2022.109137.

[14] R. Buyya,; S.Narayana Srirama, "Management and Orchestration of
Network Slices in 5G, Fog, Edge, and Clouds," in Fog and Edge

Computing: Principles and Paradigms , Wiley, 2019, pp.79-101, doi:

10.1002/9781119525080.ch4.
[15] Lakhan, M. Ahmad, M. Bilal, A. Jolfaei and R. M. Mehmood,

"Mobility Aware Blockchain Enabled Offloading and Scheduling in

Vehicular Fog Cloud Computing," in IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 7, pp. 4212-4223, July 2021, doi:

10.1109/TITS.2021.3056461.

[16] H. Raouf, R. Abdallah, H. Y. M. Soliman and R. Rizk, "Mobility-
Aware Task Offloading Enhancement in Fog Computing Networks," in

The 8th International Conference on Advanced Machine Learning and

Technologies and Applications (AMLTA2022). AMLTA 2022, vol 113.
Springer, Cham, doi.org/10.1007/978-3-031-03918-8_47.

[17] F. Chiti, R. Fantacci and B. Picano, "A Matching Theory Framework

for Tasks Offloading in Fog Computing for IoT Systems," in IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 5089-5096, Dec. 2018, doi:

10.1109/JIOT.2018.2871251.

[18] Z. Zhao et al., "On the Design of Computation Offloading in Fog Radio
Access Networks," in IEEE Transactions on Vehicular Technology, vol.

68, no. 7, pp. 7136-7149, July 2019, doi: 10.1109/TVT.2019.2919915.

[19] J. Du, L. Zhao, J. Feng and X. Chu, "Computation Offloading and
Resource Allocation in Mixed Fog/Cloud Computing Systems With

Min-Max Fairness Guarantee," in IEEE Transactions on

Communications, vol. 66, no. 4, pp. 1594-1608, April 2018, doi:
10.1109/TCOMM.2017.2787700.

[20] S. Misra and N. Saha, "Detour: Dynamic Task Offloading in Software-

Defined Fog for IoT Applications," in IEEE Journal on Selected Areas
in Communications, vol. 37, no. 5, pp. 1159-1166, May 2019, doi:

10.1109/JSAC.2019.2906793.

[21] L. Liu, Z. Chang, X. Guo, S. Mao and T. Ristaniemi, "Multiobjective
Optimization for Computation Offloading in Fog Computing," in IEEE

Internet of Things Journal, vol. 5, no. 1, pp. 283-294, Feb. 2018, doi:

10.1109/JIOT.2017.2780236.

[22] J. Yao and N. Ansari, "QoS-Aware Fog Resource Provisioning and

Mobile Device Power Control in IoT Networks," in IEEE Transactions
on Network and Service Management, vol. 16, no. 1, pp. 167-175,

March 2019, doi: 10.1109/TNSM.2018.2888481.

[23] Yousefpour, G. Ishigaki, R. Gour and J. P. Jue, "On Reducing IoT
Service Delay via Fog Offloading," in IEEE Internet of Things Journal,

vol. 5, no. 2, pp. 998-1010, April 2018, doi:

10.1109/JIOT.2017.2788802.
[24] S. Jošilo and G. Dán, "Decentralized Algorithm for Randomized Task

Allocation in Fog Computing Systems," in IEEE/ACM Transactions on

Networking, vol. 27, no. 1, pp. 85-97, Feb. 2019, doi:
10.1109/TNET.2018.2880874.

[25] S. Ghosh, A. Mukherjee, S. K. Ghosh and R. Buyya, "Mobi-IoST:

Mobility-Aware Cloud-Fog-Edge-IoT Collaborative Framework for
Time-Critical Applications," in IEEE Transactions on Network Science

and Engineering, vol. 7, no. 4, pp. 2271-2285, 1 Oct.-Dec. 2020, doi:

10.1109/TNSE.2019.2941754.

[26] M. M. Razaq, B. Tak, L. Peng and M. Guizani, "Privacy-Aware

Collaborative Task Offloading in Fog Computing," in IEEE

Transactions on Computational Social Systems, vol. 9, no. 1, pp. 88-96,
Feb. 2022, doi: 10.1109/TCSS.2020.3047382.

[27] M. Keshavarznejad, M. H. Rezvani and S. Adabi, "Delay-aware
optimization of energy consumption for task offloading in fog

environments using metaheuristic algorithms," Cluster Comput vol. 24,

pp.1825–1853 (2021). https://doi.org/10.1007/s10586-020-03230-y.
[28] Qayyum, T., Trabelsi, Z., Waqar Malik, A. et al. Mobility-aware

hierarchical fog computing framework for Industrial Internet of Things

(IIoT). Journal of Cloud Computing vol. 11, no. 72 (2022).
https://doi.org/10.1186/s13677-022-00345-y

[29] Rahbari, D., Nickray, M. Task offloading in mobile fog computing by

classification and regression tree. Peer-to-Peer Networking and
Applications, vol. 13 , pp. 104–122 (2020).

https://doi.org/10.1007/s12083-019-00721-7

[30] Z. Ning et al., "Partial Computation Offloading and Adaptive Task
Scheduling for 5G-Enabled Vehicular Networks," in IEEE Transactions

on Mobile Computing, vol. 21, no. 4, pp. 1319-1333, 1 April 2022, doi:

10.1109/TMC.2020.3025116.
[31] ALVI, Ahmad Naseem, et al. Intelligent task offloading in fog

computing based vehicular networks. Applied Sciences, 2022, vol. 12,

no. 9, 4521, https://doi.org/10.3390/app12094521
[32] Hosseini, E., Nickray, M. & Ghanbari, S. Energy-efficient scheduling

based on task prioritization in mobile fog computing. Computing vol.

105, pp. 187–215 (2023). https://doi.org/10.1007/s00607-022-01108-y
[33] Aisha Muhammad A. Hamdi, Farookh Khadeer Hussain, Omar K.

Hussain, Task offloading in vehicular fog computing: State-of-the-art

and open issues, Future Generation Computer Systems, vol. 133, 2022,
pp. 201-212, https://doi.org/10.1016/j.future.2022.03.019.

Authors

Amira S.Ibrahim received the B.Sc. degree in Computer Science from the
Faculty of Computer and Informatics, Suez Canal University. Currently, she

pursuing the Ph.D. degree with the Department of the Computer Science,

Suez Canal University. Her research interests include cloud computing,

computer security and computer network.

Hassan AL-Mahdi received the BSc in Computing Science, the MSc in

Computer Science and Ph. D. in Wireless Networks from the Faculty of
Science, Suez Canal University, Egypt in 1994, 2001 and 2005, respectively.

He is a Full Professor of Computer Networks at the Faculty of Computer and

Informatics, Suez Canal University, Egypt. His researches are in fields of ad
hoc networks, mobile cellular communications, cognitive radio networks,

IoT, Cloud Computing, WSN, and the performance evaluation of computer

networks. He has many international papers mostly in the area of
performance evaluation of computer networks, IoT, WSN, Cloud Computing,

Queuing System and Cryptography. He can be contacted at email:

drhassanwesf@ci.suez.edu.eg.

https://doi.org/10.1002/cphc.201901135
https://doi.org/10.1007/s10586-020-03230-y
https://doi.org/10.1186/s13677-022-00345-y
https://doi.org/10.1007/s12083-019-00721-7
https://doi.org/10.3390/app12094521
https://doi.org/10.1007/s00607-022-01108-y
https://doi.org/10.1016/j.future.2022.03.019
mailto:drhassanwesf@ci.suez.edu.eg

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/220739 Volume 10, Issue 2, March – April (2023)

ISSN: 2395-0455 ©EverScience Publications 255

RESEARCH ARTICLE

Hamed Nassar received the B.Sc. degree in electrical engineering from Ain

Shams University, Egypt, in May 1979, and the M.Sc. degree in electrical
engineering and the Ph.D. degree in computer engineering from the New

Jersey Institute of Technology, USA, in May 1985 and May 1989,

respectively. He has been a full professor in the Department of Computer
Science, Suez Canal University, Egypt, since 2004. Besides Egypt, he has

taught computer science and engineering courses in USA, Lebanon and Saudi

Arabia. Dr. Nassar has published numerous articles in international journals
and conferences. His research interests include mathematical modelling of

computer and communications systems, cloud computing and machine

learning.

How to cite this article:

Amira S. Ibrahim, Hassan Al-Mahdi, Hamed Nassar, “A Collaborative Offloading Task Framework for IoT Fog

Computing”, International Journal of Computer Networks and Applications (IJCNA), 10(2), PP: 244-255, 2023, DOI:

10.22247/ijcna/2023/220739.

