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Abstract – Task scheduling means allocating resources to the 

tasks in such a way that processing can be accomplished in the 

most optimal way possible. Here the optimal strategy means 

processing all the tasks in such a way that it incur the least delay, 

hence the least response time can be achieved by all the tasks. 

This becomes a major concern when dealing with the Fog 

computing environment. Fog have limitations on storage 

capacity and processing power. So all the real time applications 

cannot be scheduled at the Fog environment. Also it is required 

to allocate these resources in the most optimal way possible. So it 

is best suggested to schedule latency critical applications on the 

fog and other applications to the cloud. This paper proposes a 

learning based task placement algorithm (LBTP) which used 

supervised feed forward neural network to recognize the latency 

critical applications. This algorithm executes in two phases. In 

the first phase, the features of the tasks serve as the input to this 

machine learning based framework for decision making 

regarding whether to schedule task at the fog environment or 

forward it to the cloud for execution. In the second phase if the 

tasks scheduled at fog, then tasks are rearranged in the fog 

queue based on the priority to achieve the most optimal resource 

utilization. The simulation results were evaluated using the 

Matlab 8.0 and Aneka 5.0 platform. The results revealed that the 

proposed method LBTP recorded the best response time, waiting 

time and resource utilization when compared with the task 

scheduling at the fog only and task scheduling at the Cloud only 

environment. LBTP also recorded better results on horizontal 

scaling by raising the number of virtual machines at the fog 

environment. 

Index Terms – Task Scheduling, Resource Allocation, Fog, Edge, 

Cloud, Latency, Internet of Things, Machine Learning. 

1. INTRODUCTION 

The basic idea of the IoT comes from the word ‘‘smartness’’ 

– ‘‘the capability of the device to independently acquire and 

relate knowledge’’ [1, 2]. Thus, we call IoT as the ‘‘things or 

devices and sensors’’ those are smart, uniquely addressable 

based on their communication protocols, and are adjustable 

and autonomous with in-built security mechanism [2, 3]. In 

the world of sensors, gadgets and devices, the computing is 

not restricted to the single workstation. With the advent of 

cloud computing paradigm, the computing is distributed over 

the data centers available throughout the world. With 

unlimited number of resources e.g. data centers and servers, 

the computing can be performed uninterruptedly. Cloud 

computing facilitates us with powerful and reliable 

infrastructures with the property scalability and accessibility 

through flexible pay-as-you-go models [4].  

The bottleneck associated with cloud computing is that it has 

several kinds of delays associated with it such as transmission 

delays, networks issues like network congestion etc. which 

makes it unsuitable for delay sensitive applications. Although 

computation sensitive tasks can be scheduled at cloud easily, 

but for latency sensitive applications, its required to have 

some computing device at the vicinity of the Internet of things 

(IoT) devices. This gave the need for the Fog computing. 

Compared to the cloud, fog computing offers proximate, 

small-scale resources that can be instantiated dynamically [4].  

Fog environments are just similar to cloud but with smaller 

processing and storage capabilities. Fog infrastructures find 

their place in between the mobile devices and the cloud in an 

intermediate layer [4].  Fog computing is just an extension of 

the cloud at the network edge. This addition to the cloud 

supports IoT applications to be used in the proximity of 

sensors, adding on to the newer benefits like fast response 

time and better security and privacy [5].  
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Many number of fog cloud architectures has been proposed 

by different researchers, but mostly used architecture is the 

one with the three layers [6, 7, 8]. The fog layer act as the 

intermediate layer in between the cloud and the end devices. 

Fog network expands cloud services to the network edge [6]. 

The fog cloud architecture can be illustrated below: 

1.1. Cloud Layer  

It is the layer with very high computing capabilities. It 

consists of very large number of data centers and servers 

distributed throughout the world. It also act as the permanent 

storage for large amount of information. It is the final 

destination for the tasks if we do not find any computational 

resource for its execution locally.  

1.2. Fog Layer 

It is the intermediate layer which consist of collection of 

limited number of computing resources (access points, 

routers, switches, gateways, etc.) having small storage and 

processing capabilities. It is providing cloud computing 

services but at the network edge. Fog nodes interact and 

cooperate with the cloud. They are capable of storing, 

processing and transmitting the sensed data from the end 

devices [6]. 

1.3. End Devices 

This layer is composed of different IoT devices such as 

sensors, cellphones, smart automobiles, cards, and readers [6]. 

These act as smart sensing devices [6]. 

Thus according to this architecture, user level smart devices 

are connected to the fog layer using wired or wireless 

connection technologies such as 3G, 4G, wireless LAN, 

ZigBee, Bluetooth, and Wi-Fi [6]. The Fog Cloud architecture 

can be shown in Figure 1. 

 

 

Figure 1 the Fog-Cloud Architecture [9] 
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Using computations at fog level, one can save its task 

processing time that may incur due to propagation delay while 

transmission to data centers at different geographical 

locations. The computation is performed locally and 

responded without any extra delays. With the existing 

limitations with fog, all the applications cannot be processed 

at the fog. We are in need of some mechanisms so that proper 

collaboration can be performed in between the fog and the 

cloud to obtain the optimal results, basically in terms of low 

latency and energy consumption. The problem statement here 

is how to distribute the tasks among the fog and cloud 

efficiently and also among different virtual machines 

available at both the fog and cloud end. It has been discovered 

that there is a need to adopt a context aware automated 

support to decide where to store data and perform 

computation either at edge or at cloud, to enhance the smooth 

performance of the cloud edge system and reduce latency for 

the mission critical applications [10]. Recent researches are 

being carried out to develop computer based solutions to 

address this problem. Researchers also came up with several 

machine learning and meta-heuristic algorithms, hence 

artificial intelligence to evaluate these contexts on the basis of 

which the task scheduling or distribution can be performed 

easily and optimally. Task offloading can be carried in two 

scenarios:  

(i) Independent tasks: The number of tasks can be 

offloaded to the different computing resources 

simultaneously and can processed in parallel [11]. 

(ii) Dependent tasks: The task is made up of different sub-

task modules and each subtask may need data and 

input from some other sub-tasks and parallel 

offloading may not be applicable [11].  

The motivation behind carrying out this research is to define 

the appropriate context on the basis of which the tasks can be 

placed between the fog and the cloud environment. The 

research objective of this paper is to present a learning based 

task scheduling algorithm which considers the features of the 

tasks (i.e. location, type of sensor from which data coming, 

etc.) and distributes tasks among the cloud and the fog using 

machine learning algorithm. 

The rest of the paper is organized as follows: Section 2 gives 

short description of the similar related works carried out in the 

field of task scheduling. Section 3 discusses the paper 

contribution (LBTP method) in detail along with its 

mathematical formulations and the proposed algorithm. 

Section 4 gives detail of the simulation environment adopted 

for this research. Section 5 shows the observed results by 

implementing several scenarios mentioned in the proposed 

algorithm. Section 6 discusses reasons behind the better 

obtained results from this research. Section 7 compares the 

proposed algorithm (LBTP) with the related works discussed 

in this paper. Section 8 concludes the paper and proposes the 

future scope and extensions of this research. 

2. RELATED WORK 

Tahani Aladwani [12] has proposed a task scheduling 

algorithm to reduce the transfer of data between sensors and 

cloud by introducing fog computing at the middle. He has 

assigned the priorities of the healthcare data based on their 

importance: the high importance task, medium importance 

tasks and low importance tasks according to the status of the 

patient health conditions [12]. He used Task classifications 

and Virtual machines categorizations (TCVC) for the same. 

The MIN MAX algorithm has been used to evaluate the 

performance of these methods.  

L. Lin et al. [13] in their work has proposed a distributed and 

application aware task scheduling framework called Petrel. 

Petrel not only used for load balancing but also ensures 

adaptive scheduling policy according to the type of tasks. 

Minh-Quang Tran et al. [14] proposed a decentralized context 

aware 3-tier framework for task scheduling in the fog-cloud 

environment. The author defined the context as location, 

compute and storage capacities of fog devices, and expected 

deadline of an application [14] and made use of these 

parameters to place the tasks so that maximum utilization of 

the virtual resources available could be accomplished at the 

fog orchestration node, fog neighboring nodes and the cloud. 

Here quality of service is considered to be the response time 

of the tasks.  

Tejaswini Choudhari [15] in her work, presented a task 

scheduling algorithm which schedules tasks in the fog 

environment based on the priorities determined by the 

deadlines set the requests. F. Fellir et al. [16] has proposed a 

task scheduling model in the fog cloud environment which 

takes into account multiple agents or features of the tasks such 

as its priority, waiting time, its status and the number of 

resources required by the tasks, etc. to determine the 

importance of the task, and schedule it in the fog 

environment. This model schedules both independent and 

dependent tasks.  

J. U. Arshed et al. [17] in his work proposed RACE (Resource 

Aware Cost Efficient) task scheduler which classified the 

applications based on their computational power requirement 

and the available virtual machines at the Fog cloud 

environment. He made use of priority mechanism in order to 

arrange the tasks so that minimum bandwidth can be 

expended and considered different scenarios. L. Yin et al. [18] 

has proposed container based task scheduling and resource 

optimization and distribution framework in the fog 

environment. Elarbi Badidi [19] proposed quality of service 

aware task placement strategies on the fog cluster. The author 

gave the concept of Fog broker which is a collection of 

several components such as the fog resource manager, task 
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scheduler, fog services registration manager. M. Breitbach et 

al. [20] considered the features of the edge and applied data 

placement strategy even places data on the most suitable fog 

resources before the actual execution of the tasks. 

Shudong Wang et al. [21] made use of the disaster genetic 

algorithm for adopting task scheduling algorithm in the edge-

cloud scenario. The author defined an objective function as 

the execution time based on the time delay and termed it as 

punish or penalty factor or the fitness function. M. K. Hussein 

et al. [22] has made used of the three architecture of the cloud 

fog environment and deployed nature inspired Meta heuristic 

task scheduling namely, Ant Colony Optimization and 

Particle Swarm Optimization. T. Qayyum et al. [23] has 

proposed multilevel resource sharing frameworks for the fog 

cloud environments. This framework make use of end 

devices, underutilized end devices, regional fog nodes and 

cloud data centres for scheduling incoming requests and 

carrying out computations in order to avoid delays in response 

times. The authors used Ant Colony Optimization and Earliest 

Deadline First to achieve the necessary quality of service.  

In M. Goudarzi et al. [24], an Application Placement Memetic 

Algorithm based on Genetic Algorithm has been proposed to 

reduce the weighted cost of the IoT devices. T. S. Nikoui et 

al. [25] in their work used cost aware task scheduling which is 

based on the genetic algorithm. Y. Sahni et al. [26] has 

proposed a multi-stage greedy adjustment (MSGA) algorithm 

which considers the task placement and the network flow for 

the purpose of scheduling the tasks. The author used the 

optimization function to be the completion time. M. Abbasi et 

al. [27] has considered a scenario of 5 fog nodes where tasks 

are distributed equally among them. The author used NSGA II 

algorithm to optimize the latency and the energy function in 

the fog cloud scenario. 

Lindong Liu et al. [28] integrated classification algorithm 

with task scheduling in the fog environment. The authors 

deployed I-Apriori and Task Scheduling in Fog Computing to 

accomplish this. Mohammad Khalid Pandit et al. [29] 

proposed a real time task scheduling algorithm using neural 

network with two levels. The first level is the decision layer 

which decides whether the incoming task will be executed at 

the fog or at the cloud. If the output of the level one (feed-

forward) network classifies to the fog, then reinforcement 

learning is deployed at level two, which assigns the tasks to 

the nodes or resources available at the fog layer.  

Xuejing Li et al. [30] has used an intelligent adaptive task 

scheduling and server balancing algorithm in the mobile fog 

environment. The author has formulated load balancing 

scenario into the combinatorial problem and has used the 

Deep Neural Network and Reinforcement learning for 

scheduling the tasks at device, fog or cloud server. N. 

Mostafaz [31] has made use of artificial neural network with 

three modules namely task scheduler module, resource 

selector module and History analyzer module for task 

placement in the fog environment. M. Bhatia et al. [32] has 

made use of QCI based neural network approach for 

balancing the load and achieve minimal latency in the real 

time scenario in the fog environment. Fatma M. Talaat et al. 

[33] has proposed Effective load balancing technique which 

used fuzzy logic to identify the priorities of the incoming 

tasks. The author has made use of fuzzy rules based on the 

inputs such as predefined priority, deadline time and the size 

of the task. Based on the priority it is decided whether the task 

will be executed on the device, dew layer, fog layer or the 

cloud layer. Then load balancing is applied at these levels 

using the probabilistic neural network. He Li et al. [34] has 

proposed a task scheduling algorithm based on the 

reinforcement learning in which the task scheduler placed at 

cloud maintain a task queue and collects the state of all the 

tasks, which serve as input to the reinforcement neural 

network, which output the task to the cloud or to the best fog 

node manager. V. P. Kafle et al. [35] made used of offline 

supervised training and online unsupervised training and then 

applied multiple regression model in order to predict the 

dynamic demand adjustment and satisfy the delay constraint 

of the latency sensitive applications of the tasks in the IoT 

edge cloud environment. Y. Dong et al. [36] has proposed a 

joint ’cloud-edge’ aware task placement algorithm which 

make use of exploration exploitation property of the deep 

reinforcement learning to find out most appropriate cloud 

edge set(based on their attributes) for scheduling tasks on the 

long term basis. 

Abbreviations Description 

TCVC Task classifications and Virtual 

machines categorizations 

RACE Resource Aware Cost Efficient 

DGA Disaster Genetic Algorithm 

ACO Ant Colony Optimization 

PSO Particle Swarm Intelligence 

EDF Earliest Deadline First 

DAG Directed Acyclic Graph 

CGA Cost Aware Genetic Algorithm 

MSGA Multi stage Genetic Algorithm 

NSGA II Non-dominated Sorting Genetic 

Algorithm II 

TSFC Task Scheduling in Fog Computing 

GDP Gradient Descent Policy 

RL Reinforcement Algorithm 

DNN Deep Neural Network 

ANN Artificial Neural Network 

QCINN Quantum computing-inspired Neural 

Network 

PNN Probabilistic Neural Network 

DRL Deep Reinforcement Learning 

Table 1 Notations of the Classification of Task Scheduling 

Algorithms 
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Figure 2 Classification of the Related Work Pertaining to Task Scheduling 

In the related work discussed in this section, the task 

scheduling methods which deployed either only the 

conventional methods or only meta-heuristic based solutions 

or only the machine learning based solutions are discussed. In 

an approach to encourage multidisciplinary fields to obtain 

better results, in this research paper, we made use of machine 

learning (for classifying the tasks at the cloud and the fog) 

along with the conventional method (for arranging the task 

queue at fog, we used shortest job first method). This research 

is being carried out to define the appropriate context on the 

basis of which task placement and resource allocation can be 

done. Figure 2 gives the classification of task scheduling 

methods discussed in the related work above. Table 1 gives 

the description of the notations used in the Figure 2. 

3. THE PROPOSED METHOD (LEARNING BASED 

TASK PLACEMENT METHOD) 

The proposed model Learning based task placement (LBTP) 

makes use of machine learning algorithm in order to classify 

the mission critical applications and delay insensitive 

applications. Here in this paper, we have made use of 

supervised training at the Intelligent Fog master node (IFMN) 
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to do this. The input to the feed forward neural network is the 

attributes of the tasks defined in terms of its location and its 

size. The task definition here is four tuples <lat, long, alt, 

tsize> as described above. At this level, the tasks are 

classified based on these attributes as per the training given to 

the neural network, hence it is decided by the IFMN that 

whether the task to be placed at the fog nodes or to be 

forwarded to the cloud for execution. If the tasks are 

scheduled at the fog level, then the next responsibility of the 

IFMN is to make decision regarding the task placement at the 

fog nodes (virtual machines) available under its responsibility, 

i.e. its worker fog nodes (WFN). The IFMN maintains the list 

of all the WFNs. All the information such as MIPS or 

available bandwidths of all WFNs are maintained. IFMN 

rearranges these tasks in the order of their priority on the basis 

of their task size and allocates tasks to these virtual machines 

based on these information and schedules the tasks to the 

most appropriate virtual machine with fast computing power 

and best fit available bandwidth available at the fog layer. 

Hence the system accomplishes two tasks: Firstly the 

identification of the mission critical applications and secondly 

to schedule these applications on the most appropriate fog 

node in order to achieve the minimum response time. The 

tasks scheduled at the fog are rearranged in the fog queue 

according to their size. IFMN allots the tasks to the most 

suitable virtual machine of WFN according to the availability 

of the virtual machines and the task size and sensitivity of the 

task. The overall architecture and the flow diagram of the 

proposed method (LBTP) can be shown in the Figure 3. 

 

Figure 3 Architecture and Flow Diagram of LBTP 

3.1. Mathematical Formulation of the Problem 

The objective of this research is to design a context aware 

middleware in between cloud and the IoT devices, hence to 

apply machine learning based algorithm to make the fog 

intelligent. Intelligent master fog places the incoming tasks 

either at the fog nodes (in case of mission critical application) 

or at the cloud (in case of non-mission critical applications) 

for execution. As has been mentioned in the related work 

above, the different authors have tried to optimize different 

performance metrics. The Intelligent master fog also 

schedules tasks among the worker fog nodes based on the 

availability of the virtual machines and their capacity. Here 

the decision maker is the intelligent master fog node.  

3.1.1. Definition 1 

The taski is ith incoming task and its attributes are defined as 

to be four tuple <lati, longi, alti, tsizei> which serves as the 

context for scheduling task.Where lati denotes the latitudinal 

position of the ith IoT device from which data is coming, longi 

denotes the longitudinal position of the ith IoT device, alti is 

the altitude of the ith device, and tsizei is the ith task size (it is 

evaluated at the Intelligent master fog). 

3.1.2. Assumptions 

(a) This research did not consider any kind of dependency 

among tasks or its subtasks. Hence, only independent 

tasks considered. 

(b) The research assumed static geographic condition with 

IoT devices having predefined location. The research 

limited to certain environment. 

(c) Here fog nodes and virtual machines are used 

interchangeably. They refer to computing resources 

available at the fog layer. 

(d) Running tasks cannot be pre-empted on the fog node. 

(e) The terms mission critical tasks and delay sensitive tasks 

are used interchangeably. 

3.1.3. Definition 2 

The number of virtual machine (resources) at the Fog Node be 

m i.e. {Vmac1, Vmac2, Vmac3,……Vmacm}. The number of 

tasks be n, where each task has got its reference from its 

context of location. Hence, number of tasks can be 

represented as {t1, t2, …..tn}. 

3.1.4. Definition 3 

The bandwidth information and computing capacity of all the 

virtual machines (worker fog nodes) is maintained by the 

Intelligent Fog master node in the form of the list as shown 

below: 

Vmac1 Vmac2 

……

……

… 

Vmacj 

……

……

… 

Vmacm 

B1,fog B2,fog 

……

……

… 

Bj,fog 

……

……

… 

Bm,fog 

MIPS1,fog MIPS2,fog 

……

……

… 

MIPSj,fo

g 

……

……

… 

MIPSm,fog 
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Where MIPS stands for Million instructions per second. 

3.1.5. Definition 4: Priority Decision 

Each incoming task which scheduled to the fog, is assigned 

the priority based on the task size (tsizei) feature of the task. 

The tasks scheduled for execution in the fog queue are 

rearranged in the increasing order of their task size. The task 

having the smallest size has the highest priority and is 

executed first and can be mathematically stated in the the 

equation (1) as below. 

i.e.  Priority(taski)  ∝  1 

          sizeof(taski)    (1) 

3.1.6. Definition 5: Response time 

At Fog nodes: 

 Resi
fog = µi

wait + µi,j
exec + µj

netdel  

  = µi,j
wait + (tsizei/Bj,fog) + µj

netdel (2) 

Where, the Resi
fog denotes the response times of the task ti 

when it is placed at the jth fog for execution. µi
wait is the 

waiting time spent by the task on the fog queue before its 

assignment to some virtual machine at fog layer. It includes 

the time taken for decision making by the intelligent fog 

master whether to schedule tasks at fog or at cloud. µi,j
exec is 

the execution time of the ith task to the fog node j. µj
netdel 

denotes the network latency at the fog layer. Bj,fog is the 

bandwidth necessary for scheduling task at the fog node j. 

At Cloud: 

Resi
cloud = µi

wait  + µj
netdel + µi,c

exec + µnetdelc 

 = µi
wait  + µj

netdel + (tsizei/Bj,c) + µnetdelc (3) 

Where, Resi
cloud denotes the response times of the task ti when 

it is forwarded to the cloud for execution. Bj,c is the bandwidth 

necessary for scheduling the task at the cloud. µnetdelc denotes 

the network latency at the cloud. 

Total Response Time 

i.e. 𝑅𝑇(𝑡𝑜𝑡𝑎𝑙) = ∑ (Resfog(i) +  Rescloud(i))
𝑛

𝑖=1
     (4) 

Where n = number of delay sensitive tasks. 

3.1.7. Definition 6: Waiting Time 

Waiting Time,  

WT(taski) = (Resi
fog + Resi

cloud) – (µi,j
exec + µi,c

exec)      (5) 

Total Waiting Time 

i.e.   𝑊𝑇(𝑡𝑜𝑡𝑎𝑙) = ∑ (WT(taski)
𝑛

𝑖=1
  (6) 

The summary of the notations which used in this paper are 

listed in the table 2. 

Notations Description 

LBTP Leaning Based Task Placement Algorithm 

IFMN Intelligent Fog master node 

WFN Worker Fog node 

Vmac Virtual Machine 

ti ith task 

MIPS Million Instructions per second 

Resi
fog Response times of the task ti when it is 

placed at the jth fog for execution. 

Resi
cloud Response times of the task ti when it is 

forwarded to the cloud for execution 

Bj,fog bandwidth necessary for scheduling task at 

the fog node j 

Bj,c bandwidth necessary for scheduling the task 

at the cloud 

µi
wait waiting time spent by the task on the fog 

queue before its assignment to some virtual 

machine at fog layer 

µi,j
exec execution time of the ith task to the fog node j 

µj
netdel network latency at the fog layer 

µnetdelc network latency at the cloud 

tsizei Size of task i. 

lati latitudinal position of the ith IoT device 

longi longitudinal position of the ith IoT device 

alti altitude of the ith device 

RT(total) Total response time of all the delay sensitive 

tasks. 

Resfog(i) Total response time of all those mission 

critical tasks which executed in fog 

environment 

Rescloud(i) Total response time of all those mission 

critical tasks which executed in cloud 

environment 

WT(taski) Waiting time for task i. 

WT(total) Total Waiting time of all mission critical 

tasks. 

Table 2 Notations and their Description 

3.2. LBTP Algorithm 

Assumption: All the WFNs have the same MIPS or 

computing power. 

1. Read the input task set (t1, t2, t3,…..tn) (n=number of 

incoming tasks) 

2. For each task ti, do 

a. IFMN extracts the four tuple <latk,longk,altk,tsizek> 

(k=1…….,n) 

b. Input < lati, longi, alti > as input to the supervised feed 

forward net. 
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c. Train the feed-forward neural network in the 

supervised fashion at the IFMN which outputs either 0 

or 1. 

d. If (Output == 0) then 

i. Schedule the task at Fog. 

ii. Rearrange the fog queue at IFMN as follows: 

for (int i=1; i<n; i++) 

for (j=2;j<n-i;j++) 

if (sizeof(taski) > sizeof(taskj)   

swap (taski, taskj); 

iii. IFMN maintains the resource utilization chart 

of each worker virtual machine amd allocates 

WFNs based on its availability (Least busy 

Vmac) and MIPS. 

iv. Calculate the response time as using equation 

no. (2) 

e. Else if (Output == 1) then 

i. Schedule the task at Cloud 

ii. Calculate the response time as mentioned in 

equation (3). 

f. Calculate the total response time using equation (4). 

g. Waiting time of tasks calculated using equation (5) and 

(6). 

3. IFMN maintains record of resource utilization of all 

worker fog nodes. It is calculated from the CPU utilization 

graph of each WFN. 

4. SIMULATION 

This research was carried out in the simulation environment 

of Aneka platform, which is a software platform for 

developing cloud computing applications [37]. It is also 

known as Pure PaaS solution for cloud computing. We made 

to install Aneka 5.0 on our system which configured as per 

the user requirements and agreed upon SLA. Aneka is 

interfaced with Matlab 8.0 which contains the code for task 

placement algorithm of the mission critical sensitive 

application and delay insensitive application. We created one 

Aneka IFMN and 12 Aneka WFN which served as the fog 

environment, and have installed Aneka on the virtual machine 

created on the AWS cloud. This setup served as the 

environment of the fog-cloud. 

Description of WFN: MIPS = {133,740}, BW= 3.9 GHz, 

Number of CPU=1, intel i7.  

Description of IFMN: Storage= 32 GB, BW= 3.9 GHz, 

MIPS=133740. 

The rest of the simulation parameters are mentioned in the 

Table 3 as below: 

Simulation Parameters Values 

Duration of the simulation 180 minutes 

The no. of iterations carried out 15 

The total number of IoT devices 

used 

150 

Total number of Master fog nodes 

(IFMN) used 

01 

Total number of Worker fog nodes 

(WFNs) used in this research 

4, 8, 12 

The range of task size 2000 to 25000 MI 

Probability of selecting WFN for 

processing the task 

Equal 

The number of virtual machines 

used in the Cloud 

Unlimited 

Table 3 Simulation Parameters 

This proposed LBTP algorithm used the following 

applications: Hospital, Surveillance, Organization, Inventory, 

and Smart Home. And we used the following Sensor: Smoke, 

Temperature, Proximity, Thumb, etc. The importance of each 

sensor depends upon the location and task size, e.g. the task 

generated by smoke sensors is of latency sensitive task and 

has to be processed immediately; the thumb sensors of the 

Organization doesn’t come under mission critical 

applications; the temperature sensor is latency critical when 

found in the location such as Hospital and Inventory, etc.  

For determining the location attributes of the tasks coming 

from the devices, GPS camera has been used to obtain the 

latitude, longitude and altitude position of each device. We 

have designed a feed forward network with input as the 

features of the tasks and one output (decision on where to 

schedule tasks on the fog or to the cloud).The priority of each 

device has been fixed manually. For example, the data coming 

from healthcare devices has been assigned the highest 

priority. So for this task, the desired output of the feed-

forward network is set to 0(meaning task to be scheduled at 

fog node for quick response). Whereas the data coming from 

the biometric sensors has been assigned low priority and the 

desired output is set to 1 (meaning task to be scheduled to the 

cloud for execution purposes). For training the feed forward 

network with learning rate 0.5, a test set of 200 is taken by 

varying the features within interval -5o to +5o for example, the 

values of lat-long-alt may change due to some geographical 

disturbances. So we have trained the net with the all the 

possible dataset within range <lat+5o, lat-5o, long+5o, long-5o, 

alt+5o, alt-5o>. The number of tasks in the experiment starts 

from 30 tasks/second, increasing 15 tasks/second each time, 

until the number of tasks reaches 90 tasks/second. With the 

increase in the number of incoming tasks, the neural net trains 

itself better. 
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For simulating the proposed model and evaluating the 

effectiveness of this algorithm, two different scenarios were 

created and tested. In the Scenario 1, which is without 

applying machine learning, further sub-scenarios were created 

regarding task scheduling at cloud only and at fog only. 

Scenario 2 used the machine learning to schedule tasks at both 

cloud and fog. We also varied the number of WFNs in order 

to see the performance of the proposed algorithm (LBTP).  In 

the following sub-sections, we discuss these scenarios and 

their impact on the response time and resource utilization of 

the incoming tasks. 

Scenario 1: Task Scheduling without Machine Learning 

a. At Cloud only 

1. Here in this scenario, all the tasks were scheduled at the 

AWS cloud. We do not evaluate the resource utilization in 

this scenario. 

b. At Fog only 

2. In this scenario, we have fixed to one IFMN, and varied 

the number of WFNs with the help of one Aneka master 

node and a number of worker nodes. And evaluated the 

response time and resource utilization of each case. The 

number of nodes created were 4 WFNs, 8 WFNs and 12 

WFNs. 

Scenario 2: Task Scheduling with Machine Learning (at both 

fog and cloud layers) 

In this scenario, a classification algorithm (LBTP) as 

mentioned in Section above is run using machine learning 

algorithm, in order to schedule tasks between the fog and the 

cloud. This also considered the number of WFNs to be 4, 8, 

and 12 for evaluating the performance metrics such as 

response time and utilization of the resources. 

5. SIMULATION RESULTS 

The performance metrics such as response time, waiting time 

and resource utilization were evaluated for the mission critical 

applications only. The response time of each task was 

evaluated and summed up for this research. These parameters 

were not evaluated for the delay insensitive applications. The 

scenarios were simulated and following observations were 

noted: 

5.1. Classification Rate 

Number of tasks Delay sensitive 

tasks 

Delay insensitive 

tasks 

30 13 17 

45 24 21 

60 37 23 

75 48 27 

90 51 39 

Table 4 Classification of Delay Sensitive and Delay 

Insensitive Tasks 

The classification percentage was found to be 100% with 

LBTP. Since the scenario was geographically limited. But this 

may vary when applied to geographically unstable situations.  

The following was the proportion of the mission critical tasks 

and the mission non critical tasks considered for this research, 

which were classified correctly, as mentioned in Table 4. 

5.2. Response Time 

The response time of each task was evaluated using equation 

(2) and (3). For number of WFN = 4, the response times when 

number of tasks is equal to 30 are calculated as 24.8 s (when 

task scheduled at cloud only without any machine learning), 

17.56 s (when tasks scheduled at fog only without any 

machine learning), and 3.72 s (when tasks scheduled at LBTP 

with machine learning). All such reading varies as observed 

by raising the number of tasks and the number of WFNs. The 

response time (in seconds) of these scenarios when WFN = 4, 

WFN = 8, and WFN =12 were observed and recorded as 

shown in the table no. 5, 6 and 7 respectively. 

WFN = 4 

Number of 

tasks 
RT@Cloudonly  RT@Fogonly  RT@LBTP 

30 24.8 17.56 3.72 

45 29.2 18.22 3.99 

60 29.38 19.31 5.3 

75 32.35 22.29 6.08 

90 34.98 23.86 7.1 

Table 5 Recorded Response Time when Number of WFN = 4 

WFN = 8 

Number of 

tasks 
RT@Cloudonly  RT@Fogonly  RT@LBTP 

30 24.8 12.35 3.72 

45 29.2 13.01 3.99 

60 29.38 14.1 5.3 

75 32.35 17.08 6.08 

90 34.98 18.65 7.1 

Table 6 Recorded Response Time when Number of WFN = 8 

WFN = 12 

Number of 

tasks 
RT@Cloudonly  RT@Fogonly  RT@LBTP 

30 24.8 7.38 3.72 

45 29.2 8.04 3.99 

60 29.38 9.13 5.3 

75 32.35 12.11 6.08 

90 34.98 13.68 7.1 

Table 7 Recorded Response Time when number of WFN = 12 

mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
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5.3. Waiting Time 

The waiting time of each task was evaluated using equation 

(5) and (6). The waiting times when number of tasks is equal 

to 30 are calculated as 3.15 s (when task scheduled at cloud 

only without any machine learning), 4.7 s (when tasks 

scheduled at fog only without any machine learning), and 

1.22 s (when tasks scheduled at LBTP with machine 

learning). All such reading varies as observed by raising the 

number of tasks and the number of WFNs. The waiting time 

(in seconds) of these scenarios when WFN = 4, WFN = 8, and 

WFN =12 were observed and recorded as shown in the table 

no. 8, 9 and 10 respectively. 

WFN = 4 

Number 

of tasks 
WT@Cloudonly WT@Fogonly WT@LBTP 

30 3.15 4.7 1.22 

45 9.55 7.36 1.49 

60 11.73 10.45 2.8 

75 16.7 15.43 3.58 

90 21.33 19 4.6 

Table 8 Recorded Waiting Time when Number of WFN = 4 

WFN = 8 

Number 

of tasks 
WT@Cloudonly WT@Fogonly WT@LBTP 

30 3.15 3.03 1.22 

45 9.55 5.69 1.49 

60 11.73 8.78 2.8 

75 16.7 13.76 3.58 

90 21.33 17.33 4.6 

Table 9 Recorded Waiting Time when Number of WFN = 8 

WFN = 12 

Number 

of tasks 
WT@Cloudonly WT@Fogonly WT@LBTP 

30 3.15 1.74 1.22 

45 9.55 4.4 1.49 

60 11.73 7.49 2.8 

75 16.7 12.47 3.58 

90 21.33 16.04 4.6 

Table 10 Recorded Waiting Time when Number of WFN = 12 

5.4. Resource Utilization 

Resource utilization was calculated by counting the number of 

WFNs or worker virtual machines busy for executing the 

incoming tasks at the fog layer. For WFN = 8 and tasks = 30, 

the resource utilization was found to be 63% and 50% for fog 

only environment and LBTP respectively. All such reading 

varies as observed by raising the number of tasks and the 

number of WFNs. The resource utilization of these scenarios 

when WFN = 4, WFN = 8, and WFN =12 were observed and 

recorded as shown in the table no. 11, 12 and 13 respectively. 

WFN = 4 

Number of tasks RU@Fogonly RU@LBTP 

30 100% 50% 

45 100% 50% 

60 100% 75% 

75 100% 100% 

90 100% 100% 

Table 11 Recorded Resource Utilization when Number of 

WFN = 4 

WFN = 8 

Number of tasks RU@Fogonly RU@LBTP 

30 63% 50% 

45 63% 63% 

60 75% 63% 

75 88% 63% 

90 100% 88% 

Table 12 Recorded Resource Utilization when Number of 

WFN = 8 

WFN = 12 

Number of tasks RU@Fogonly RU@LBTP 

30 42% 33% 

45 42% 42% 

60 50% 42% 

75 58% 42% 

90 67% 58% 

Table 13 Recorded Resource Utilization when number of 

WFN = 12 

In the table no. 5,6,7 and figure no.4, the terms 

RT@Cloudonly, RT@Fogonly and RT@LBTP stands for 

response times when task scheduling at cloud only, when task 

scheduling at fog only without any machine learning and task 

scheduling using LBTP with machine learning respectively. 

In the table no. 8, 9, 10 and figure no. 5, the terms 

WT@Cloudonly, WT@Fogonly and WT@LBTP stands for 

waiting times when task scheduling at cloud only, when task 

scheduling at fog only without any machine learning and task 

scheduling using LBTP with machine learning respectively. 

In the table no. 11, 12, 13 and figure no. 6, the terms 

RU@Cloudonly, RU@Fogonly and RU@LBTP stands for 

resource utilization when task scheduling at cloud only, when 

task scheduling at fog only without any machine learning and 

mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RT@Cloud%20only
mailto:RT@Fogonly
mailto:RT@LBTP
mailto:RU@Fogonly
mailto:RU@LBTP
mailto:RU@Fogonly
mailto:RU@LBTP
mailto:RU@Fogonly
mailto:RU@LBTP
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task scheduling using LBTP with machine learning 

respectively. 

6. DISCUSSION 

For the results observed and mentioned in the Section 5, the 

following inferences has been derived and discussed in the 

subsections as below: 

6.1. Response Time 

It was observed that when the tasks scheduled at cloud only, 

then mission critical tasks took the considerable amount of 

time. When these tasks were scheduled at fog only, then also 

there was no as such difference in the response time as tasks 

spent more time competing for the allocation of the WFNs 

when WFNs = 4. As the number of tasks increased, the 

response time increased. Increasing the number of WFNs to 8 

and 12, considerably improved the response time when tasks 

scheduled at fog only. But the best response time was 

observed when the tasks used LBTP algorithm. The reason for 

this is that only mission critical applications executed over 

fog, rest forwarded to the cloud. Increasing the number of 

WFNs further improved the response time. The response time 

(in seconds) of these scenarios when WFN = 4, WFN = 8, and 

WFN =12 can be compared in the Figure no. 4. 

 
Figure 4 Comparison of Response times when WFN = 4, 8 and 12 

6.2. Waiting time 

The waiting time of the tasks increased as the number of tasks 

scheduled at fog only environment increased and when 

number of WFN is less because the queue waiting time for 

allocation of virtual machine increased. But on raising the 

number of WFN, this waiting time reduces. But with LBTP 

algorithm, the minimum waiting time was recorded as the 

workload is less as compared with fog only scenario. The 

waiting time (in seconds) of these scenarios when WFN = 4, 

WFN = 8, and WFN =12 can be shown and compared in 

figure no. 5. 

 
Figure 5 Comparison of Waiting Times when WFN = 4, 8 and 12 
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6.3. Resource Utilization 

It was observed as the number of WFN increases, the resource 

utilization decreases because number of free WFNs increases. 

The resource utilization of these scenarios when WFN = 4, 

WFN = 8, and WFN =12 can be shown and compared in 

figure no. 6. 

 

Figure 6 Comparison of Resource Utilization when WFN = 4, 8 and 12 

7. COMPARISON OF LBTP WITH OTHER RELATED 

WORK 

With reference to table 14 as shown below, it has been 

observed that different task scheduling algorithms different 

kinds of performance metrics such as makespan, energy, cost, 

etc. LBTP considered the performance metrics to be response 

time, waiting time and resource utilization. 

Also different authors proposed different approaches for 

scheduling the tasks in the IoT fog-cloud environment. Some 

authors used network based solutions so others used machine 

learning and meta-heuristic algorithms. This work used 

machine learning method. The LBTP used optimization 

parameter to be response time, while some other task 

scheduling methods used different time equations, 

comparison of which is given in table 15. Description of the 

notations is given in table 16. 
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[12] Cloudsim ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ 

[13] Petrel ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[14] 
Real world 

ITS 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ 

[15] CloudAnalyst ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[16] iFogSim ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✘ 

[17] iFogSim ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[18] 
QEMU, 

Libvirt 
✔ ✔ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[19] CloudAnalyst ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[20] Tasklet ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 
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[21] 
CloudAnalyst, 

Matlab 
✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✘ 

[22] Matlab ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ 

[23] OMNeT++ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✔ ✘ 

[24] iFogSim ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✘ 

[25] iFogSim ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ 

[26] Matlab ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ 

[27] Matlab ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[28] SimGrid ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✘ 

[29] Matlab ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘ 

[30] Python ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘ 

[31] Cloudsim ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔ 

[32] iFogSim ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ 

[33] iFogSim ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[34] Python ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ 

[35] VirtualBox ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✘ 

[36] Python ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ 

LBTP Aneka, Matlab ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 

Table 14 Metrics Used by Different Task Scheduling Algorithms 

Task Scheduling Algorithm Time Equation 

[13] Ti
cloud = Ri

cloud + (Di / Bcloud) + RTTcloud 

Ti
cloudlet = Ri

vd + Wi
vd + (Di /Bvd) + RTTvd 

[14] rꚍi = wꚍi + mꚍi + dꚍi 

 

[15] delayi
T = ( DLi

T - Ci
T ) 

[17] EFT(Mk) = i=1 n(ET(Mi) FDj) + (ET(Mk) ) FDj) 

[18] Exj
t = τ jt,com + τj

t,data + τ j t,img. 

Exc
t = τ ct,com + τj

t,data + τj,c
t,data, 

[21] ECTi,k =  datai  

               MIPSk 

                                     ( k = 1, 2, . . . , Nvm; i = 1, 2, . . . , Ntsk ) 

[22] Rij = CommCostij + STjc  

       = Ljc + Dsizei /BWc + Lij + Dsizei /BWl + 1/ (µjc − ∑ λji𝑖𝜖𝑐  ) 

[23] Dxi = DF
xi + Dn. 

[24] Γ(Xn) = Γexe Xn + Γlat Xn + Γtra Xn 

[26] T si,j = max(availj , max 1≤r≤Ri (Tfr + T taskr,i)) 

 Tfi,j = T si,j + T compi,j  

[29] i=1,k=k n,K  (λk
i + Ck + Qk) 

[31] 𝑇𝑇𝑅𝑇 = 𝑇𝑆𝐼𝑇 + 𝑇𝑄𝑊𝑇 + 𝑇𝑅𝑇 + 𝑇𝑆𝑂T 

Proposed Algorithm (LBTP) Resi
fog = µi

wait + µi,j
exec + µj

netdel  

  = µi,j
wait + (tsizei/Bj,fog) + µj

netdel 

Resi
cloud = µi

wait  + µj
netdel + µi,c

exec + µnetdelc 

  = µi
wait  + µj

netdel + (tsizei/Bj,c) + µnetdelc 

𝑅𝑇(𝑡𝑜𝑡𝑎𝑙) = ∑(Resfog(i) +  Rescloud(i))

𝑛

𝑖=1

 

 

Table 15 Time Equations Used for Optimization 
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Notations Description 

Ti
cloud Completion time when task scheduled at mobile device. 

Ri
cloud Time taken by task to execute in the cloud environment. 

Di Total Data volume (both uploading + downloading) 

Bcloud Bandwidth requires for task scheduling at the cloud. 

RTTcloud Network delay at cloud. 

Ti
cloudlet Completion time when task scheduled at cloudlet. 

Ri
vd Task execution time on the cloudlet. 

Wi
vd Waiting time at the cloudlet. 

Bvd Bandwidth requires for task scheduling at the cloudlet. 

RTTvd Network delay at cloudlet. 

rꚍi Response time of a task. 

wꚍi deployment time in which data and compute resources needed by the task are prepared 

mꚍi Execution time (or makespan time) in which the task actually utilizes resources on the 

deploying node for execution. 

dꚍi Time taken during communication. 

delayi
T Maximum allowed (tolerated) delay of user request i. 

DLi
T Deadline given by request i. 

Ci
T Current time. 

EFT(Mk) Expected Finish time at fog node module k. 

ET(Mi) Execution time of ith module at fog node. 

FDj Task scheduled at jth fog device. 

Exj
t execution time in fog node j of task t. 

τ jt,com computation time of task t in the fog node j. 

τj
t,data data transmission time of task t. 

τ j
t,img. Image transmission time of the task t. 

Exc
t execution time of a task t that runs on the cloud 

τc
t,com Computation time of task t in the cloud. 

τj,c
t,data Data transmission time from fog node j to cloud. 

ECTi,k Execution time required for each task to run on a computing resource (virtual machine). 

datai Length of the task. 

MIPSk Million instructions per second. 

Nvm Number of virtual machines 

Ntsk Number of tasks 

Rij Overall response time of the sensor Si workload as a result of task offloading. 

CommCostij Total communication cost for sensor Si offloading. 

STjc Service time of task offloading of sensor Si to fog nodes fgj. 

Ljc Fog latency between fog node j and the cloud. 

Dsizei Data Size generated from Sensor i. 

BWc Cloud network bandwidth. 

Lij Network Latency between fog node j and sensor Si. 

BWl Local network bandwidth. 

µjc Service rate of fog node j for application class c. 

Dxi Computational delay for a request xi. 

DF
xi Task execution delay which is a combination of both queuing delay and the service delay. 

Dn Network delay. 

Γ(Xn) overall execution time of each candidate configuration 

Γexe Xn Computing time of workflow’s tasks based on their assigned servers. 

Γlat Xn Latency in task offloading. 

Γtra Xn Data transmission time between each pair of dependent tasks in each workflow. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/209987                 Volume 8, Issue 5, September – October (2021) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       563 

    

RESEARCH ARTICLE 

T si,j start time of a task i executed at device j. 

availj The time when device j finishes executing any previously scheduled task. 

Tfr Completion time for task r. 

Ttaskr,i time taken to transfer data from predecessor task r to current task i. 

Tfi,j finish time of a task i executed at device j. 

T compi,j the time to compute task i 

λk
i Compute latency of task I at resource k. 

Ck Communication costs. 

Qk Queuing delay at resource Rk. 

𝑇𝑇𝑅𝑇 Total Run Time. 

𝑇𝑆𝐼𝑇 Stage In Time. 

𝑇𝑄𝑊𝑇 Queue Wait Time. 

𝑇𝑅𝑇 Run Time. 

𝑇𝑆𝑂T Stage Out Time. 

Table 16 Notations Describing the Time Equation 

8. CONCLUSION AND FUTURE WORK 

The proposed algorithm (LBTP) made use of machine 

learning and the results revealed that this is an effective 

algorithm for task scheduling. The performance metrics were 

evaluated and LBTP showed better results in different 

scenarios when compared with task scheduling without 

machine learning. The performance metrics considered were 

total response time, waiting time of the mission critical tasks 

and resource utilization of the fog environment. For the 

number of WFN = 4,8 and 12, the LBTP showed better results 

in terms of response time and waiting time, when compared 

with task scheduling at the fog only and the task scheduling at 

the cloud only scenarios. For WFN = 4, the resource 

utilization was observed to be better when compared with the 

resource utilization when WFN = 8 and WFN = 12 using 

LBTP. Hence, LBTP performance degrades in terms of 

resource utilization on increasing the number of WFNs. Also, 

task scheduling at Fog only scenario without machine 

learning, showed better resource utilization than the proposed 

method LBTP. Hence it was observed that there need to have 

trade-off between the response time, waiting time and 

resource utilization. Resource utilization is an important 

factor because idle virtual machines also incurs energy 

expenditure and contributes to the cost. For attaining the 

better response time, the resource utilization cannot be 

compromised. So there should be limited WFNs, and LBTP 

performs better even with small number of WFNs.   

This research is carried out only for limited number of 

parameters, whereas the other related works measured and 

tried to optimize other parameters as well, which can be 

enlisted in the table 14. So for the future work, we will 

explore the following areas: 

(a) We try to optimize the other parameters also as 

mentioned in the table 14.  

(b) Also, this research was carried out in the limited 

geographical environment with limited IoT devices with 

predefined known location.  

(c) We will try to evaluate this algorithm for remote 

uncertain geographic locations and considering some 

other features of the task and test results with different 

machine learning algorithms. 

(d) In this research, we have assumed uniform computing 

capacity of all worker virtual machines, in the next 

research, we will try to simulate task scheduling 

algorithms on worker virtual machines with varying 

computing power. 

REFERENCES 

[1] E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani, ‘‘Internet-

ofThings-based smart environments: State of the art, taxonomy, and 
open research challenges,’’ IEEE Wireless Commun., vol. 23, no. 5, pp. 

10–16, Oct. 2016.  

[2] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi and M. Mustaqim, 
"Internet of Things (IoT) for Next-Generation Smart Systems: A 

Review of Current Challenges, Future Trends and Prospects for 

Emerging 5G-IoT Scenarios," in IEEE Access, vol. 8, pp. 23022-23040, 
2020, doi: 10.1109/ACCESS.2020.2970118. 

[3] Co-Operation With the Working Group RFID of the ETP EPOSS, 

Internet of Things in 2020, Roadmap for the Future, Version 1.1, 
INFSO D.4 Networked Enterprise RFID INFSO G.2 Micro 

Nanosystems, May 2008. 

[4] Gedeon, J., Jens Heuschkel, L. Wang and M. Mühlhäuser. “Fog 

Computing: Current Research and Future Challenges.” (2018). 

[5] S. Dustdar, C. Avasalcai and I. Murturi, "Invited Paper: Edge and Fog 
Computing: Vision and Research Challenges," 2019 IEEE International 

Conference on Service-Oriented System Engineering (SOSE), San 

Francisco, CA, USA, 2019, pp. 96-9609, doi: 
10.1109/SOSE.2019.00023. 

[6] Kashani, M. H., Ahmad Ahmadzadeh and Ebrahim Mahdipour. “Load 

balancing mechanisms in fog computing: A systematic review.” ArXiv 
abs/2011.14706 (2020): n. pag.  

[7] M. Rahimi, M. Songhorabadi, and M. H. Kashani, "Fog-based smart 

homes: A systematic review," Journal of Network and Computer 
Applications, vol. 153, p. 102531, 2020/03/01/ 2020. 

[8] O. C. A. W. Group, "OpenFog reference architecture for fog 

computing," OPFRA001, vol. 20817, p. 162, 2017. 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/209987                 Volume 8, Issue 5, September – October (2021) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       564 

    

RESEARCH ARTICLE 

[9] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, Tie Qiu, “Survey on 

fog computing: architecture, key technologies, applications and open 
issues”,Journal of Network and Computer Applications, Volume 98, 

2017, Pages 27-42, ISSN 1084-8045, 

https://doi.org/10.1016/j.jnca.2017.09.002. 
[10] L. I. Carvalho, D. M. A. da Silva and R. C. Sofia, "Leveraging Context-

awareness to Better Support the IoT Cloud-Edge Continuum," 2020 

Fifth International Conference on Fog and Mobile Edge Computing 
(FMEC), Paris, France, 2020, pp. 356-359, doi: 

10.1109/FMEC49853.2020.9144760. 

[11] Xuan-Qui Pham, Nguyen Doan Man, Nguyen Dao Tan Tri, Ngo Quang 
Thai, and Eui-Nam Huh. “A Cost- and Performance-Effective Approach 

for Task Scheduling Based on Collaboration between Cloud and Fog 

Computing.” International Journal of Distributed Sensor Networks, 
(November 2017). https://doi.org/10.1177/1550147717742073. 

[12] Tahani Aladwani, “Scheduling IoT Healthcare Tasks in Fog Computing 

Based on their Importance”, Procedia Computer Science, Volume 163, 

2019, Pages 560-569, ISSN 1877-0509, 

https://doi.org/10.1016/j.procs.2019.12.138. 

[13] L. Lin, P. Li, J. Xiong and M. Lin, "Distributed and Application-Aware 
Task Scheduling in Edge-Clouds," 2018 14th International Conference 

on Mobile Ad-Hoc and Sensor Networks (MSN), Shenyang, China, 
2018, pp. 165-170, doi: 10.1109/MSN.2018.000-1. 

[14] Minh-Quang Tran, Duy Tai Nguyen, Van An Le, Duc Hai Nguyen, 

Tran Vu Pham, "Task Placement on Fog Computing Made Efficient for 
IoT Application Provision", Wireless Communications and Mobile 

Computing, vol. 2019, Article ID 6215454, 17 pages, 2019. 

https://doi.org/10.1155/2019/6215454. 
[15] Choudhari, Tejaswini, "Prioritized Task Scheduling In Fog Computing" 

(2018). Master's Projects.581, DOI: https://doi.org/10.31979/etd.shqa-

fdp6, https://scholarworks.sjsu.edu/etd_projects/581. 
[16] F. Fellir, A. El Attar, K. Nafil and L. Chung, "A multi-Agent based 

model for task scheduling in cloud-fog computing platform," 2020 

IEEE International Conference on Informatics, IoT, and Enabling 
Technologies (ICIoT), Doha, Qatar, 2020, pp. 377-382, doi: 

10.1109/ICIoT48696.2020.9089625. 

[17] J. U. Arshed and M. Ahmed, "RACE: Resource Aware Cost-Efficient 
Scheduler for Cloud Fog Environment," in IEEE Access, doi: 

10.1109/ACCESS.2021.3068817. 

[18] L. Yin, J. Luo and H. Luo, "Tasks Scheduling and Resource Allocation 
in Fog Computing Based on Containers for Smart Manufacturing," in 

IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712-

4721, Oct. 2018, doi: 10.1109/TII.2018.2851241. 
[19] Elarbi Badidi, “QoS-Aware Placement of Tasks on a Fog Cluster in an 

Edge Computing Environment”, Journal of Ubiquitous Systems & 

Pervasive Networks, Volume 13, No. 1 (2020) pp. 11-19. doi: 
10.5383/JUSPN.13.01.002. 

[20] M. Breitbach, D. Schäfer, J. Edinger and C. Becker, "Context-Aware 

Data and Task Placement in Edge Computing Environments," 2019 
IEEE International Conference on Pervasive Computing and 

Communications (PerCom, Kyoto, Japan, 2019, pp. 1-10, doi: 

10.1109/PERCOM.2019.8767386. 
[21] Shudong Wang, Yanqing Li, Shanchen Pang, Qinghua Lu, Shuyu 

Wang, Jianli Zhao, "A Task Scheduling Strategy in Edge-Cloud 

Collaborative Scenario Based on Deadline", Scientific Programming, 
vol. 2020, Article ID 3967847, 9 pages, 2020. 

https://doi.org/10.1155/2020/3967847. 

[22] M. K. Hussein and M. H. Mousa, "Efficient Task Offloading for IoT-
Based Applications in Fog Computing Using Ant Colony 

Optimization," in IEEE Access, vol. 8, pp. 37191-37201, 2020, doi: 

10.1109/ACCESS.2020.2975741. 
[23] T. Qayyum, Z. Trabelsi, A. W. Malik and K. Hayawi, "Multi-Level 

Resource Sharing Framework Using Collaborative Fog Environment for 

Smart Cities," in IEEE Access, vol. 9, pp. 21859-21869, 2021, doi: 
10.1109/ACCESS.2021.3054420. 

[24] M. Goudarzi, H. Wu, M. Palaniswami and R. Buyya, "An Application 

Placement Technique for Concurrent IoT Applications in Edge and Fog 

Computing Environments," in IEEE Transactions on Mobile 

Computing, vol. 20, no. 4, pp. 1298-1311, 1 April 2021, doi: 
10.1109/TMC.2020.2967041. 

[25] T. S. Nikoui, A. Balador, A. M. Rahmani and Z. Bakhshi, "Cost-Aware 

Task Scheduling in Fog-Cloud Environment," 2020 CSI/CPSSI 
International Symposium on Real-Time and Embedded Systems and 

Technologies (RTEST), Tehran, Iran, 2020, pp. 1-8, doi: 

10.1109/RTEST49666.2020.9140118. 
[26] Y. Sahni, J. Cao and L. Yang, "Data-Aware Task Allocation for 

Achieving Low Latency in Collaborative Edge Computing," in IEEE 

Internet of Things Journal, vol. 6, no. 2, pp. 3512-3524, April 2019, doi: 
10.1109/JIOT.2018.2886757. 

[27] Abbasi, M., Mohammadi Pasand, E. & Khosravi, M.R., “Workload 

Allocation in IoT-Fog-Cloud Architecture Using a Multi-Objective 
Genetic Algorithm” J Grid Computing 18, 43–56 (2020). 

https://doi.org/10.1007/s10723-020-09507-1. 

[28] Lindong Liu, Deyu Qi, Naqin Zhou, Yilin Wu, "A Task Scheduling 

Algorithm Based on Classification Mining in Fog Computing 

Environment", Wireless Communications and Mobile Computing, vol. 

2018, Article ID 2102348, 11 pages, 2018. 
https://doi.org/10.1155/2018/2102348. 

[29] Mohammad Khalid Pandit, Roohie Naaz Mir, Mohammad Ahsan 
Chishti, "Adaptive task scheduling in IoT using reinforcement 

learning", International Journal of Intelligent Computing and 

Cybernetics, Vol. 13 No. 3, pp. 261-282, 2020. 
https://doi.org/10.1108/IJICC-03-2020-0021. 

[30] Xuejing Li, Yajuan Qin, Huachun Zhou, Du Chen, Shujie Yang, Zhewei 

Zhang, "An Intelligent Adaptive Algorithm for Servers Balancing and 
Tasks Scheduling over Mobile Fog Computing Networks", Wireless 

Communications and Mobile Computing, vol. 2020, Article ID 

8863865, 16 pages, 2020. https://doi.org/10.1155/2020/8863865. 
[31] N. Mostafaz "Resource Selection Service Based on Neural Network in 

Fog Environment", Advances in Science, Technology and Engineering 

Systems Journal, vol. 5, no. 1, pp. 408-417 (2020). 
[32] Bhatia, M., Sood, S.K. & Kaur, S. Quantumized approach of load 

scheduling in fog computing environment for IoT applications. 

Computing 102, 1097–1115 (2020). https://doi.org/10.1007/s00607-
019-00786-5. 

[33] Fatma M. Talaat, Shereen H. Ali, Ahmed I. Saleh, Hesham A. Ali, 

“Effective Load Balancing Strategy (ELBS) for Real-Time Fog 
Computing Environment Using Fuzzy and Probabilistic Neural 

Networks”, Journal of Network and Systems Management (IF 2.250) 

Pub Date : 2019-02-06 , DOI: 10.1007/s10922-019-09490-3. 
[34] He Li, Kaoru Ota, and Mianxiong Dong, “Deep Reinforcement 

Scheduling for Mobile Crowd sensing in Fog Computing”, ACM Trans. 

Internet Technol. 19, 2, Article 21 (April 2019), 18 pages. DOI: 
https://doi.org/10.1145/3234463. 

[35] V. P. Kafle and A. H. A. Muktadir, "Intelligent and Agile Control of 

Edge Resources for Latency-Sensitive IoT Services," in IEEE Access, 
vol. 8, pp. 207991-208002, 2020, doi: 10.1109/ACCESS.2020.3038439. 

[36] Y. Dong, G. Xu, M. Zhang and X. Meng, "A High-Efficient Joint 

’Cloud-Edge’ Aware Strategy for Task Deployment and Load 
Balancing," in IEEE Access, vol. 9, pp. 12791-12802, 2021, doi: 

10.1109/ACCESS.2021.3051672. 

[37] Shifa Manihar, Tasneem Bano Rehman, Ravindra Patel and Sanjay 
Agrawal, “Intelligent and Scalable IoT Edge-Cloud System” 

International Journal of Advanced Computer Science and Applications 

(IJACSA), 11(8), 2020. 
http://dx.doi.org/10.14569/IJACSA.2020.0110846. 

 

 

 

 

 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/209987                 Volume 8, Issue 5, September – October (2021) 

  

 

   

ISSN: 2395-0455                                                  ©EverScience Publications       565 

    

RESEARCH ARTICLE 

Authors 

Shifa Manihar is pursuing PhD in the faculty of 
Computer Science and Engineering from UIT RGPV 

Bhopal. She holds MTech in Computer Technology 

Application Engineering from SoIT RGPV, Bhopal. She 
received Gold Medal for being University topper in 

MTech. She Holds BE degree in Computer Science 

Engineering from JNCT, Bhopal. She has publication in 
SCI, SCOPUS and UGC care listed journals and 

international patents. She is UGC NET qualified faculty 

and has qualified the GATE examination 4 times till date. She has about 9 
years of teaching and research experience. Her field of research includes 

Internet of Things, Cloud Computing, Fog Computing, Machine Learning, 

etc. 

Dr. Ravindra Patel has put in an illustrious academic 

career spanning 16 years ever since he joined service in 

2005 as lecturer at SATI Vidisha, Madhya Pradesh, 
India. Subsequently he joined RGPV, Bhopal, and 

Madhya Pradesh as Reader in the year 2007, became 

Associate Professor in the year 2010 and Professor of 
Computer Applications in the year 2013 and ever since 

acquired rich and diversified experience in teaching, 
research and administration. His educational 

qualifications include M.Sc. Mathematics, from Model Science College 

Rewa, MP.  Master in Computer Applications from SATI, Vidisha, MP and 
PhD from Rani Durgavati University, Jabalpur, MP, India. His academic 

experience spans the responsibilities as Head of the Department of Computer 

Applications since 2008 to till date and dean faculty Computer Science and 
Information Technology in RGPV, Bhopal, for two years. He has 

successfully supervised 10 Ph.D. and 06 MTech thesis in the area of Software 

Engineering, Data Mining, and Computer Network. Presently, 08 Ph.D. 
research scholars are pursuing Ph.D. under his supervision. He reviewed 

several research papers and was the examiner for PhD thesis of other 

Universities too. He has presented and published 12 research papers in 

International conferences, published 38 research papers in peer reviewed 

international journals and 02 book chapters. 

 

 

 

 

 

 

 

How to cite this article: 

 

 

 

 

 

 

 

 

 

 

Dr. Sanjay Agrawal is working as a Professor in the 

Department of Computer Engineering & Applications in 
National Institute of Technical Teachers Training & 

Research (NITTTR), Bhopal, M.P., India.  He is having 

over 28 years of Technical Teachers Training along with 
PG Students & had done PhD under the faculty of 

Computer science and Information Technology of 

RGPV, Bhopal. He has published more than 60 Research 
Papers in International Journals and Conferences. He had 

successfully developed NPTEL/SWAYAM Course on 

“Accreditation for Undergraduate Engineering Programs”. He has delivered 
several Training Sessions, Expert/Guest Lectures, Attended Seminars and 

Chaired Sessions in various IEEE, Springer International Conferences.  He 

has been acting as a Dean Research and Development. Dr. Agrawal acts as an 
Expert Members to Committee, i.e., Expert Member of the NBA Evaluation 

in various Indian institutes. Dr. Agrawal is guiding many PhD & PG students 

and having an open offer for the research community to work collaboratively 

on various research projects in India and abroad. 

Shifa Manihar, Ravindra Patel, Sanjay Agrawal, “Learning Based Task Placement Algorithm in the IoT Fog-Cloud 

Environment”, International Journal of Computer Networks and Applications (IJCNA), 8(5), PP: 549-565, 2021, DOI: 

10.22247/ijcna/2021/209987. 

 

 


