
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 549

RESEARCH ARTICLE

Learning Based Task Placement Algorithm in the IoT

Fog-Cloud Environment

Shifa Manihar

Department of Computer Science and Engineering, University Institute of Technology, RGPV, Bhopal, Madhya

Pradesh, India

shifa27manihar@gmail.com

Ravindra Patel

Department of Computer Applications, University Institute of Technology, RGPV, Bhopal, Madhya Pradesh, India

ravindra@rgtu.net

Sanjay Agrawal

Department of Computer Engineering and Applications, NITTTR, Bhopal, Madhya Pradesh, India

sagrawal@nitttrbpl.ac.in

Received: 03 August 2021 / Revised: 21 August 2021 / Accepted: 03 September 2021 / Published: 27 October 2021

Abstract – Task scheduling means allocating resources to the

tasks in such a way that processing can be accomplished in the

most optimal way possible. Here the optimal strategy means

processing all the tasks in such a way that it incur the least delay,

hence the least response time can be achieved by all the tasks.

This becomes a major concern when dealing with the Fog

computing environment. Fog have limitations on storage

capacity and processing power. So all the real time applications

cannot be scheduled at the Fog environment. Also it is required

to allocate these resources in the most optimal way possible. So it

is best suggested to schedule latency critical applications on the

fog and other applications to the cloud. This paper proposes a

learning based task placement algorithm (LBTP) which used

supervised feed forward neural network to recognize the latency

critical applications. This algorithm executes in two phases. In

the first phase, the features of the tasks serve as the input to this

machine learning based framework for decision making

regarding whether to schedule task at the fog environment or

forward it to the cloud for execution. In the second phase if the

tasks scheduled at fog, then tasks are rearranged in the fog

queue based on the priority to achieve the most optimal resource

utilization. The simulation results were evaluated using the

Matlab 8.0 and Aneka 5.0 platform. The results revealed that the

proposed method LBTP recorded the best response time, waiting

time and resource utilization when compared with the task

scheduling at the fog only and task scheduling at the Cloud only

environment. LBTP also recorded better results on horizontal

scaling by raising the number of virtual machines at the fog

environment.

Index Terms – Task Scheduling, Resource Allocation, Fog, Edge,

Cloud, Latency, Internet of Things, Machine Learning.

1. INTRODUCTION

The basic idea of the IoT comes from the word ‘‘smartness’’

– ‘‘the capability of the device to independently acquire and

relate knowledge’’ [1, 2]. Thus, we call IoT as the ‘‘things or

devices and sensors’’ those are smart, uniquely addressable

based on their communication protocols, and are adjustable

and autonomous with in-built security mechanism [2, 3]. In

the world of sensors, gadgets and devices, the computing is

not restricted to the single workstation. With the advent of

cloud computing paradigm, the computing is distributed over

the data centers available throughout the world. With

unlimited number of resources e.g. data centers and servers,

the computing can be performed uninterruptedly. Cloud

computing facilitates us with powerful and reliable

infrastructures with the property scalability and accessibility

through flexible pay-as-you-go models [4].

The bottleneck associated with cloud computing is that it has

several kinds of delays associated with it such as transmission

delays, networks issues like network congestion etc. which

makes it unsuitable for delay sensitive applications. Although

computation sensitive tasks can be scheduled at cloud easily,

but for latency sensitive applications, its required to have

some computing device at the vicinity of the Internet of things

(IoT) devices. This gave the need for the Fog computing.

Compared to the cloud, fog computing offers proximate,

small-scale resources that can be instantiated dynamically [4].

Fog environments are just similar to cloud but with smaller

processing and storage capabilities. Fog infrastructures find

their place in between the mobile devices and the cloud in an

intermediate layer [4]. Fog computing is just an extension of

the cloud at the network edge. This addition to the cloud

supports IoT applications to be used in the proximity of

sensors, adding on to the newer benefits like fast response

time and better security and privacy [5].

mailto:shifa27manihar@gmail.com
mailto:ravindra@rgtu.net
mailto:sagrawal@nitttrbpl.ac.in

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 550

RESEARCH ARTICLE

Many number of fog cloud architectures has been proposed

by different researchers, but mostly used architecture is the

one with the three layers [6, 7, 8]. The fog layer act as the

intermediate layer in between the cloud and the end devices.

Fog network expands cloud services to the network edge [6].

The fog cloud architecture can be illustrated below:

1.1. Cloud Layer

It is the layer with very high computing capabilities. It

consists of very large number of data centers and servers

distributed throughout the world. It also act as the permanent

storage for large amount of information. It is the final

destination for the tasks if we do not find any computational

resource for its execution locally.

1.2. Fog Layer

It is the intermediate layer which consist of collection of

limited number of computing resources (access points,

routers, switches, gateways, etc.) having small storage and

processing capabilities. It is providing cloud computing

services but at the network edge. Fog nodes interact and

cooperate with the cloud. They are capable of storing,

processing and transmitting the sensed data from the end

devices [6].

1.3. End Devices

This layer is composed of different IoT devices such as

sensors, cellphones, smart automobiles, cards, and readers [6].

These act as smart sensing devices [6].

Thus according to this architecture, user level smart devices

are connected to the fog layer using wired or wireless

connection technologies such as 3G, 4G, wireless LAN,

ZigBee, Bluetooth, and Wi-Fi [6]. The Fog Cloud architecture

can be shown in Figure 1.

Figure 1 the Fog-Cloud Architecture [9]

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 551

RESEARCH ARTICLE

Using computations at fog level, one can save its task

processing time that may incur due to propagation delay while

transmission to data centers at different geographical

locations. The computation is performed locally and

responded without any extra delays. With the existing

limitations with fog, all the applications cannot be processed

at the fog. We are in need of some mechanisms so that proper

collaboration can be performed in between the fog and the

cloud to obtain the optimal results, basically in terms of low

latency and energy consumption. The problem statement here

is how to distribute the tasks among the fog and cloud

efficiently and also among different virtual machines

available at both the fog and cloud end. It has been discovered

that there is a need to adopt a context aware automated

support to decide where to store data and perform

computation either at edge or at cloud, to enhance the smooth

performance of the cloud edge system and reduce latency for

the mission critical applications [10]. Recent researches are

being carried out to develop computer based solutions to

address this problem. Researchers also came up with several

machine learning and meta-heuristic algorithms, hence

artificial intelligence to evaluate these contexts on the basis of

which the task scheduling or distribution can be performed

easily and optimally. Task offloading can be carried in two

scenarios:

(i) Independent tasks: The number of tasks can be

offloaded to the different computing resources

simultaneously and can processed in parallel [11].

(ii) Dependent tasks: The task is made up of different sub-

task modules and each subtask may need data and

input from some other sub-tasks and parallel

offloading may not be applicable [11].

The motivation behind carrying out this research is to define

the appropriate context on the basis of which the tasks can be

placed between the fog and the cloud environment. The

research objective of this paper is to present a learning based

task scheduling algorithm which considers the features of the

tasks (i.e. location, type of sensor from which data coming,

etc.) and distributes tasks among the cloud and the fog using

machine learning algorithm.

The rest of the paper is organized as follows: Section 2 gives

short description of the similar related works carried out in the

field of task scheduling. Section 3 discusses the paper

contribution (LBTP method) in detail along with its

mathematical formulations and the proposed algorithm.

Section 4 gives detail of the simulation environment adopted

for this research. Section 5 shows the observed results by

implementing several scenarios mentioned in the proposed

algorithm. Section 6 discusses reasons behind the better

obtained results from this research. Section 7 compares the

proposed algorithm (LBTP) with the related works discussed

in this paper. Section 8 concludes the paper and proposes the

future scope and extensions of this research.

2. RELATED WORK

Tahani Aladwani [12] has proposed a task scheduling

algorithm to reduce the transfer of data between sensors and

cloud by introducing fog computing at the middle. He has

assigned the priorities of the healthcare data based on their

importance: the high importance task, medium importance

tasks and low importance tasks according to the status of the

patient health conditions [12]. He used Task classifications

and Virtual machines categorizations (TCVC) for the same.

The MIN MAX algorithm has been used to evaluate the

performance of these methods.

L. Lin et al. [13] in their work has proposed a distributed and

application aware task scheduling framework called Petrel.

Petrel not only used for load balancing but also ensures

adaptive scheduling policy according to the type of tasks.

Minh-Quang Tran et al. [14] proposed a decentralized context

aware 3-tier framework for task scheduling in the fog-cloud

environment. The author defined the context as location,

compute and storage capacities of fog devices, and expected

deadline of an application [14] and made use of these

parameters to place the tasks so that maximum utilization of

the virtual resources available could be accomplished at the

fog orchestration node, fog neighboring nodes and the cloud.

Here quality of service is considered to be the response time

of the tasks.

Tejaswini Choudhari [15] in her work, presented a task

scheduling algorithm which schedules tasks in the fog

environment based on the priorities determined by the

deadlines set the requests. F. Fellir et al. [16] has proposed a

task scheduling model in the fog cloud environment which

takes into account multiple agents or features of the tasks such

as its priority, waiting time, its status and the number of

resources required by the tasks, etc. to determine the

importance of the task, and schedule it in the fog

environment. This model schedules both independent and

dependent tasks.

J. U. Arshed et al. [17] in his work proposed RACE (Resource

Aware Cost Efficient) task scheduler which classified the

applications based on their computational power requirement

and the available virtual machines at the Fog cloud

environment. He made use of priority mechanism in order to

arrange the tasks so that minimum bandwidth can be

expended and considered different scenarios. L. Yin et al. [18]

has proposed container based task scheduling and resource

optimization and distribution framework in the fog

environment. Elarbi Badidi [19] proposed quality of service

aware task placement strategies on the fog cluster. The author

gave the concept of Fog broker which is a collection of

several components such as the fog resource manager, task

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 552

RESEARCH ARTICLE

scheduler, fog services registration manager. M. Breitbach et

al. [20] considered the features of the edge and applied data

placement strategy even places data on the most suitable fog

resources before the actual execution of the tasks.

Shudong Wang et al. [21] made use of the disaster genetic

algorithm for adopting task scheduling algorithm in the edge-

cloud scenario. The author defined an objective function as

the execution time based on the time delay and termed it as

punish or penalty factor or the fitness function. M. K. Hussein

et al. [22] has made used of the three architecture of the cloud

fog environment and deployed nature inspired Meta heuristic

task scheduling namely, Ant Colony Optimization and

Particle Swarm Optimization. T. Qayyum et al. [23] has

proposed multilevel resource sharing frameworks for the fog

cloud environments. This framework make use of end

devices, underutilized end devices, regional fog nodes and

cloud data centres for scheduling incoming requests and

carrying out computations in order to avoid delays in response

times. The authors used Ant Colony Optimization and Earliest

Deadline First to achieve the necessary quality of service.

In M. Goudarzi et al. [24], an Application Placement Memetic

Algorithm based on Genetic Algorithm has been proposed to

reduce the weighted cost of the IoT devices. T. S. Nikoui et

al. [25] in their work used cost aware task scheduling which is

based on the genetic algorithm. Y. Sahni et al. [26] has

proposed a multi-stage greedy adjustment (MSGA) algorithm

which considers the task placement and the network flow for

the purpose of scheduling the tasks. The author used the

optimization function to be the completion time. M. Abbasi et

al. [27] has considered a scenario of 5 fog nodes where tasks

are distributed equally among them. The author used NSGA II

algorithm to optimize the latency and the energy function in

the fog cloud scenario.

Lindong Liu et al. [28] integrated classification algorithm

with task scheduling in the fog environment. The authors

deployed I-Apriori and Task Scheduling in Fog Computing to

accomplish this. Mohammad Khalid Pandit et al. [29]

proposed a real time task scheduling algorithm using neural

network with two levels. The first level is the decision layer

which decides whether the incoming task will be executed at

the fog or at the cloud. If the output of the level one (feed-

forward) network classifies to the fog, then reinforcement

learning is deployed at level two, which assigns the tasks to

the nodes or resources available at the fog layer.

Xuejing Li et al. [30] has used an intelligent adaptive task

scheduling and server balancing algorithm in the mobile fog

environment. The author has formulated load balancing

scenario into the combinatorial problem and has used the

Deep Neural Network and Reinforcement learning for

scheduling the tasks at device, fog or cloud server. N.

Mostafaz [31] has made use of artificial neural network with

three modules namely task scheduler module, resource

selector module and History analyzer module for task

placement in the fog environment. M. Bhatia et al. [32] has

made use of QCI based neural network approach for

balancing the load and achieve minimal latency in the real

time scenario in the fog environment. Fatma M. Talaat et al.

[33] has proposed Effective load balancing technique which

used fuzzy logic to identify the priorities of the incoming

tasks. The author has made use of fuzzy rules based on the

inputs such as predefined priority, deadline time and the size

of the task. Based on the priority it is decided whether the task

will be executed on the device, dew layer, fog layer or the

cloud layer. Then load balancing is applied at these levels

using the probabilistic neural network. He Li et al. [34] has

proposed a task scheduling algorithm based on the

reinforcement learning in which the task scheduler placed at

cloud maintain a task queue and collects the state of all the

tasks, which serve as input to the reinforcement neural

network, which output the task to the cloud or to the best fog

node manager. V. P. Kafle et al. [35] made used of offline

supervised training and online unsupervised training and then

applied multiple regression model in order to predict the

dynamic demand adjustment and satisfy the delay constraint

of the latency sensitive applications of the tasks in the IoT

edge cloud environment. Y. Dong et al. [36] has proposed a

joint ’cloud-edge’ aware task placement algorithm which

make use of exploration exploitation property of the deep

reinforcement learning to find out most appropriate cloud

edge set(based on their attributes) for scheduling tasks on the

long term basis.

Abbreviations Description

TCVC Task classifications and Virtual

machines categorizations

RACE Resource Aware Cost Efficient

DGA Disaster Genetic Algorithm

ACO Ant Colony Optimization

PSO Particle Swarm Intelligence

EDF Earliest Deadline First

DAG Directed Acyclic Graph

CGA Cost Aware Genetic Algorithm

MSGA Multi stage Genetic Algorithm

NSGA II Non-dominated Sorting Genetic

Algorithm II

TSFC Task Scheduling in Fog Computing

GDP Gradient Descent Policy

RL Reinforcement Algorithm

DNN Deep Neural Network

ANN Artificial Neural Network

QCINN Quantum computing-inspired Neural

Network

PNN Probabilistic Neural Network

DRL Deep Reinforcement Learning

Table 1 Notations of the Classification of Task Scheduling

Algorithms

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 553

RESEARCH ARTICLE

Figure 2 Classification of the Related Work Pertaining to Task Scheduling

In the related work discussed in this section, the task

scheduling methods which deployed either only the

conventional methods or only meta-heuristic based solutions

or only the machine learning based solutions are discussed. In

an approach to encourage multidisciplinary fields to obtain

better results, in this research paper, we made use of machine

learning (for classifying the tasks at the cloud and the fog)

along with the conventional method (for arranging the task

queue at fog, we used shortest job first method). This research

is being carried out to define the appropriate context on the

basis of which task placement and resource allocation can be

done. Figure 2 gives the classification of task scheduling

methods discussed in the related work above. Table 1 gives

the description of the notations used in the Figure 2.

3. THE PROPOSED METHOD (LEARNING BASED

TASK PLACEMENT METHOD)

The proposed model Learning based task placement (LBTP)

makes use of machine learning algorithm in order to classify

the mission critical applications and delay insensitive

applications. Here in this paper, we have made use of

supervised training at the Intelligent Fog master node (IFMN)

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 554

RESEARCH ARTICLE

to do this. The input to the feed forward neural network is the

attributes of the tasks defined in terms of its location and its

size. The task definition here is four tuples <lat, long, alt,

tsize> as described above. At this level, the tasks are

classified based on these attributes as per the training given to

the neural network, hence it is decided by the IFMN that

whether the task to be placed at the fog nodes or to be

forwarded to the cloud for execution. If the tasks are

scheduled at the fog level, then the next responsibility of the

IFMN is to make decision regarding the task placement at the

fog nodes (virtual machines) available under its responsibility,

i.e. its worker fog nodes (WFN). The IFMN maintains the list

of all the WFNs. All the information such as MIPS or

available bandwidths of all WFNs are maintained. IFMN

rearranges these tasks in the order of their priority on the basis

of their task size and allocates tasks to these virtual machines

based on these information and schedules the tasks to the

most appropriate virtual machine with fast computing power

and best fit available bandwidth available at the fog layer.

Hence the system accomplishes two tasks: Firstly the

identification of the mission critical applications and secondly

to schedule these applications on the most appropriate fog

node in order to achieve the minimum response time. The

tasks scheduled at the fog are rearranged in the fog queue

according to their size. IFMN allots the tasks to the most

suitable virtual machine of WFN according to the availability

of the virtual machines and the task size and sensitivity of the

task. The overall architecture and the flow diagram of the

proposed method (LBTP) can be shown in the Figure 3.

Figure 3 Architecture and Flow Diagram of LBTP

3.1. Mathematical Formulation of the Problem

The objective of this research is to design a context aware

middleware in between cloud and the IoT devices, hence to

apply machine learning based algorithm to make the fog

intelligent. Intelligent master fog places the incoming tasks

either at the fog nodes (in case of mission critical application)

or at the cloud (in case of non-mission critical applications)

for execution. As has been mentioned in the related work

above, the different authors have tried to optimize different

performance metrics. The Intelligent master fog also

schedules tasks among the worker fog nodes based on the

availability of the virtual machines and their capacity. Here

the decision maker is the intelligent master fog node.

3.1.1. Definition 1

The taski is ith incoming task and its attributes are defined as

to be four tuple <lati, longi, alti, tsizei> which serves as the

context for scheduling task.Where lati denotes the latitudinal

position of the ith IoT device from which data is coming, longi

denotes the longitudinal position of the ith IoT device, alti is

the altitude of the ith device, and tsizei is the ith task size (it is

evaluated at the Intelligent master fog).

3.1.2. Assumptions

(a) This research did not consider any kind of dependency

among tasks or its subtasks. Hence, only independent

tasks considered.

(b) The research assumed static geographic condition with

IoT devices having predefined location. The research

limited to certain environment.

(c) Here fog nodes and virtual machines are used

interchangeably. They refer to computing resources

available at the fog layer.

(d) Running tasks cannot be pre-empted on the fog node.

(e) The terms mission critical tasks and delay sensitive tasks

are used interchangeably.

3.1.3. Definition 2

The number of virtual machine (resources) at the Fog Node be

m i.e. {Vmac1, Vmac2, Vmac3,……Vmacm}. The number of

tasks be n, where each task has got its reference from its

context of location. Hence, number of tasks can be

represented as {t1, t2, …..tn}.

3.1.4. Definition 3

The bandwidth information and computing capacity of all the

virtual machines (worker fog nodes) is maintained by the

Intelligent Fog master node in the form of the list as shown

below:

Vmac1 Vmac2

……

……

…

Vmacj

……

……

…

Vmacm

B1,fog B2,fog

……

……

…

Bj,fog

……

……

…

Bm,fog

MIPS1,fog MIPS2,fog

……

……

…

MIPSj,fo

g

……

……

…

MIPSm,fog

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 555

RESEARCH ARTICLE

Where MIPS stands for Million instructions per second.

3.1.5. Definition 4: Priority Decision

Each incoming task which scheduled to the fog, is assigned

the priority based on the task size (tsizei) feature of the task.

The tasks scheduled for execution in the fog queue are

rearranged in the increasing order of their task size. The task

having the smallest size has the highest priority and is

executed first and can be mathematically stated in the the

equation (1) as below.

i.e. Priority(taski) ∝ 1

 sizeof(taski) (1)

3.1.6. Definition 5: Response time

At Fog nodes:

 Resi
fog = µi

wait + µi,j
exec + µj

netdel

 = µi,j
wait + (tsizei/Bj,fog) + µj

netdel (2)

Where, the Resi
fog denotes the response times of the task ti

when it is placed at the jth fog for execution. µi
wait is the

waiting time spent by the task on the fog queue before its

assignment to some virtual machine at fog layer. It includes

the time taken for decision making by the intelligent fog

master whether to schedule tasks at fog or at cloud. µi,j
exec is

the execution time of the ith task to the fog node j. µj
netdel

denotes the network latency at the fog layer. Bj,fog is the

bandwidth necessary for scheduling task at the fog node j.

At Cloud:

Resi
cloud = µi

wait + µj
netdel + µi,c

exec + µnetdelc

 = µi
wait + µj

netdel + (tsizei/Bj,c) + µnetdelc (3)

Where, Resi
cloud denotes the response times of the task ti when

it is forwarded to the cloud for execution. Bj,c is the bandwidth

necessary for scheduling the task at the cloud. µnetdelc denotes

the network latency at the cloud.

Total Response Time

i.e. 𝑅𝑇(𝑡𝑜𝑡𝑎𝑙) = ∑ (Resfog(i) + Rescloud(i))
𝑛

𝑖=1
 (4)

Where n = number of delay sensitive tasks.

3.1.7. Definition 6: Waiting Time

Waiting Time,

WT(taski) = (Resi
fog + Resi

cloud) – (µi,j
exec + µi,c

exec) (5)

Total Waiting Time

i.e. 𝑊𝑇(𝑡𝑜𝑡𝑎𝑙) = ∑ (WT(taski)
𝑛

𝑖=1
 (6)

The summary of the notations which used in this paper are

listed in the table 2.

Notations Description

LBTP Leaning Based Task Placement Algorithm

IFMN Intelligent Fog master node

WFN Worker Fog node

Vmac Virtual Machine

ti ith task

MIPS Million Instructions per second

Resi
fog Response times of the task ti when it is

placed at the jth fog for execution.

Resi
cloud Response times of the task ti when it is

forwarded to the cloud for execution

Bj,fog bandwidth necessary for scheduling task at

the fog node j

Bj,c bandwidth necessary for scheduling the task

at the cloud

µi
wait waiting time spent by the task on the fog

queue before its assignment to some virtual

machine at fog layer

µi,j
exec execution time of the ith task to the fog node j

µj
netdel network latency at the fog layer

µnetdelc network latency at the cloud

tsizei Size of task i.

lati latitudinal position of the ith IoT device

longi longitudinal position of the ith IoT device

alti altitude of the ith device

RT(total) Total response time of all the delay sensitive

tasks.

Resfog(i) Total response time of all those mission

critical tasks which executed in fog

environment

Rescloud(i) Total response time of all those mission

critical tasks which executed in cloud

environment

WT(taski) Waiting time for task i.

WT(total) Total Waiting time of all mission critical

tasks.

Table 2 Notations and their Description

3.2. LBTP Algorithm

Assumption: All the WFNs have the same MIPS or

computing power.

1. Read the input task set (t1, t2, t3,…..tn) (n=number of

incoming tasks)

2. For each task ti, do

a. IFMN extracts the four tuple <latk,longk,altk,tsizek>

(k=1…….,n)

b. Input < lati, longi, alti > as input to the supervised feed

forward net.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 556

RESEARCH ARTICLE

c. Train the feed-forward neural network in the

supervised fashion at the IFMN which outputs either 0

or 1.

d. If (Output == 0) then

i. Schedule the task at Fog.

ii. Rearrange the fog queue at IFMN as follows:

for (int i=1; i<n; i++)

for (j=2;j<n-i;j++)

if (sizeof(taski) > sizeof(taskj)

swap (taski, taskj);

iii. IFMN maintains the resource utilization chart

of each worker virtual machine amd allocates

WFNs based on its availability (Least busy

Vmac) and MIPS.

iv. Calculate the response time as using equation

no. (2)

e. Else if (Output == 1) then

i. Schedule the task at Cloud

ii. Calculate the response time as mentioned in

equation (3).

f. Calculate the total response time using equation (4).

g. Waiting time of tasks calculated using equation (5) and

(6).

3. IFMN maintains record of resource utilization of all

worker fog nodes. It is calculated from the CPU utilization

graph of each WFN.

4. SIMULATION

This research was carried out in the simulation environment

of Aneka platform, which is a software platform for

developing cloud computing applications [37]. It is also

known as Pure PaaS solution for cloud computing. We made

to install Aneka 5.0 on our system which configured as per

the user requirements and agreed upon SLA. Aneka is

interfaced with Matlab 8.0 which contains the code for task

placement algorithm of the mission critical sensitive

application and delay insensitive application. We created one

Aneka IFMN and 12 Aneka WFN which served as the fog

environment, and have installed Aneka on the virtual machine

created on the AWS cloud. This setup served as the

environment of the fog-cloud.

Description of WFN: MIPS = {133,740}, BW= 3.9 GHz,

Number of CPU=1, intel i7.

Description of IFMN: Storage= 32 GB, BW= 3.9 GHz,

MIPS=133740.

The rest of the simulation parameters are mentioned in the

Table 3 as below:

Simulation Parameters Values

Duration of the simulation 180 minutes

The no. of iterations carried out 15

The total number of IoT devices

used

150

Total number of Master fog nodes

(IFMN) used

01

Total number of Worker fog nodes

(WFNs) used in this research

4, 8, 12

The range of task size 2000 to 25000 MI

Probability of selecting WFN for

processing the task

Equal

The number of virtual machines

used in the Cloud

Unlimited

Table 3 Simulation Parameters

This proposed LBTP algorithm used the following

applications: Hospital, Surveillance, Organization, Inventory,

and Smart Home. And we used the following Sensor: Smoke,

Temperature, Proximity, Thumb, etc. The importance of each

sensor depends upon the location and task size, e.g. the task

generated by smoke sensors is of latency sensitive task and

has to be processed immediately; the thumb sensors of the

Organization doesn’t come under mission critical

applications; the temperature sensor is latency critical when

found in the location such as Hospital and Inventory, etc.

For determining the location attributes of the tasks coming

from the devices, GPS camera has been used to obtain the

latitude, longitude and altitude position of each device. We

have designed a feed forward network with input as the

features of the tasks and one output (decision on where to

schedule tasks on the fog or to the cloud).The priority of each

device has been fixed manually. For example, the data coming

from healthcare devices has been assigned the highest

priority. So for this task, the desired output of the feed-

forward network is set to 0(meaning task to be scheduled at

fog node for quick response). Whereas the data coming from

the biometric sensors has been assigned low priority and the

desired output is set to 1 (meaning task to be scheduled to the

cloud for execution purposes). For training the feed forward

network with learning rate 0.5, a test set of 200 is taken by

varying the features within interval -5o to +5o for example, the

values of lat-long-alt may change due to some geographical

disturbances. So we have trained the net with the all the

possible dataset within range <lat+5o, lat-5o, long+5o, long-5o,

alt+5o, alt-5o>. The number of tasks in the experiment starts

from 30 tasks/second, increasing 15 tasks/second each time,

until the number of tasks reaches 90 tasks/second. With the

increase in the number of incoming tasks, the neural net trains

itself better.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 557

RESEARCH ARTICLE

For simulating the proposed model and evaluating the

effectiveness of this algorithm, two different scenarios were

created and tested. In the Scenario 1, which is without

applying machine learning, further sub-scenarios were created

regarding task scheduling at cloud only and at fog only.

Scenario 2 used the machine learning to schedule tasks at both

cloud and fog. We also varied the number of WFNs in order

to see the performance of the proposed algorithm (LBTP). In

the following sub-sections, we discuss these scenarios and

their impact on the response time and resource utilization of

the incoming tasks.

Scenario 1: Task Scheduling without Machine Learning

a. At Cloud only

1. Here in this scenario, all the tasks were scheduled at the

AWS cloud. We do not evaluate the resource utilization in

this scenario.

b. At Fog only

2. In this scenario, we have fixed to one IFMN, and varied

the number of WFNs with the help of one Aneka master

node and a number of worker nodes. And evaluated the

response time and resource utilization of each case. The

number of nodes created were 4 WFNs, 8 WFNs and 12

WFNs.

Scenario 2: Task Scheduling with Machine Learning (at both

fog and cloud layers)

In this scenario, a classification algorithm (LBTP) as

mentioned in Section above is run using machine learning

algorithm, in order to schedule tasks between the fog and the

cloud. This also considered the number of WFNs to be 4, 8,

and 12 for evaluating the performance metrics such as

response time and utilization of the resources.

5. SIMULATION RESULTS

The performance metrics such as response time, waiting time

and resource utilization were evaluated for the mission critical

applications only. The response time of each task was

evaluated and summed up for this research. These parameters

were not evaluated for the delay insensitive applications. The

scenarios were simulated and following observations were

noted:

5.1. Classification Rate

Number of tasks Delay sensitive

tasks

Delay insensitive

tasks

30 13 17

45 24 21

60 37 23

75 48 27

90 51 39

Table 4 Classification of Delay Sensitive and Delay

Insensitive Tasks

The classification percentage was found to be 100% with

LBTP. Since the scenario was geographically limited. But this

may vary when applied to geographically unstable situations.

The following was the proportion of the mission critical tasks

and the mission non critical tasks considered for this research,

which were classified correctly, as mentioned in Table 4.

5.2. Response Time

The response time of each task was evaluated using equation

(2) and (3). For number of WFN = 4, the response times when

number of tasks is equal to 30 are calculated as 24.8 s (when

task scheduled at cloud only without any machine learning),

17.56 s (when tasks scheduled at fog only without any

machine learning), and 3.72 s (when tasks scheduled at LBTP

with machine learning). All such reading varies as observed

by raising the number of tasks and the number of WFNs. The

response time (in seconds) of these scenarios when WFN = 4,

WFN = 8, and WFN =12 were observed and recorded as

shown in the table no. 5, 6 and 7 respectively.

WFN = 4

Number of

tasks
RT@Cloudonly RT@Fogonly RT@LBTP

30 24.8 17.56 3.72

45 29.2 18.22 3.99

60 29.38 19.31 5.3

75 32.35 22.29 6.08

90 34.98 23.86 7.1

Table 5 Recorded Response Time when Number of WFN = 4

WFN = 8

Number of

tasks
RT@Cloudonly RT@Fogonly RT@LBTP

30 24.8 12.35 3.72

45 29.2 13.01 3.99

60 29.38 14.1 5.3

75 32.35 17.08 6.08

90 34.98 18.65 7.1

Table 6 Recorded Response Time when Number of WFN = 8

WFN = 12

Number of

tasks
RT@Cloudonly RT@Fogonly RT@LBTP

30 24.8 7.38 3.72

45 29.2 8.04 3.99

60 29.38 9.13 5.3

75 32.35 12.11 6.08

90 34.98 13.68 7.1

Table 7 Recorded Response Time when number of WFN = 12

mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 558

RESEARCH ARTICLE

5.3. Waiting Time

The waiting time of each task was evaluated using equation

(5) and (6). The waiting times when number of tasks is equal

to 30 are calculated as 3.15 s (when task scheduled at cloud

only without any machine learning), 4.7 s (when tasks

scheduled at fog only without any machine learning), and

1.22 s (when tasks scheduled at LBTP with machine

learning). All such reading varies as observed by raising the

number of tasks and the number of WFNs. The waiting time

(in seconds) of these scenarios when WFN = 4, WFN = 8, and

WFN =12 were observed and recorded as shown in the table

no. 8, 9 and 10 respectively.

WFN = 4

Number

of tasks
WT@Cloudonly WT@Fogonly WT@LBTP

30 3.15 4.7 1.22

45 9.55 7.36 1.49

60 11.73 10.45 2.8

75 16.7 15.43 3.58

90 21.33 19 4.6

Table 8 Recorded Waiting Time when Number of WFN = 4

WFN = 8

Number

of tasks
WT@Cloudonly WT@Fogonly WT@LBTP

30 3.15 3.03 1.22

45 9.55 5.69 1.49

60 11.73 8.78 2.8

75 16.7 13.76 3.58

90 21.33 17.33 4.6

Table 9 Recorded Waiting Time when Number of WFN = 8

WFN = 12

Number

of tasks
WT@Cloudonly WT@Fogonly WT@LBTP

30 3.15 1.74 1.22

45 9.55 4.4 1.49

60 11.73 7.49 2.8

75 16.7 12.47 3.58

90 21.33 16.04 4.6

Table 10 Recorded Waiting Time when Number of WFN = 12

5.4. Resource Utilization

Resource utilization was calculated by counting the number of

WFNs or worker virtual machines busy for executing the

incoming tasks at the fog layer. For WFN = 8 and tasks = 30,

the resource utilization was found to be 63% and 50% for fog

only environment and LBTP respectively. All such reading

varies as observed by raising the number of tasks and the

number of WFNs. The resource utilization of these scenarios

when WFN = 4, WFN = 8, and WFN =12 were observed and

recorded as shown in the table no. 11, 12 and 13 respectively.

WFN = 4

Number of tasks RU@Fogonly RU@LBTP

30 100% 50%

45 100% 50%

60 100% 75%

75 100% 100%

90 100% 100%

Table 11 Recorded Resource Utilization when Number of

WFN = 4

WFN = 8

Number of tasks RU@Fogonly RU@LBTP

30 63% 50%

45 63% 63%

60 75% 63%

75 88% 63%

90 100% 88%

Table 12 Recorded Resource Utilization when Number of

WFN = 8

WFN = 12

Number of tasks RU@Fogonly RU@LBTP

30 42% 33%

45 42% 42%

60 50% 42%

75 58% 42%

90 67% 58%

Table 13 Recorded Resource Utilization when number of

WFN = 12

In the table no. 5,6,7 and figure no.4, the terms

RT@Cloudonly, RT@Fogonly and RT@LBTP stands for

response times when task scheduling at cloud only, when task

scheduling at fog only without any machine learning and task

scheduling using LBTP with machine learning respectively.

In the table no. 8, 9, 10 and figure no. 5, the terms

WT@Cloudonly, WT@Fogonly and WT@LBTP stands for

waiting times when task scheduling at cloud only, when task

scheduling at fog only without any machine learning and task

scheduling using LBTP with machine learning respectively.

In the table no. 11, 12, 13 and figure no. 6, the terms

RU@Cloudonly, RU@Fogonly and RU@LBTP stands for

resource utilization when task scheduling at cloud only, when

task scheduling at fog only without any machine learning and

mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RU@Fogonly
mailto:RU@LBTP
mailto:RU@Fogonly
mailto:RU@LBTP
mailto:RU@Fogonly
mailto:RU@LBTP

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 559

RESEARCH ARTICLE

task scheduling using LBTP with machine learning

respectively.

6. DISCUSSION

For the results observed and mentioned in the Section 5, the

following inferences has been derived and discussed in the

subsections as below:

6.1. Response Time

It was observed that when the tasks scheduled at cloud only,

then mission critical tasks took the considerable amount of

time. When these tasks were scheduled at fog only, then also

there was no as such difference in the response time as tasks

spent more time competing for the allocation of the WFNs

when WFNs = 4. As the number of tasks increased, the

response time increased. Increasing the number of WFNs to 8

and 12, considerably improved the response time when tasks

scheduled at fog only. But the best response time was

observed when the tasks used LBTP algorithm. The reason for

this is that only mission critical applications executed over

fog, rest forwarded to the cloud. Increasing the number of

WFNs further improved the response time. The response time

(in seconds) of these scenarios when WFN = 4, WFN = 8, and

WFN =12 can be compared in the Figure no. 4.

Figure 4 Comparison of Response times when WFN = 4, 8 and 12

6.2. Waiting time

The waiting time of the tasks increased as the number of tasks

scheduled at fog only environment increased and when

number of WFN is less because the queue waiting time for

allocation of virtual machine increased. But on raising the

number of WFN, this waiting time reduces. But with LBTP

algorithm, the minimum waiting time was recorded as the

workload is less as compared with fog only scenario. The

waiting time (in seconds) of these scenarios when WFN = 4,

WFN = 8, and WFN =12 can be shown and compared in

figure no. 5.

Figure 5 Comparison of Waiting Times when WFN = 4, 8 and 12

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 560

RESEARCH ARTICLE

6.3. Resource Utilization

It was observed as the number of WFN increases, the resource

utilization decreases because number of free WFNs increases.

The resource utilization of these scenarios when WFN = 4,

WFN = 8, and WFN =12 can be shown and compared in

figure no. 6.

Figure 6 Comparison of Resource Utilization when WFN = 4, 8 and 12

7. COMPARISON OF LBTP WITH OTHER RELATED

WORK

With reference to table 14 as shown below, it has been

observed that different task scheduling algorithms different

kinds of performance metrics such as makespan, energy, cost,

etc. LBTP considered the performance metrics to be response

time, waiting time and resource utilization.

Also different authors proposed different approaches for

scheduling the tasks in the IoT fog-cloud environment. Some

authors used network based solutions so others used machine

learning and meta-heuristic algorithms. This work used

machine learning method. The LBTP used optimization

parameter to be response time, while some other task

scheduling methods used different time equations,

comparison of which is given in table 15. Description of the

notations is given in table 16.

T
as

k
 S

ch
ed

u
li

n
g

A
lg

o
ri

th
m

S
im

u
la

to
r

D
ea

d
li

n
e

S
at

is
fa

ct
io

n

L
at

en
cy

M
ak

es
p

an

W
ai

ti
n

g
 T

im
e

E
x

ec
u

ti
o

n
 T

im
e

R
es

p
o

n
se

 T
im

e

E
n

er
g

y

R
es

o
u

rc
e

U
ti

li
za

ti
o

n

P
ac

k
et

 d
ro

p

C
o

st

E
ff

ic
ie

n
cy

T
h

ro
u
g

h
p
u

t

C
o

n
v

er
g

en
ce

 S
p

ee
d

N
et

w
o

rk

C
o

n
g

es
ti

o
n

D
ep

en
d

en
t

ta
sk

s

In
d

ep
en

d
en

t
ta

sk
s

A
lg

o
ri

th
m

C
o

m
p

le
x

it
y

[12] Cloudsim ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔

[13] Petrel ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[14]
Real world

ITS
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔

[15] CloudAnalyst ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[16] iFogSim ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✘

[17] iFogSim ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[18]
QEMU,

Libvirt
✔ ✔ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[19] CloudAnalyst ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[20] Tasklet ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 561

RESEARCH ARTICLE

[21]
CloudAnalyst,

Matlab
✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✘

[22] Matlab ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘

[23] OMNeT++ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✔ ✘

[24] iFogSim ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✘

[25] iFogSim ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘

[26] Matlab ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔

[27] Matlab ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[28] SimGrid ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✘

[29] Matlab ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘

[30] Python ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘

[31] Cloudsim ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔

[32] iFogSim ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘

[33] iFogSim ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[34] Python ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[35] VirtualBox ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✘

[36] Python ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘

LBTP Aneka, Matlab ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Table 14 Metrics Used by Different Task Scheduling Algorithms

Task Scheduling Algorithm Time Equation

[13] Ti
cloud = Ri

cloud + (Di / Bcloud) + RTTcloud

Ti
cloudlet = Ri

vd + Wi
vd + (Di /Bvd) + RTTvd

[14] rꚍi = wꚍi + mꚍi + dꚍi

[15] delayi
T = (DLi

T - Ci
T)

[17] EFT(Mk) = i=1 n(ET(Mi) FDj) + (ET(Mk)) FDj)

[18] Exj
t = τ jt,com + τj

t,data + τ j t,img.

Exc
t = τ ct,com + τj

t,data + τj,c
t,data,

[21] ECTi,k = datai

 MIPSk

 (k = 1, 2, . . . , Nvm; i = 1, 2, . . . , Ntsk)

[22] Rij = CommCostij + STjc

 = Ljc + Dsizei /BWc + Lij + Dsizei /BWl + 1/ (µjc − ∑ λji𝑖𝜖𝑐)

[23] Dxi = DF
xi + Dn.

[24] Γ(Xn) = Γexe Xn + Γlat Xn + Γtra Xn

[26] T si,j = max(availj , max 1≤r≤Ri (Tfr + T taskr,i))

 Tfi,j = T si,j + T compi,j

[29] i=1,k=k n,K (λk
i + Ck + Qk)

[31] 𝑇𝑇𝑅𝑇 = 𝑇𝑆𝐼𝑇 + 𝑇𝑄𝑊𝑇 + 𝑇𝑅𝑇 + 𝑇𝑆𝑂T

Proposed Algorithm (LBTP) Resi
fog = µi

wait + µi,j
exec + µj

netdel

 = µi,j
wait + (tsizei/Bj,fog) + µj

netdel

Resi
cloud = µi

wait + µj
netdel + µi,c

exec + µnetdelc

 = µi
wait + µj

netdel + (tsizei/Bj,c) + µnetdelc

𝑅𝑇(𝑡𝑜𝑡𝑎𝑙) = ∑(Resfog(i) + Rescloud(i))

𝑛

𝑖=1

Table 15 Time Equations Used for Optimization

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 562

RESEARCH ARTICLE

Notations Description

Ti
cloud Completion time when task scheduled at mobile device.

Ri
cloud Time taken by task to execute in the cloud environment.

Di Total Data volume (both uploading + downloading)

Bcloud Bandwidth requires for task scheduling at the cloud.

RTTcloud Network delay at cloud.

Ti
cloudlet Completion time when task scheduled at cloudlet.

Ri
vd Task execution time on the cloudlet.

Wi
vd Waiting time at the cloudlet.

Bvd Bandwidth requires for task scheduling at the cloudlet.

RTTvd Network delay at cloudlet.

rꚍi Response time of a task.

wꚍi deployment time in which data and compute resources needed by the task are prepared

mꚍi Execution time (or makespan time) in which the task actually utilizes resources on the

deploying node for execution.

dꚍi Time taken during communication.

delayi
T Maximum allowed (tolerated) delay of user request i.

DLi
T Deadline given by request i.

Ci
T Current time.

EFT(Mk) Expected Finish time at fog node module k.

ET(Mi) Execution time of ith module at fog node.

FDj Task scheduled at jth fog device.

Exj
t execution time in fog node j of task t.

τ jt,com computation time of task t in the fog node j.

τj
t,data data transmission time of task t.

τ j
t,img. Image transmission time of the task t.

Exc
t execution time of a task t that runs on the cloud

τc
t,com Computation time of task t in the cloud.

τj,c
t,data Data transmission time from fog node j to cloud.

ECTi,k Execution time required for each task to run on a computing resource (virtual machine).

datai Length of the task.

MIPSk Million instructions per second.

Nvm Number of virtual machines

Ntsk Number of tasks

Rij Overall response time of the sensor Si workload as a result of task offloading.

CommCostij Total communication cost for sensor Si offloading.

STjc Service time of task offloading of sensor Si to fog nodes fgj.

Ljc Fog latency between fog node j and the cloud.

Dsizei Data Size generated from Sensor i.

BWc Cloud network bandwidth.

Lij Network Latency between fog node j and sensor Si.

BWl Local network bandwidth.

µjc Service rate of fog node j for application class c.

Dxi Computational delay for a request xi.

DF
xi Task execution delay which is a combination of both queuing delay and the service delay.

Dn Network delay.

Γ(Xn) overall execution time of each candidate configuration

Γexe Xn Computing time of workflow’s tasks based on their assigned servers.

Γlat Xn Latency in task offloading.

Γtra Xn Data transmission time between each pair of dependent tasks in each workflow.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 563

RESEARCH ARTICLE

T si,j start time of a task i executed at device j.

availj The time when device j finishes executing any previously scheduled task.

Tfr Completion time for task r.

Ttaskr,i time taken to transfer data from predecessor task r to current task i.

Tfi,j finish time of a task i executed at device j.

T compi,j the time to compute task i

λk
i Compute latency of task I at resource k.

Ck Communication costs.

Qk Queuing delay at resource Rk.

𝑇𝑇𝑅𝑇 Total Run Time.

𝑇𝑆𝐼𝑇 Stage In Time.

𝑇𝑄𝑊𝑇 Queue Wait Time.

𝑇𝑅𝑇 Run Time.

𝑇𝑆𝑂T Stage Out Time.

Table 16 Notations Describing the Time Equation

8. CONCLUSION AND FUTURE WORK

The proposed algorithm (LBTP) made use of machine

learning and the results revealed that this is an effective

algorithm for task scheduling. The performance metrics were

evaluated and LBTP showed better results in different

scenarios when compared with task scheduling without

machine learning. The performance metrics considered were

total response time, waiting time of the mission critical tasks

and resource utilization of the fog environment. For the

number of WFN = 4,8 and 12, the LBTP showed better results

in terms of response time and waiting time, when compared

with task scheduling at the fog only and the task scheduling at

the cloud only scenarios. For WFN = 4, the resource

utilization was observed to be better when compared with the

resource utilization when WFN = 8 and WFN = 12 using

LBTP. Hence, LBTP performance degrades in terms of

resource utilization on increasing the number of WFNs. Also,

task scheduling at Fog only scenario without machine

learning, showed better resource utilization than the proposed

method LBTP. Hence it was observed that there need to have

trade-off between the response time, waiting time and

resource utilization. Resource utilization is an important

factor because idle virtual machines also incurs energy

expenditure and contributes to the cost. For attaining the

better response time, the resource utilization cannot be

compromised. So there should be limited WFNs, and LBTP

performs better even with small number of WFNs.

This research is carried out only for limited number of

parameters, whereas the other related works measured and

tried to optimize other parameters as well, which can be

enlisted in the table 14. So for the future work, we will

explore the following areas:

(a) We try to optimize the other parameters also as

mentioned in the table 14.

(b) Also, this research was carried out in the limited

geographical environment with limited IoT devices with

predefined known location.

(c) We will try to evaluate this algorithm for remote

uncertain geographic locations and considering some

other features of the task and test results with different

machine learning algorithms.

(d) In this research, we have assumed uniform computing

capacity of all worker virtual machines, in the next

research, we will try to simulate task scheduling

algorithms on worker virtual machines with varying

computing power.

REFERENCES

[1] E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani, ‘‘Internet-

ofThings-based smart environments: State of the art, taxonomy, and
open research challenges,’’ IEEE Wireless Commun., vol. 23, no. 5, pp.

10–16, Oct. 2016.

[2] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi and M. Mustaqim,
"Internet of Things (IoT) for Next-Generation Smart Systems: A

Review of Current Challenges, Future Trends and Prospects for

Emerging 5G-IoT Scenarios," in IEEE Access, vol. 8, pp. 23022-23040,
2020, doi: 10.1109/ACCESS.2020.2970118.

[3] Co-Operation With the Working Group RFID of the ETP EPOSS,

Internet of Things in 2020, Roadmap for the Future, Version 1.1,
INFSO D.4 Networked Enterprise RFID INFSO G.2 Micro

Nanosystems, May 2008.

[4] Gedeon, J., Jens Heuschkel, L. Wang and M. Mühlhäuser. “Fog

Computing: Current Research and Future Challenges.” (2018).

[5] S. Dustdar, C. Avasalcai and I. Murturi, "Invited Paper: Edge and Fog
Computing: Vision and Research Challenges," 2019 IEEE International

Conference on Service-Oriented System Engineering (SOSE), San

Francisco, CA, USA, 2019, pp. 96-9609, doi:
10.1109/SOSE.2019.00023.

[6] Kashani, M. H., Ahmad Ahmadzadeh and Ebrahim Mahdipour. “Load

balancing mechanisms in fog computing: A systematic review.” ArXiv
abs/2011.14706 (2020): n. pag.

[7] M. Rahimi, M. Songhorabadi, and M. H. Kashani, "Fog-based smart

homes: A systematic review," Journal of Network and Computer
Applications, vol. 153, p. 102531, 2020/03/01/ 2020.

[8] O. C. A. W. Group, "OpenFog reference architecture for fog

computing," OPFRA001, vol. 20817, p. 162, 2017.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 564

RESEARCH ARTICLE

[9] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, Tie Qiu, “Survey on

fog computing: architecture, key technologies, applications and open
issues”,Journal of Network and Computer Applications, Volume 98,

2017, Pages 27-42, ISSN 1084-8045,

https://doi.org/10.1016/j.jnca.2017.09.002.
[10] L. I. Carvalho, D. M. A. da Silva and R. C. Sofia, "Leveraging Context-

awareness to Better Support the IoT Cloud-Edge Continuum," 2020

Fifth International Conference on Fog and Mobile Edge Computing
(FMEC), Paris, France, 2020, pp. 356-359, doi:

10.1109/FMEC49853.2020.9144760.

[11] Xuan-Qui Pham, Nguyen Doan Man, Nguyen Dao Tan Tri, Ngo Quang
Thai, and Eui-Nam Huh. “A Cost- and Performance-Effective Approach

for Task Scheduling Based on Collaboration between Cloud and Fog

Computing.” International Journal of Distributed Sensor Networks,
(November 2017). https://doi.org/10.1177/1550147717742073.

[12] Tahani Aladwani, “Scheduling IoT Healthcare Tasks in Fog Computing

Based on their Importance”, Procedia Computer Science, Volume 163,

2019, Pages 560-569, ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2019.12.138.

[13] L. Lin, P. Li, J. Xiong and M. Lin, "Distributed and Application-Aware
Task Scheduling in Edge-Clouds," 2018 14th International Conference

on Mobile Ad-Hoc and Sensor Networks (MSN), Shenyang, China,
2018, pp. 165-170, doi: 10.1109/MSN.2018.000-1.

[14] Minh-Quang Tran, Duy Tai Nguyen, Van An Le, Duc Hai Nguyen,

Tran Vu Pham, "Task Placement on Fog Computing Made Efficient for
IoT Application Provision", Wireless Communications and Mobile

Computing, vol. 2019, Article ID 6215454, 17 pages, 2019.

https://doi.org/10.1155/2019/6215454.
[15] Choudhari, Tejaswini, "Prioritized Task Scheduling In Fog Computing"

(2018). Master's Projects.581, DOI: https://doi.org/10.31979/etd.shqa-

fdp6, https://scholarworks.sjsu.edu/etd_projects/581.
[16] F. Fellir, A. El Attar, K. Nafil and L. Chung, "A multi-Agent based

model for task scheduling in cloud-fog computing platform," 2020

IEEE International Conference on Informatics, IoT, and Enabling
Technologies (ICIoT), Doha, Qatar, 2020, pp. 377-382, doi:

10.1109/ICIoT48696.2020.9089625.

[17] J. U. Arshed and M. Ahmed, "RACE: Resource Aware Cost-Efficient
Scheduler for Cloud Fog Environment," in IEEE Access, doi:

10.1109/ACCESS.2021.3068817.

[18] L. Yin, J. Luo and H. Luo, "Tasks Scheduling and Resource Allocation
in Fog Computing Based on Containers for Smart Manufacturing," in

IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712-

4721, Oct. 2018, doi: 10.1109/TII.2018.2851241.
[19] Elarbi Badidi, “QoS-Aware Placement of Tasks on a Fog Cluster in an

Edge Computing Environment”, Journal of Ubiquitous Systems &

Pervasive Networks, Volume 13, No. 1 (2020) pp. 11-19. doi:
10.5383/JUSPN.13.01.002.

[20] M. Breitbach, D. Schäfer, J. Edinger and C. Becker, "Context-Aware

Data and Task Placement in Edge Computing Environments," 2019
IEEE International Conference on Pervasive Computing and

Communications (PerCom, Kyoto, Japan, 2019, pp. 1-10, doi:

10.1109/PERCOM.2019.8767386.
[21] Shudong Wang, Yanqing Li, Shanchen Pang, Qinghua Lu, Shuyu

Wang, Jianli Zhao, "A Task Scheduling Strategy in Edge-Cloud

Collaborative Scenario Based on Deadline", Scientific Programming,
vol. 2020, Article ID 3967847, 9 pages, 2020.

https://doi.org/10.1155/2020/3967847.

[22] M. K. Hussein and M. H. Mousa, "Efficient Task Offloading for IoT-
Based Applications in Fog Computing Using Ant Colony

Optimization," in IEEE Access, vol. 8, pp. 37191-37201, 2020, doi:

10.1109/ACCESS.2020.2975741.
[23] T. Qayyum, Z. Trabelsi, A. W. Malik and K. Hayawi, "Multi-Level

Resource Sharing Framework Using Collaborative Fog Environment for

Smart Cities," in IEEE Access, vol. 9, pp. 21859-21869, 2021, doi:
10.1109/ACCESS.2021.3054420.

[24] M. Goudarzi, H. Wu, M. Palaniswami and R. Buyya, "An Application

Placement Technique for Concurrent IoT Applications in Edge and Fog

Computing Environments," in IEEE Transactions on Mobile

Computing, vol. 20, no. 4, pp. 1298-1311, 1 April 2021, doi:
10.1109/TMC.2020.2967041.

[25] T. S. Nikoui, A. Balador, A. M. Rahmani and Z. Bakhshi, "Cost-Aware

Task Scheduling in Fog-Cloud Environment," 2020 CSI/CPSSI
International Symposium on Real-Time and Embedded Systems and

Technologies (RTEST), Tehran, Iran, 2020, pp. 1-8, doi:

10.1109/RTEST49666.2020.9140118.
[26] Y. Sahni, J. Cao and L. Yang, "Data-Aware Task Allocation for

Achieving Low Latency in Collaborative Edge Computing," in IEEE

Internet of Things Journal, vol. 6, no. 2, pp. 3512-3524, April 2019, doi:
10.1109/JIOT.2018.2886757.

[27] Abbasi, M., Mohammadi Pasand, E. & Khosravi, M.R., “Workload

Allocation in IoT-Fog-Cloud Architecture Using a Multi-Objective
Genetic Algorithm” J Grid Computing 18, 43–56 (2020).

https://doi.org/10.1007/s10723-020-09507-1.

[28] Lindong Liu, Deyu Qi, Naqin Zhou, Yilin Wu, "A Task Scheduling

Algorithm Based on Classification Mining in Fog Computing

Environment", Wireless Communications and Mobile Computing, vol.

2018, Article ID 2102348, 11 pages, 2018.
https://doi.org/10.1155/2018/2102348.

[29] Mohammad Khalid Pandit, Roohie Naaz Mir, Mohammad Ahsan
Chishti, "Adaptive task scheduling in IoT using reinforcement

learning", International Journal of Intelligent Computing and

Cybernetics, Vol. 13 No. 3, pp. 261-282, 2020.
https://doi.org/10.1108/IJICC-03-2020-0021.

[30] Xuejing Li, Yajuan Qin, Huachun Zhou, Du Chen, Shujie Yang, Zhewei

Zhang, "An Intelligent Adaptive Algorithm for Servers Balancing and
Tasks Scheduling over Mobile Fog Computing Networks", Wireless

Communications and Mobile Computing, vol. 2020, Article ID

8863865, 16 pages, 2020. https://doi.org/10.1155/2020/8863865.
[31] N. Mostafaz "Resource Selection Service Based on Neural Network in

Fog Environment", Advances in Science, Technology and Engineering

Systems Journal, vol. 5, no. 1, pp. 408-417 (2020).
[32] Bhatia, M., Sood, S.K. & Kaur, S. Quantumized approach of load

scheduling in fog computing environment for IoT applications.

Computing 102, 1097–1115 (2020). https://doi.org/10.1007/s00607-
019-00786-5.

[33] Fatma M. Talaat, Shereen H. Ali, Ahmed I. Saleh, Hesham A. Ali,

“Effective Load Balancing Strategy (ELBS) for Real-Time Fog
Computing Environment Using Fuzzy and Probabilistic Neural

Networks”, Journal of Network and Systems Management (IF 2.250)

Pub Date : 2019-02-06 , DOI: 10.1007/s10922-019-09490-3.
[34] He Li, Kaoru Ota, and Mianxiong Dong, “Deep Reinforcement

Scheduling for Mobile Crowd sensing in Fog Computing”, ACM Trans.

Internet Technol. 19, 2, Article 21 (April 2019), 18 pages. DOI:
https://doi.org/10.1145/3234463.

[35] V. P. Kafle and A. H. A. Muktadir, "Intelligent and Agile Control of

Edge Resources for Latency-Sensitive IoT Services," in IEEE Access,
vol. 8, pp. 207991-208002, 2020, doi: 10.1109/ACCESS.2020.3038439.

[36] Y. Dong, G. Xu, M. Zhang and X. Meng, "A High-Efficient Joint

’Cloud-Edge’ Aware Strategy for Task Deployment and Load
Balancing," in IEEE Access, vol. 9, pp. 12791-12802, 2021, doi:

10.1109/ACCESS.2021.3051672.

[37] Shifa Manihar, Tasneem Bano Rehman, Ravindra Patel and Sanjay
Agrawal, “Intelligent and Scalable IoT Edge-Cloud System”

International Journal of Advanced Computer Science and Applications

(IJACSA), 11(8), 2020.
http://dx.doi.org/10.14569/IJACSA.2020.0110846.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2021/209987 Volume 8, Issue 5, September – October (2021)

ISSN: 2395-0455 ©EverScience Publications 565

RESEARCH ARTICLE

Authors

Shifa Manihar is pursuing PhD in the faculty of
Computer Science and Engineering from UIT RGPV

Bhopal. She holds MTech in Computer Technology

Application Engineering from SoIT RGPV, Bhopal. She
received Gold Medal for being University topper in

MTech. She Holds BE degree in Computer Science

Engineering from JNCT, Bhopal. She has publication in
SCI, SCOPUS and UGC care listed journals and

international patents. She is UGC NET qualified faculty

and has qualified the GATE examination 4 times till date. She has about 9
years of teaching and research experience. Her field of research includes

Internet of Things, Cloud Computing, Fog Computing, Machine Learning,

etc.

Dr. Ravindra Patel has put in an illustrious academic

career spanning 16 years ever since he joined service in

2005 as lecturer at SATI Vidisha, Madhya Pradesh,
India. Subsequently he joined RGPV, Bhopal, and

Madhya Pradesh as Reader in the year 2007, became

Associate Professor in the year 2010 and Professor of
Computer Applications in the year 2013 and ever since

acquired rich and diversified experience in teaching,
research and administration. His educational

qualifications include M.Sc. Mathematics, from Model Science College

Rewa, MP. Master in Computer Applications from SATI, Vidisha, MP and
PhD from Rani Durgavati University, Jabalpur, MP, India. His academic

experience spans the responsibilities as Head of the Department of Computer

Applications since 2008 to till date and dean faculty Computer Science and
Information Technology in RGPV, Bhopal, for two years. He has

successfully supervised 10 Ph.D. and 06 MTech thesis in the area of Software

Engineering, Data Mining, and Computer Network. Presently, 08 Ph.D.
research scholars are pursuing Ph.D. under his supervision. He reviewed

several research papers and was the examiner for PhD thesis of other

Universities too. He has presented and published 12 research papers in

International conferences, published 38 research papers in peer reviewed

international journals and 02 book chapters.

How to cite this article:

Dr. Sanjay Agrawal is working as a Professor in the

Department of Computer Engineering & Applications in
National Institute of Technical Teachers Training &

Research (NITTTR), Bhopal, M.P., India. He is having

over 28 years of Technical Teachers Training along with
PG Students & had done PhD under the faculty of

Computer science and Information Technology of

RGPV, Bhopal. He has published more than 60 Research
Papers in International Journals and Conferences. He had

successfully developed NPTEL/SWAYAM Course on

“Accreditation for Undergraduate Engineering Programs”. He has delivered
several Training Sessions, Expert/Guest Lectures, Attended Seminars and

Chaired Sessions in various IEEE, Springer International Conferences. He

has been acting as a Dean Research and Development. Dr. Agrawal acts as an
Expert Members to Committee, i.e., Expert Member of the NBA Evaluation

in various Indian institutes. Dr. Agrawal is guiding many PhD & PG students

and having an open offer for the research community to work collaboratively

on various research projects in India and abroad.

Shifa Manihar, Ravindra Patel, Sanjay Agrawal, “Learning Based Task Placement Algorithm in the IoT Fog-Cloud

Environment”, International Journal of Computer Networks and Applications (IJCNA), 8(5), PP: 549-565, 2021, DOI:

10.22247/ijcna/2021/209987.

